mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-17 23:05:21 +00:00
712027f3077cb4adb278382b6e105b4dcbe8f603
175 Commits
| Author | SHA1 | Message | Date | |
|---|---|---|---|---|
|
|
dd7f3e80d1 |
Unify the code that performs the three kinds of data movements
Estimated hours taken: 20
Unify the code that performs the three kinds of data movements
required for calls:
(1) putting forward live variables to be saved across the call
into their stack slots
(2) putting variables protected by enclosing resumption points
into their stack slots
(3) putting input arguments into their registers
By using the same code (code_info__setup_call) for all three, we gain
two benefits:
(1) This code can also compute the live lval set we must put into
a livevals LLDS instruction before the call to describe the
locations that must be preserved by value numbering. Previously,
this set was computed by other algorithms, raising the possibility
of a discrepancy. Such discrepancies would cause value numbering
to generate incorrect code.
(2) The eager back end is more efficient when given a single list
of data placements to perform instead of three lists, because
it can reorder operations more freely when required.
compiler/call_gen.m:
Make the change described above.
Factor out more code that is common between ordinary and generic calls.
compiler/code_info.m:
Provide the infrastructure for the change above.
compiler/arg_info.m:
Concentrate predicates dealing with arg_infos and parameter passing
conventions in general in this module. Previously, call_gen.m and
code_util.m also contained such code.
compiler/bytecode_gen.m:
compiler/pragma_c_gen.m:
compiler/disj_gen.m:
compiler/follow_vars.m:
compiler/middle_rec.m:
Small changes to conform to changes in interfaces of the modules above.
compiler/code_util.m:
Remove a now redundant predicate.
|
||
|
|
46a8da81cb |
Implement builtin tuple types, similar to those in Haskell.
Estimated hours taken: 30
Implement builtin tuple types, similar to those in Haskell.
Tuples are constructed and deconstructed using
the syntax X = {Arg1, Arg2, ...}.
Tuples have type `{Arg1, Arg2, ...}'.
Unary tuples (X = {Arg}) do work, unlike in Haskell. The rationale
for this is that it is useful to be able to construct unary tuples
to be passed to a polymorphic predicate which uses std_util__deconstruct
to deal with a tuple of any arity. Since this is probably the only
use for unary tuples, it's not really worth the effort of treating
them as no_tag types, so we don't.
The type-infos for tuples have the same structure as for higher-order
types. There is a single type_ctor_info for tuples, and the arity
is placed before the argument type_infos.
library/parser.m:
Change the way '{}/N' terms are parsed, so that the parsed
representation is consistent with the way other functors
are represented (previously the arguments were left as
unparsed ','/2 terms). This avoids special case code
in prog_io__parse_qualified_term, term__term_to_type
and term__type_to_term.
compiler/prog_io_dcg.m:
compiler/prog_io_util.m:
Handle the new structure of '{}/N' terms when parsing DCG escapes
by converting the argument list back into a single ','/2 term.
compiler/module_qual.m:
Treat tuples as a builtin type.
compiler/typecheck.m:
Typecheck tuple constructors.
compiler/mode_util.m:
Propagate types into tuple bound insts.
compiler/type_util.m:
Add type_is_tuple/2 and type_id_is_tuple/1 to identify tuple types.
Add tuples to the list of types which are not atomic types.
Handle tuple types in `type_constructors' and
`get_cons_id_arg_types' and `switch_type_num_functors'.
compiler/tabling.m:
Handle tabling of tuples.
compiler/term_util.m:
Handle tuples in the code to compute functor norms.
compiler/magic_util.m:
compiler/rl.m:
compiler/rl_key.m:
Handle tuple types in the Aditi back end.
compiler/mercury_to_mercury.m:
library/io.m:
library/term_io.m:
Handle output of '{}/N' terms.
compiler/higher_order.m:
compiler/simplify.m:
Don't specialize complicated unifications of tuple
types into calls to a specific unification procedure --
even if the procedure were implemented, it probably
wouldn't be that much more efficient.
compiler/unify_proc.m:
Generate unification procedures for complicated unifications
of tuples (other than in-in unifications). These are generated
lazily as required.
compiler/make_hlds.m:
Export add_special_pred for use by unify_proc.m.
compiler/polymorphism.m:
Export polymorphism__process_pred for use by unify_proc.m.
compiler/bytecode_gen.m:
compiler/code_util.m:
compiler/ml_code_util.m:
Handle unify procedure names and tags for tuple types.
compiler/mlds_to_c.m:
Output tuple types as MR_Tuple.
compiler/ml_unify_gen.m:
Compute the field types for tuples.
compiler/polymorphism.m:
compiler/pseudo_type_info.m:
Treat tuple type_infos in a similar way to higher-order type_infos.
compiler/hlds_data.m:
Document how cons_ids for tuple types are represented.
compiler/switch_gen.m:
compiler/table_gen.m:
Add tuple types to switches on type_util__builtin_type.
compiler/llds_out.m:
util/mdemangle.c:
profiler/demangle.m:
Transform items named "{}" to "f_tuple" when mangling symbols.
library/builtin.m:
Define the type_ctor_info used for tuples.
library/private_builtin.m:
Add `builtin_unify_tuple/2' and `builtin_compare_tuple/3',
both of which abort. All comparisons and in-in unifications
of tuples are performed by the generic unification functions
in runtime/mercury_ho_call.c and runtime/mercury.c.
library/std_util.m:
Implement the various RTTI functions for tuples.
Encode tuple `TypeCtorDesc's in a similar way to that
used for higher-order types. This has the consequence that the limit
on the arity of higher-order types is now MAX_VIRTUAL_REG,
rather than 2*MAX_VIRTUAL_REG.
Avoid calling MR_GC_free for the type-info vector returned
from ML_expand() for tuples because unlike the vectors
for du types, it is not copied.
runtime/mercury_type_info.h:
Add macros for extracting fields from tuple type-infos.
These just call the macros for extracting fields from higher-order
type-infos.
Add a macro MR_type_ctor_rep_is_variable_arity(), which
returns TRUE for tuples and higher-order types.
The distinction between higher-order and first-order types
is now misnamed -- the distinction is really between fixed arity
types and builtin variable arity types. I'm not sure whether
it's worth renaming everything.
runtime/mercury.h:
runtime/mercury.c:
Define unification and comparison of tuples in
high-level code grades.
runtime/mercury_deep_copy_body.h:
runtime/mercury_make_type_info_body.h:
runtime/mercury_tabling.c:
runtime/mercury_unify_compare_body.h:
Handle tuple types in code which traverses data using RTTI.
tests/hard_coded/construct.{m,exp}:
tests/hard_coded/expand.{m,exp}:
Test RTTI functions from std_util.m applied to tuples.
tests/hard_coded/tuple_test.{m,exp}:
Test unification, comparison, term_to_type etc. applied to tuples.
tests/hard_coded/deep_copy.{m,exp}:
Test deep copy of tuples.
tests/hard_coded/typeclasses/tuple_instance.{m,exp}:
Test instance declarations for tuples.
tests/tabling/expand_tuple.{m,exp}:
Test tabling of tuples.
tests/hard_coded/write.m:
Add some module qualifications for code which uses
`{}/1' constructors which are not tuples.
tests/invalid/errors2.{m,err_exp,err_exp2}:
Test handling of tuples in type errors messages.
NEWS:
doc/reference_manual.texi:
w3/news/newsdb.inc:
Document tuples.
doc/transition_guide.texi:
Document the change to the parsing of '{}/N' terms.
|
||
|
|
a1f326f4e9 |
Add an alternative to code_exprn that does eager code generation (code_exprn
Estimated hours taken: 140 Add an alternative to code_exprn that does eager code generation (code_exprn always does lazy code generation). Its main advantages are that the new code is significantly simpler, and that it does not generate unnecessary shuffling code. Its main disadvantage, which is that it does not eliminate the creation of unneeded cells, can be eliminated by switching on --unneeded-code. For now, you can select the use of the new code generator with the --no-lazy-code option (which was previously present but unused). This will be made the default later, after I do more performance tests. Var_locn contains stricter self-checks than code_exprn does. This required modifications to some other parts of the code generator to ensure that the self-checks do not fail unnecessarily. (This mostly took the form of explicitly killing off dead variables before calling code_info__clear_all_registers, which would complain about losing the last record of the value of a variable that was alive as far as it knew.) To make my changes simpler, also took the opportunity to simplify parts of the code generator which were handing around rvals that in fact had to be wrappers around lvals, by handing around the lvals directly. Testing this change also required fixing an old bug which prevented compiling the library with -O1 --trace deep, together with the usual intermodule optimization. The bug is that a library module reads predicates from builtin.opt or private_builtin.opt, does not eliminate them because of the -O1, and then tries to generate traced code for them. However, this fails because the builtin modules contain some predicates that cannot be made to conform to typeinfo-liveness, which is required by tracing. compiler/var_locn.m: The new module that implements eager code generation. compiler/follow_vars.m: Improve the follow_vars pass, since eager code generation requires better follow_vars information. We now generate correct information for generic calls, and record not only where some vars (e.g. those which appear as input arguments of following calls) should be put, but also which registers are not reserved for those variables and are thus available for other variables. compiler/hlds_goal.m: Modify the follow_vars field of the goal_info to record the number of the first non-reserved register. compiler/code_info.m: Replace the general-purpose predicate code_info__cache_exprn, which associated a variable with an rval without generating code, with a set of special-purpose predicates such as code_info__assign_const_to_var and code_info__assign_cell_to_var, some of which can generate code. These new predicates and some older ones (e.g. code_info__setup_call) now choose at runtime whether to call code_exprn or var_locn. The basis for the decision is checking whether the code_info structure contains an exprn_info or a var_locn_info. This is decided in code_info__init based on the value of the lazy_code option, and maintained unchanged from then on. Rename some predicates to better reflect their current possible behaviors. compiler/unify_gen.m: Call the new special-purpose predicates in code_info instead of code_info__cache_exprn. Replace an incorrect clause with a call to error, since that clause could never be invoked. compiler/call_gen.m: Hand over the task of generating the args of generic calls to code_info, since it already has code to do the right thing, which includes reserving the registers to be used for the input args. Notify the rest of the code generator after the last use of non-forward-live variables, in order to avoid spurious calls to error (it is an error to clobber the last location of a live variable). Notify the rest of the code generator when generic calls overwrite registers, to allow the proper consistency checks to be made. If an output variable is singleton, then do not make it known to the code generator. It never will never become dead, and may thus cause a spurious compiler abort if its storage is ever clobbered. Export a predicate for use by follow_vars. Factor out some common code. Call the new preds in code_info where necessary. compiler/pragma_c_gen.m: Notify the rest of the code generator after the last use of non-forward-live variables, in order to avoid spurious calls to error (it is an error to clobber the last location of a live variable). If an output variable is singleton, then do not make it known to the code generator. It never will never become dead, and may thus cause a spurious compiler abort if its storage is ever clobbered. When using var_locn, ensure that none of the input arguments of a model_semi pragma_c_code is assigned to r1. If we did, and the last reference to the value of that argument was after an assignment to SUCCESS_INDICATOR, the C compiler would be forced to generate code to shuffle the value of the argument out of the way. compiler/code_exprn.m: Minor changes to return lvals directly instead of lvals wrapped inside rvals and to conform the new format of follow_vars. Do not include the registers reserved by follow_vars in the search for a spare register. compiler/lookup_switch.m: compiler/switch_gen.m: Fix an old bug that did not matter with code_exprn but does matter with var_locn: the branch end structure was being computed in the wrong place. compiler/disj_gen.m: At the ends of non-last disjuncts, kill off the variables that we needed to know inside the disjunct but won't need to know after the disjunct, in order to avoid error messages about throwing away their state. The variables affected are those which are needed only by the resumption point of the next disjunct, not by enclosing resumption points or forward execution. compiler/arg_info.m: Associate an lval, not an rval, with each argument. compiler/*.m: Minor changes to conform to (a) the new format of follow_vars, (b) the replacement of rvals containing lvals by lvals. compiler/code_util.m: Add some utility predicates for var_locn.m. compiler/exprn_aux.m: Add some utility functions for var_locn.m. Export a predicate for var_locn.m. compiler/handle_options.m: If --no-lazy-code is set, switch on the "optimizations" on whose presence it depends. compiler/mercury_compile.m: compiler/code_gen.m: Turn off tracing for predicates that don't obey typeinfo liveness for backend_by_preds and backend_by_phases respectively. Look up options in the globals structure in the module_info, not in the globals structure in the I/O state, since this is where we turn off tracing. (We should later make sure that other parts of the compiler are also consistent on this issue.) compiler/stack_layout.m: Throw away any continuation_info structures that belong to predicates that don't obey typeinfo liveness. |
||
|
|
c192d50143 |
Add preliminary support for a new pragma:
Estimated hours taken: 15 Add preliminary support for a new pragma: :- pragma foreign_code(LanguageString, .... <same args as c_code>). This is intended to be the eventual replacement of pragma c_code. Presently the only valid language is "C". The existing pragma c_code is simply turned into pragma foreign_code. pragma foreign_code is not a supported pragma at the moment. There are several other changes that are intended (for example, foreign_code will be impure by default). This change also changes the HLDS goal pragma_c_code/7 to pragma_foreign_code/8 where the extra argument is the foreign language. Any code currently generating output for pragma C code simply checks that the foreign language is set to "c". Since this is the only alternative of the type foreign_language, it will always succeed. However when new alternatives are added it should be fairly easy to find where the changes need to be made. Some type names and predicate names have also been updated, however there are many more that haven't yet been touched. compiler/prog_io_pragma.m: Accept the new syntax. Turn the old syntax into the new item. compiler/hlds_goal.m: Change pragma_c_code/7 to pragma_foreign_code/8. Define the foreign_language type. compiler/llds.m: Change user_c_code/2 to user_foreign_code/3. compiler/*.m: Update the rest of the compiler to handle these types. Make a few small changes to update variable names, predicate names and type names. |
||
|
|
12f81383d7 |
I forgot to commit this as part of my earlier change to implement RTTI
Estimated hours taken: 0.1 I forgot to commit this as part of my earlier change to implement RTTI support for the MLDS back-end using the rtti module. compiler/code_util.m: Trivial change to handle the new fields of the rtti_proc_label type. |
||
|
|
c202e2c7fc |
Restructure the RTTI implementation to eliminate dependencies on the LLDS,
Estimated hours taken: 7 Restructure the RTTI implementation to eliminate dependencies on the LLDS, so that it can be used for the MLDS back-end as well as the LLDS back-end. (Note that I have not yet modified the MLDS back-end to actually make use of it; that will be a separate change.) compiler/rtti.m: Eliminate the dependency on LLDS, by replacing code_addr with a new type `rtti_proc_label'. Add a procedure `rtti__make_proc_label' for constructing these. compiler/type_ctor_info.m: Eliminate the dependency on LLDS, by calling rtti__make_proc_label rather than code_util__make_entry_label. compiler/ml_code_util.m: Add a new procedure `ml_gen_pred_label_from_rtti', for (eventual) use by ml_base_type_info.m. Restructure the implementation of ml_gen_pred_label so that it works by first calling rtti__make_proc_label and then calling ml_gen_pred_label_from_rtti. compiler/code_util.m: Add new procedure `make_entry_label_from_rtti', for use by rtti_out.m. Restructure the implementation of the predicates make_entry_label, make_local_entry_label, and make_proc_label so that they work by first calling rtti__make_proc_label. Change make_user_proc_label to take a boolean rather than an import_status. Also update the documentation for code_util__compiler_generated, adding an XXX comment saying that the name is misleading. compiler/rtti_out.m: Call code_util__make_entry_label_from_rtti to convert the rtti_proc_labels in the RTTI into code_addrs. compiler/rl.m: Update to reflect the changed interface to code_util__make_user_proc_label. |
||
|
|
7622eb1d36 |
Finish the implementation of Aditi updates.
Estimated hours taken: 120 Finish the implementation of Aditi updates. compiler/hlds_goal.m: Refactor the aditi_builtin type so that operations with similar syntax and implementations are grouped together. Add operations to delete a single tuple (`aditi_delete') and to modify tuples (`aditi_bulk_modify'). compiler/*.m: Minor changes required by refactoring the aditi_builtin type. compiler/make_hlds.m: Parse `aditi_delete' and `aditi_bulk_modify' goals. Parse a nicer syntax for `aditi_bulk_delete' and `aditi_bulk_insert' goals (e.g. aditi_bulk_delete(p(_, X, _) :- X > 2)). compiler/rl_out.pp: For each base relation, generate RL procedures to apply deletions and modifications to the relation. `aditi_bulk_modify' takes a closure which produces tuples which contain both the attributes of the tuple to delete and the tuple to insert. The modification RL procedure performs two projections on the closure result to produce the tuples to delete and the tuples to delete. The input stream to the rl_PROC_delete RL instruction must contain only tuples taken from the relation to delete from -- the deletion is done using the tuple-id rather than the tuple contents. The generated deletion procedure performs a semi-join of the relation to delete from with the relation containing the tuples to delete. compiler/rl.m: Add predicates to generate the names of the modification and deletion RL procedures generated for each base relation. compiler/rl_exprn.m: Generate the projection expressions required by the modification RL procedures generated for each base relation. Generate the equi-join expressions required by the modification and deletion RL procedures generated for each base relation. compiler/unify_gen.m: Implement code generation for `aditi_bottom_up' closures. compiler/rl.m: compiler/magic.m: Factor out the code used to create the name of the RL procedure used to interface top-down Mercury to Aditi, for use by unify_gen.m to generate `aditi_bottom_up' closures. compiler/code_util.m: Add predicate code_util__make_user_proc_label, which constructs a label name from the given all the individual pieces of information used to construct it, rather than just a pred_id and proc_id. This is used to produce the RL procedure name for an `aditi_bottom_up' closure, so that the code doesn't have to work out what the pred_id of the magic sets transformed procedure is. compiler/magic.m: Always create new procedures to interface Mercury to Aditi, to make it easier for unify_gen.m to work out what the name of the interface procedure is -- don't optimize the case of a predicate with no input arguments. Alter the goal generated for the interface procedures so that it doesn't matter whether the interface procedure and the procedure it interfaces to are compiled together by rl_gen.m -- the old code generated for these procedures assumed they were compiled separately, which wasn't always the case. Don't pass a `magic_info' through the code to generate the C interface procedures -- only the module_info field was required. compiler/magic_util.m: compiler/magic.m: compiler/context.m: Don't pass a `magic_info' through magic_util__create_input_test_unifications -- only the module_info and proc_info fields were used. compiler/post_typecheck.m: compiler/magic_util.m: Don't report errors for the second `aditi__state' argument of the closure passed to `aditi_bulk_modify'. compiler/purity.m: Change the mode of the second `aditi__state' argument of the closure passed to `aditi_bulk_modify' to `unused'. compiler/call_gen.m: Generate `aditi_delete' and `aditi_bulk_modify'. Remove the `aditi__state' from the tuple to insert passed to an `aditi_insert' or `aditi_delete' operation -- the relation on disk does not contain the `aditi__state' attribute. extras/aditi/aditi.m: Implement the updates. Allocate all memory on the Mercury heap to avoid memory leaks when a transaction aborts. Uncaught exceptions within a transaction now cause the transaction to abort, and the exception is rethrown to the caller. If using trailing, add trail entries for the output relation and cursor created for a call to an Aditi procedure, so that they will be cleaned up if only one solution of the call is needed or if an exception is thrown. Include line numbers in the debugging messages if an Aditi API function fails. compiler/llds.m: compiler/*.m: Rename the `do_aditi_modify' label to `do_aditi_bulk_modify' -- we may eventually want to implement a modification goal type which doesn't produce all modified tuples before applying the update. doc/reference_manual.texi: Document `aditi_delete' and `aditi_bulk_modify'. Add some extra spacing in the Aditi update section to improve readability. tests/valid/aditi_update.m: tests/invalid/aditi_update_errors.m: tests/invalid/aditi_update_errors.err_exp: tests/invalid/aditi_update_mode_errors.m: tests/invalid/aditi_update_mode_errors.err_exp: Changed to fit in with the new syntax. tests/valid/Mmakefile: Code generation for Aditi updates now works, so enable full compilation of the aditi_update.m test case, rather than just checking for errors. |
||
|
|
1f85335505 |
Refactor the handling of code generation for builtin
Estimated hours taken: 5 Refactor the handling of code generation for builtin procedures to avoid code duplication and to reduce dependencies between different sub-systems. compiler/builtin_ops.m: Add a new `simple_expr' type. Add a new procedure `translate_builtin' that returns this type. This procedure is very similar to code_util__translate_builtin and ml_call_gen:ml_translate_builtin, but with a slightly simpler and somewhat safer interface. compiler/ml_call_gen.m: Use builtin_ops__translate_builtin rather than ml_translate_builtin. compiler/code_util.m: compiler/call_gen.m: compiler/bytecode_gen.m: compiler/rl_exprn.m: Use builtin_ops__translate_builtin rather than code_util__translate_builtin. |
||
|
|
00ffa8d3db |
Add reverse modes for int__xor, as suggested by
Estimated hours taken: 1 Add reverse modes for int__xor, as suggested by Michael Roe <mroe@microsoft.com>. library/int.m: Declare the new modes for int__xor. library/Mmakefile: Compile int.m with `--no-halt-at-warn'. This is needed because when compiling with the old compiler that doesn't know about these new modes, the old compiler gives a warning about the extra modes. compiler/code_util.m: compiler/ml_call_gen.m: Add code to implement the new modes for the builtin int__xor. tests/general/arithmetic.m: Add a test of the new modes of int__xor. NEWS: Document the change. |
||
|
|
b96ff7a174 |
Remove functions int:^/2' and integer:^/2', since
Estimated hours taken: 0.1 library/int.m: library/integer.m: Remove functions `int:^/2' and `integer:^/2', since the operator `^' is now used for record syntax. compiler/code_util.m: Remove `int:^/2' from the list of builtins. NEWS: Document record syntax and the removal of the above functions. |
||
|
|
3a26ad82d5 |
Add information required for structure reuse and compile time garbage
Estimated hours taken: 2 Add information required for structure reuse and compile time garbage collection to the LLDS. The code generator does not yet generate this information. This will be committed to the main branch to avoid CVS conflicts. compiler/llds.m: Add an LLDS instruction `free_heap(rval)', which applies the MR_free_heap macro to its argument. Add a `maybe(rval)' field to `create' rvals to hold the address of a cell to reuse. This field should always be `no' after code generation, because all non-constant creates are converted into lower-level operations during code generation. compiler/value_number.m: Don't reorder instructions around a `free_heap' instruction to avoid generating code which looks at deallocated memory. compiler/*.m: Handle the new instruction and field. |
||
|
|
f29d74ffe0 |
Prepare for using `^' for record syntax rather than xor.
Estimated hours taken: 0.1 Prepare for using `^' for record syntax rather than xor. library/int.m: Add function `int__xor/2' as a replacement for `'^'/2'. compiler/code_util.m: Recognise `int__xor/2' as a builtin. |
||
|
|
d551dd1dc9 |
Handle quantification analysis of bi-implication (`<=>') goals correctly.
Estimated hours taken: 10
Handle quantification analysis of bi-implication (`<=>') goals correctly.
Previously we used to expand bi-implications before doing quantification
analysis, which stuffed up the results of quantification analysis for
those goals. We need to do quantification analysis first, and only
then can we expand bi-implications. In addition, elimination of double
negation needs to come after expansion of bi-implication, so I moved
that from make_hlds.m to purity.m.
compiler/hlds_goal.m:
Add a new alternative to the HLDS goal type for bi-implications.
Also add a new predicate negate_goal, for use by purity.m.
compiler/make_hlds.m:
Don't expand bi-implication here, instead just use the new
bi_implication/2 HLDS goal type.
Don't eliminated double negation here.
compiler/quantification.m:
Handle quantification for bi-implications.
Expand bi-implications.
compiler/purity.m:
Eliminate double negation.
compiler/hlds_out.m:
Add code to print out bi-implication goals.
compiler/*.m:
Trivial changes to handle the new bi_implication/2
alternative in the HLDS goal type.
compiler/notes/compiler_design.html:
Document the above changes.
tests/hard_coded/Mmakefile:
tests/hard_coded/quantifier2.m:
tests/hard_coded/quantifier2.exp:
A regression test for the above change.
|
||
|
|
eefc022da7 |
Add support for generation of builtins to the MLDS backend.
Estimated hours taken: 2
Add support for generation of builtins to the MLDS backend.
compiler/ml_code_gen.m:
Add support for generating builtins (mostly copied
from call_gen.m and code_util.m, but with a few
changes).
compiler/code_util.m:
Add a comment warning about the code duplication.
compiler/c_util.m:
compiler/llds_out.m:
compiler/mlds_to_c.m:
Move (most of) the code from llds_out__binary_op_to_string
into a new routine c_util__binary_infix_op/2, and change
llds_out.m and mlds_to_c.m to use it.
compiler/mlds_to_c.m:
(An unrelated change:)
Don't output any comments for "public" access,
since such comments end up being just noise.
|
||
|
|
2725b1a331 |
Aditi update syntax, type and mode checking.
Estimated hours taken: 220
Aditi update syntax, type and mode checking.
Change the hlds_goal for constructions in preparation for
structure reuse to avoid making multiple conflicting changes.
compiler/hlds_goal.m:
Merge `higher_order_call' and `class_method_call' into a single
`generic_call' goal type. This also has alternatives for the
various Aditi builtins for which type declarations can't
be written.
Remove the argument types field from higher-order/class method calls.
It wasn't used often, and wasn't updated by optimizations
such as inlining. The types can be obtained from the vartypes
field of the proc_info.
Add a `lambda_eval_method' field to lambda_goals.
Add a field to constructions to identify which RL code fragment should
be used for an top-down Aditi closure.
Add fields to constructions to hold structure reuse information.
This is currently ignored -- the changes to implement structure
reuse will be committed to the alias branch.
This is included here to avoid lots of CVS conflicts caused by
changing the definition of `hlds_goal' twice.
Add a field to `some' goals to specify whether the quantification
can be removed. This is used to make it easier to ensure that
indexes are used for updates.
Add a field to lambda_goals to describe whether the modes were
guessed by the compiler and may need fixing up after typechecking
works out the argument types.
Add predicate `hlds_goal__generic_call_id' to work out a call_id
for a generic call for use in error messages.
compiler/purity.m:
compiler/post_typecheck.m:
Fill in the modes of Aditi builtin calls and closure constructions.
This needs to know which are the `aditi__state' arguments, so
it must be done after typechecking.
compiler/prog_data.m:
Added `:- type sym_name_and_arity ---> sym_name/arity'.
Add a type `lambda_eval_method', which describes how a closure
is to be executed. The alternatives are normal Mercury execution,
bottom-up execution by Aditi and top-down execution by Aditi.
compiler/prog_out.m:
Add predicate `prog_out__write_sym_name_and_arity', which
replaces duplicated inline code in a few places.
compiler/hlds_data.m:
Add a `lambda_eval_method' field to `pred_const' cons_ids and
`pred_closure_tag' cons_tags.
compiler/hlds_pred.m:
Remove type `pred_call_id', replace it with type `simple_call_id',
which combines a `pred_or_func' and a `sym_name_and_arity'.
Add a type `call_id' which describes all the different types of call,
including normal calls, higher-order and class-method calls
and Aditi builtins.
Add `aditi_top_down' to the type `marker'.
Remove `aditi_interface' from type `marker'. Interfacing to
Aditi predicates is now handled by `generic_call' hlds_goals.
Add a type `rl_exprn_id' which identifies a predicate to
be executed top-down by Aditi.
Add a `maybe(rl_exprn_id)' field to type `proc_info'.
Add predicate `adjust_func_arity' to convert between the arity
of a function to its arity as a predicate.
Add predicates `get_state_args' and `get_state_args_det' to
extract the DCG state arguments from an argument list.
Add predicate `pred_info_get_call_id' to get a `simple_call_id'
for a predicate for use in error messages.
compiler/hlds_out.m:
Write the new representation for call_ids.
Add a predicate `hlds_out__write_call_arg_id' which
replaces similar code in mode_errors.m and typecheck.m.
compiler/prog_io_goal.m:
Add support for `aditi_bottom_up' and `aditi_top_down' annotations
on pred expressions.
compiler/prog_io_util.m:
compiler/prog_io_pragma.m:
Add predicates
- `prog_io_util:parse_name_and_arity' to parse `SymName/Arity'
(moved from prog_io_pragma.m).
- `prog_io_util:parse_pred_or_func_name_and_arity to parse
`pred SymName/Arity' or `func SymName/Arity'.
- `prog_io_util:parse_pred_or_func_and_args' to parse terms resembling
a clause head (moved from prog_io_pragma.m).
compiler/type_util.m:
Add support for `aditi_bottom_up' and `aditi_top_down' annotations
on higher-order types.
Add predicates `construct_higher_order_type',
`construct_higher_order_pred_type' and
`construct_higher_order_func_type' to avoid some code duplication.
compiler/mode_util.m:
Add predicate `unused_mode/1', which returns `builtin:unused'.
Add functions `aditi_di_mode/0', `aditi_ui_mode/0' and
`aditi_uo_mode/0' which return `in', `in', and `out', but will
be changed to return `di', `ui' and `uo' when alias tracking
is implemented.
compiler/goal_util.m:
Add predicate `goal_util__generic_call_vars' which returns
any arguments to a generic_call which are not in the argument list,
for example the closure passed to a higher-order call or
the typeclass_info for a class method call.
compiler/llds.m:
compiler/exprn_aux.m:
compiler/dupelim.m:
compiler/llds_out.m:
compiler/opt_debug.m:
Add builtin labels for the Aditi update operations.
compiler/hlds_module.m:
Add predicate predicate_table_search_pf_sym, used for finding
possible matches for a call with the wrong number of arguments.
compiler/intermod.m:
Don't write predicates which build `aditi_top_down' goals,
because there is currently no way to tell importing modules
which RL code fragment to use.
compiler/simplify.m:
Obey the `cannot_remove' field of explicit quantification goals.
compiler/make_hlds.m:
Parse Aditi updates.
Don't typecheck clauses for which syntax errors in Aditi updates
are found - this avoids spurious "undefined predicate `aditi_insert/3'"
errors.
Factor out some common code to handle terms of the form `Head :- Body'.
Factor out common code in the handling of pred and func expressions.
compiler/typecheck.m:
Typecheck Aditi builtins.
Allow the argument types of matching predicates to be adjusted
when typechecking the higher-order arguments of Aditi builtins.
Change `typecheck__resolve_pred_overloading' to take a list of
argument types rather than a `map(var, type)' and a list of
arguments to allow a transformation to be performed on the
argument types before passing them.
compiler/error_util.m:
Move the part of `report_error_num_args' which writes
"wrong number of arguments (<x>; expected <y>)" from
typecheck.m for use by make_hlds.m when reporting errors
for Aditi builtins.
compiler/modes.m:
compiler/unique_modes.m:
compiler/modecheck_call.m:
Modecheck Aditi builtins.
compiler/lambda.m:
Handle the markers for predicates introduced for
`aditi_top_down' and `aditi_bottom_up' lambda expressions.
compiler/polymorphism.m:
Add extra type_infos to `aditi_insert' calls
describing the tuple to insert.
compiler/call_gen.m:
Generate code for Aditi builtins.
compiler/unify_gen.m:
compiler/bytecode_gen.m:
Abort on `aditi_top_down' and `aditi_bottom_up' lambda
expressions - code generation for them is not yet implemented.
compiler/magic.m:
Use the `aditi_call' generic_call rather than create
a new procedure for each Aditi predicate called from C.
compiler/rl_out.pp:
compiler/rl_gen.m:
compiler/rl.m:
Move some utility code used by magic.m and call_gen.m into rl.m.
Remove an XXX comment about reference counting being not yet
implemented - Evan has fixed that.
library/ops.m:
compiler/mercury_to_mercury.m:
doc/transition_guide.texi:
Add unary prefix operators `aditi_bottom_up' and `aditi_top_down',
used as qualifiers on lambda expressions.
Add infix operator `==>' to separate the tuples in an
`aditi_modify' call.
compiler/follow_vars.m:
Thread a `map(prog_var, type)' through, needed because
type information is no longer held in higher-order call goals.
compiler/table_gen.m:
Use the `make_*_construction' predicates in hlds_goal.m
to construct constants.
compiler/*.m:
Trivial changes to add extra fields to hlds_goal structures.
doc/reference_manual.texi:
Document Aditi updates.
Use @samp{pragma base_relation} instead of
@samp{:- pragma base_relation} throughout the Aditi documentation
to be consistent with other parts of the reference manual.
tests/valid/Mmakefile:
tests/valid/aditi_update.m:
tests/valid/aditi.m:
Test case.
tests/valid/Mmakefile:
Remove some hard-coded --intermodule-optimization rules which are
no longer needed because `mmake depend' is now run in this directory.
tests/invalid/*.err_exp:
Fix expected output for changes in reporting of call_ids
in typecheck.m.
tests/invalid/Mmakefile
tests/invalid/aditi_update_errors.{m,err_exp}:
tests/invalid/aditi_update_mode_errors.{m,err_exp}:
Test error messages for Aditi updates.
tests/valid/aditi.m:
tests/invalid/aditi.m:
Cut down version of extras/aditi/aditi.m to provide basic declarations
for Aditi compilation such as `aditi__state' and the modes
`aditi_di', `aditi_uo' and `aditi_ui'. Installing extras/aditi/aditi.m
somewhere would remove the need for these.
|
||
|
|
773bd702cc |
Some more changes to minimize the complexity of the intermodule dependencies.
Estimated hours taken: 2.5 Some more changes to minimize the complexity of the intermodule dependencies. In particular, ensure that bytecode.m does not need to import llds.m. compiler/llds.m: compiler/builtin_ops.m: Move the definitions of the unary_op and binary_op types into a new module `builtin_ops'. These types are used by three of the different back-ends (bytecode, llds, and mlds) and therefore deserve to be in their own module. compiler/bytecode.m: Define a type `byte_reg_type' and use that instead of llds__reg_type. Delete the import of module llds. compiler/notes/compiler_design.html: Document the new module builtin_ops. compiler/rl_exprn.m: Add a comment explaining why we need to import llds (and builtin_ops). compiler/base_type_layout.m: compiler/bytecode.m: compiler/code_util.m: compiler/dense_switch.m: compiler/ite_gen.m: compiler/jumpopt.m: compiler/llds_out.m: compiler/lookup_switch.m: compiler/middle_rec.m: compiler/opt_debug.m: compiler/opt_util.m: compiler/rl_exprn.m: compiler/string_switch.m: compiler/tag_switch.m: compiler/transform_llds.m: compiler/unify_gen.m: compiler/value_number.m: compiler/vn_block.m: compiler/vn_cost.m: compiler/vn_flush.m: compiler/vn_type.m: compiler/vn_util.m: compiler/vn_verify.m: Add imports of module builtin_ops to lots of modules that imported llds. |
||
|
|
ec86c88404 |
Merge in the changes from the existential_types_2 branch.
Estimated hours taken: 4 Merge in the changes from the existential_types_2 branch. This change adds support for mode re-ordering of code involving existential types. The change required modifying the order of the compiler passes so that polymorphism comes before mode analysis, so that mode analysis can check the modes of the `type_info' or `typeclass_info' variables that polymorphism introduces, so that it can thus re-order the code accordingly. This change also includes some more steps towards making existential data types work. In particular, you should be able to declare existentially typed data types, the compiler will generate appropriate unification and compare/3 routines for them, and deconstruction unifications for them should work OK. However, currently there's no way to construct them except via `pragam c_code', and we don't generate correct RTTI for them, so you can't use `io__write' etc. on them. library/private_builtin.m: compiler/accumulator.m: compiler/bytecode_gen.m: compiler/check_typeclass.m: compiler/clause_to_proc.m: compiler/code_util.m: compiler/common.m: compiler/dead_proc_elim.m: compiler/dependency_graph.m: compiler/det_analysis.m: compiler/det_report.m: compiler/follow_code.m: compiler/follow_vars.m: compiler/goal_util.m: compiler/higher_order.m: compiler/hlds_goal.m: compiler/hlds_out.m: compiler/hlds_pred.m: compiler/intermod.m: compiler/lambda.m: compiler/live_vars.m: compiler/magic.m: compiler/make_hlds.m: compiler/mercury_compile.m: compiler/mercury_to_c.m: compiler/mode_errors.m: compiler/mode_info.m: compiler/mode_util.m: compiler/modecheck_call.m: compiler/modecheck_unify.m: compiler/modes.m: compiler/pd_cost.m: compiler/polymorphism.m: compiler/post_typecheck.m: compiler/purity.m: compiler/quantification.m: compiler/rl_exprn.m: compiler/rl_key.m: compiler/simplify.m: compiler/table_gen.m: compiler/term_traversal.m: compiler/type_util.m: compiler/typecheck.m: compiler/unify_gen.m: compiler/unify_proc.m: compiler/unique_modes.m: compiler/unused_args.m: compiler/notes/compiler_design.html: doc/reference_manual.texi: tests/hard_coded/typeclasses/Mmakefile: tests/hard_coded/typeclasses/existential_data_types.m: tests/hard_coded/typeclasses/existential_data_types.exp: tests/warnings/simple_code.exp: tests/hard_coded/Mmakefile: tests/term/arit_exp.trans_opt_exp: tests/term/associative.trans_opt_exp: tests/term/pl5_2_2.trans_opt_exp: tests/term/vangelder.trans_opt_exp: tests/term/arit_exp.trans_opt_exp: tests/term/associative.trans_opt_exp: tests/term/pl5_2_2.trans_opt_exp: tests/term/vangelder.trans_opt_exp: tests/invalid/errors2.err_exp2: tests/invalid/prog_io_erroneous.err_exp2: tests/invalid/type_inf_loop.err_exp2: tests/invalid/types.err_exp2: tests/invalid/polymorphic_unification.err_exp: tests/invalid/Mmakefile: tests/warnings/simple_code.exp: tests/debugger/queens.exp: tests/hard_coded/Mmakefile: tests/hard_coded/existential_reordering.m: tests/hard_coded/existential_reordering.exp: Merge in the changes from the existential_types_2 branch. |
||
|
|
c2da42e6d0 |
Allow the compiler to handle create rvals whose arguments have a size
Estimated hours taken: 16 Allow the compiler to handle create rvals whose arguments have a size which is different from the size of a word. Use this capability to reduce the size of RTTI information, in two ways. The first way is by rearranging the way in which we represent information about the live values at a label. Instead of an array with an entry for each live value, the entry being a pair of Words containing a shape representation and a location description respectively, use an array of shape representations (still Words), followed by an array of 32-bit ints (which may be smaller than Word) describing locations whose descriptions don't fit into 8 bits, followed by an array of 8-bit ints describing locations whose descriptions do fit into 8 bits. The second way is by reducing the sizes of some fields in the C structs used for RTTI. Several of these had to be bigger than necessary in the past because their fields were represented by the args of a create rval. On cyclone, this reduces the size of the object file for queens.m by 2.8%. IMPORTANT Until this change is reflected in the installed compiler, you will not be able to use any modules compiled with debugging in your workspaces if the workspace has been updated to include this change. This is because the RTTI data structures generated by the old installed compiler will not be compatible with the new structure definitions. The workaround is simple: if your workspace contains modules compiled with debugging, don't do a cvs update until this change has been installed. configure.in: Check whether <stdint.h> is present. If not, autoconfigure types that are at least 16 and 32 bits in size. runtime/mercury_conf.h.in: Mention the macros used by the configure script, MR_INT_LEAST32_TYPE and MR_INT_LEAST16_TYPE. runtime/mercury_conf_param.h: Document the macros used by the configure script, MR_INT_LEAST32_TYPE and MR_INT_LEAST16_TYPE. runtime/mercury_types.h: If <stdint.h> is available, get the basic integer types (intptr_t, int_least8_t, etc) from there. Otherwise, get them from the autoconfigure script. Define types such as Word in terms of these (eventually) standard types. runtime/mercury_stack_layout.h: Add macros for manipulating short location descriptions, update the types and macros for manipulating long location descriptions. Modify the way the variable count is represented (since it now must count locations with long and short descriptions separately), and move it to the structure containing the arrays it describes. Reduce the size of the some fields in structs. This required some reordering of fields to avoid the insertion of padding by the compiler, and changes to the definitions of some types (e.g. MR_determinism). runtime/mercury_layout_util.[ch]: runtime/mercury_stack_trace.c: runtime/mercury_accurate_gc.c: trace/mercury_trace.c: trace/mercury_trace_external.c: trace/mercury_trace_internal.c: Update the code to conform to the changes to stack_layout.h. compiler/llds.m: Modify the create rval in two ways. First, add an extra argument to represent the types of the arguments, which used to always be implicit always a word in size, but may now be explicit and possibly smaller (e.g. uint_least8). Second, since the code generator would do the wrong thing with creates with smaller than wordsize arguments, replace the old must-be-unique vs may-be-nonunique bool with a three-valued marker, must_be_dynamic vs must_be_static vs can_be_either. Add uint_least8, uint_least16, uint_least32 (and their signed variants) and string as llds_types. Add a couple of utility predicates for checking whether an llds_type denotes a type whose size is the same as word. compiler/llds_out.m: Use explicitly given argument types when declaring and initializing the arguments of a cell, if they are given. compiler/llds_common.m: Don't conflate creates with identical argument values but different C-level argument types. The probability of a match is minuscule anyway. compiler/stack_layout.m: Use the new representation of creates to generate the new versions of RTTI data structures. compiler/code_exprn.m: If a create is marked must_be_static, don't inspect the arguments to decide whether it can be static or not. If it can't, we'll get an abort later on in llds_out or during C compilation anyway. compiler/base_type_layout.m: When creating pseudo typeinfos, return the llds_type of the resulting rval. Minor changes required by the change in create. compiler/base_type_info.m: compiler/base_typeclass_info.m.m: compiler/code_util.m: compiler/dupelim.m: compiler/exprn_aux.m: compiler/jumpopt.m: compiler/livemap.m: compiler/lookup_switch.m: compiler/middle_rec.m: compiler/opt_debug.m: compiler/opt_util.m: compiler/string_switch.m: compiler/unify_gen.m: compiler/vn_cost.m: compiler/vn_filter.m: compiler/vn_flush.m: compiler/vn_order.m: compiler/vn_type.m: compiler/vn_util.m: compiler/vn_verify.m: Minor changes required by the change in create. library/benchmarking.m: library/std_util.m: Use the new macros in hand-constructing proc layout structures. library/Mmakefile: Add explicit dependencies for benchmarking.o and std_util.o on ../runtime/mercury_stack_layout.h. Although this is only a subset of the truth (in reality, all library objects depend on most of the runtime headers), it is a good tradeoff between safety and efficiency. The other runtime header files tend not to change in incompatible ways. trace/Mmakefile: Add explicit dependencies for all the object files on ../runtime/mercury_stack_layout.h, for similar reasons. |
||
|
|
3bf462e0b7 |
Switch to a closure representation that includes runtime type and procedure id
Estimated hours taken: 36
Switch to a closure representation that includes runtime type and procedure id
information, so that closures can be copied, garbage collected, printed, etc.
This RTTI information is not yet used. Adding code to use it would be futile
until Tyson finishes his changes to the other RTTI data structures.
Note also that this change provides the information required for solving the
problem of trying to deep copy closures only for grades that include
--typeinfo-liveness. Providing this info for other grades is future work.
configure.in:
Find out what the right way to refer to a variable-sized array
at the end of a struct is.
runtime/mercury_ho_call.h:
New file to define the structure of closures and macros for accessing
closures.
runtime/Mmakefile:
Add the new header file.
runtime/mercury_ho_call.c:
Add an entry point to handle calls to new-style closures. The code
to handle old-style closures, which was unnecessarily duplicated for
each code model, stays until all the installed compilers use the new
closure representation.
Until that time, the new entry point will contain code to detect
the use of old-style closures and invoke the old code instead.
This allows stage1s compiled with old compilers to use the old style
and stage2 to use the new style without any special tricks anywhere
else.
Add a new entry point to handle method calls of all code models.
The old entry points, which had the same code, will also be deleted
after this change has been bootstrapped.
runtime/mercury_calls.h:
Remove the macros that call closures. Their interface sucked, they
were not used, and their implementation is now out of date.
runtime/mercury_stack_layout.h:
Add a new type, MR_Type_Param_Locns, for use by the C type
representing closures. Since MR_Stack_Layout_Vars has a field,
MR_slvs_tvars, which references a data structure identical
in every way to MR_Type_Param_Locns, change the type of that field
to this new type, instead of the previous cheat.
runtime/mercury_layout_util.h:
Minor update to conform to the new type of the MR_slvs_tvars field.
(This is the only use of that field in the system.)
runtime/mercury_type_info.h:
Add new types MR_TypeInfo and MR_PseudoTypeInfo. For now, they
are just Word, but later we can make them more accurate.
In the meantime, we can refer to them instead of to Word,
making code clearer. One such reference is now in mercury_ho_call.h.
compiler/notes/release_checklist.html:
Add a reminder to remove the redundant code from mercury_ho_call.c
after bootstrapping.
compiler/llds.m:
Replace three code addresses for calling closures and another three
for calling methods with one each.
compiler/call_gen.m:
compiler/dupelim.m:
compiler/opt_debug.m:
compiler/opt_util.m:
compiler/llds_out.m:
Trivial updates in accordance with the change to llds.m
compiler/code_info.m:
Move the code to handle layouts to continuation_info.m,
since that's where it belongs. Leave only the code for picking
up parameters from code_infos and for putting results back in there.
Remove the redundant arguments of code_info__init, and extract
them from ProcInfo, to make clear that they are related.
compiler/code_gen.m:
Since we pass ProcInfo to code_info__init, don't pass its components.
compiler/continuation_info.m:
Add the code moved from code_info.m, in a form which takes explicit
arguments for things that used be hidden in the code_info.
Add new code, closely related to the moved code, that creates
layout info from a procedure's argument info, rather than from a
(part of) the current code generator state. This way, it can be
invoked from places that don't have a code_info for the procedure
for which they want to generate layouts. This is the case when
we generate layouts for closures.
compiler/par_conj_gen.m:
compiler/trace.m:
Minor changes required by the move of stuff from code_info to
continuation_info.
compiler/stack_layout.m:
Export some predicates for use by unify_gen.
compiler/unify_gen.m:
Switch to creating new style closures, complete with layout info.
Optimize the code for extending closures a bit. By copying the
fixed words of the closure outside the loop, we avoid incurring
the loop overhead twice.
compiler/code_util.m:
Add a couple of utility predicates for continuation_info.m and
unify_gen.m
library/benchmarking.m:
library/std_util.m:
Refer to the new entry point for handling closures.
browser/dl.m:
Use the new closure representation.
Note that extras/dynamic_linking/dl.m, which is supposed to be
the same as browser/dl.m but is not, should also be updated, but
this will be handled later by Fergus.
tests/hard_coded/closure_extension.{m,exp}:
A new test case to exercise the code for extending closures.
tests/hard_coded/Mmakefile:
Enable the new test case.
|
||
|
|
9e3a8eae9c |
During the writing of the RTTI paper, we decided that type_ctor_info
Estimated hours taken: 8
During the writing of the RTTI paper, we decided that type_ctor_info
was a much better name than base_type_info.
Rename base_type* as type_ctor*, except we don't rename the modules
base_type_info and base_type_layout just yet.
Most of these changes were made using the following sed patterns:
s/base_type_info/type_ctor_info/g
s/base_type_layout/type_ctor_layout/g
s/base_type_functors/type_ctor_functors/g
s/BASETYPE_INFO/TYPE_CTOR_INFO/g
s/TYPEFUNCTORS/TYPE_CTOR_FUNCTORS/g
s/TYPELAYOUT/TYPE_CTOR_LAYOUT/g
s/BASE_TYPEINFO/TYPE_CTOR_INFO/g
s/BASE_TYPE_INFO/TYPE_CTOR_INFO/g
s/BaseTypeInfo/TypeCtorInfo/g
s/BaseTypeLayout/TypeCtorLayout/g
s/base_type(/type_ctor(/g
s/:- module type_ctor_info/:- module base_type_info/g
s/:- module type_ctor_layout/:- module base_type_layout/g
s/type_ctor_info__/base_type_info__/g
s/type_ctor_layout__/base_type_layout__/g
/import_module/s/type_ctor_info/base_type_info/g
/import_module/s/type_ctor_layout/base_type_layout/g
compiler/*.m:
library/*.m:
runtime/*.{c,h}:
profiler/demangle.m:
util/mdemangle.c:
Applied the above sed commands.
runtime/mercury_bootstrap.h:
Add bootstrapping #defines so the type_ctor_* substitutions in
the library don't cause link problems.
Delete some redundant bootstrapping definitions.
|
||
|
|
d38f9f8bee |
Change the bit shift functions to perform checking to avoid
Estimated hours taken: 1 Change the bit shift functions to perform checking to avoid implementation defined behaviour. library/int.m: Add checking to `int:<<' and `int:>>'. Add `int:unchecked_left_shift' and `int:unchecked_right_shift' which do not perform any checking. compiler/code_util.m: Replace `int:<<' and `int:>>' with `int:unchecked_left_shift' and `int:unchecked_right_shift' in the builtin table. NEWS: Mention the changes to int.m. tests/hard_coded/Mmakefile: tests/hard_coded/shift_test.m: tests/hard_coded/shift_test.exp: Test the shift functions. |
||
|
|
27f024b2e9 |
Reorganize the handling of global data structures, and expose the table
Estimated hours taken: 16 Reorganize the handling of global data structures, and expose the table pointers for tabled predicates to allow the tables to be reset to empty by hand-written C code for benchmarking purposes. compiler/hlds_module.m: Introduce a new submodule for dealing with global data. At the moment it deals with (a) layout structures and (b) tabling pointers. compiler/continuation_info.m: Remove the data structures and predicates whose equivalents are now in hlds_module. compiler/llds.m: Introduce a new kind of item, that of compiler-generated variables whose value is not defined by rvals. At the moment, the only such item is a tabling pointer variable. compiler/mercury_compile.m: Include the new kind of item in the generated LLDS. compiler/table_gen.m: Use the new kind of item instead of a static variable declaration in pragma C code to hold the tabling pointer. Remove lots of spaces at ends of lines, since many of these screw up paragraph commands in vi. compiler/base_type_layout.m: compiler/bytecode_gen.m: compiler/code_gen.m: compiler/code_util.m: compiler/dependency_graph.m: compiler/hlds_out.m: compiler/llds_out.m: compiler/mercury_to_mercury.m: compiler/switch_gen.m: compiler/transform_llds.m: compiler/unify_gen.m: Handle the changes in the data structures. library/private_builtin.m: Remove the predicate get_table, which is no longer used after the changes to table_gen.m. |
||
|
|
5c955626f2 |
These changes make var' and term' polymorphic.
Estimated hours taken: 20 These changes make `var' and `term' polymorphic. This allows us to make variables and terms representing types of a different type to those representing program terms and those representing insts. These changes do not *fix* any existing problems (for instance there was a messy conflation of program variables and inst variables, and where necessary I've just called varset__init(InstVarSet) with an XXX comment). NEWS: Mention the changes to the standard library. library/term.m: Make term, var and var_supply polymorphic. Add new predicates: term__generic_term/1 term__coerce/2 term__coerce_var/2 term__coerce_var_supply/2 library/varset.m: Make varset polymorphic. Add the new predicate: varset__coerce/2 compiler/prog_data.m: Introduce type equivalences for the different kinds of vars, terms, and varsets that we use (tvar and tvarset were already there but have been changed to use the polymorphic var and term). Also change the various kinds of items to use the appropriate kinds of var/varset. compiler/*.m: Thousands of boring changes to make the compiler type correct with the different types for type, program and inst vars and varsets. |
||
|
|
ecb6edb717 |
Fix a bug with intermodule optimization of nested modules.
Estimated hours taken: 20 Fix a bug with intermodule optimization of nested modules. Previously, the compiler used to just label any predicates defined in a module containing sub-modules as `exported', since they may be needed by the separately-compiled sub-modules. However, this is a little bit of a lie, and it turns out that it doesn't work. The fix is to use a new status `exported_to_submodules' for this case. compiler/prog_data.m: Add a new pseudo-declaration ":- private_interface", used to mark items in an ":- implementation" section that will be exported to submodules. compiler/modules.m: Put declarations from modules containing sub-modules into `private_interface' sections rather than into `interface' sections. compiler/hlds_pred.m: Add a new alternative `exported_to_submodules' to the `import_status' data type. Add several new procedures for testing particular aspects of this type. compiler/module_qual.m: Set the import_status of items in a `private_interface' section to `exported_to_submodules'. compiler/intermod.m: Handle procedures with status `exported_to_submodules' specially. Also reorganize the code here a bit to make it more maintainable. compiler/base_type_info.m: compiler/base_type_info.m: compiler/base_typeclass_info.m: compiler/code_util.m: compiler/dead_proc_elim.m: compiler/hlds_out.m: compiler/make_hlds.m: compiler/termination.m: compiler/unused_args.m: Minor changes to reflect the above changes to data-structures; in particular, use the new procedures defined in hlds_pred.m instead of hard-coded tests. In termination.m, the changes included deleting some error-checking code that didn't make much sense anymore when using the new procedures rather than using hard-coded tests. tests/hard_coded/Mmakefile: tests/hard_coded/nested_intermod.m: tests/hard_coded/nested_intermod_main.m: tests/hard_coded/nested_intermod_main.exp: Add a regression test for the bug mentioned above. |
||
|
|
3e244090d7 |
Rework the handling of types in higher_order.m.
Estimated hours taken: 50 Rework the handling of types in higher_order.m. - Fix bugs in higher_order.m that stopped it working with --typeinfo-liveness. - Perform type and typeclass specialisation. compiler/polymorphism.m: Previously the type of typeclass_infos variables did not contain any information about the constraint about which the variable contains information. Now the type of a typeclass_info is `private_builtin:typeclass_info( private_builtin:constraint([ClassName, ConstrainedTypes]))'. This allows predicates such as type_list_subsumes to check that the class constraints match. Note that `private_builtin:constraint' has no declaration, so a lookup in the type definition map will fail. That's OK, because type_to_type_id will fail on it, so it will be treated as a type variable by any code which doesn't manipulate types directly. Added polymorphism__typeclass_info_class_constraint to get the class_constraint from a typeclass_info's type. This isn't used yet. Also, fix a bug in extract_type_info: an entry in the typeinfo_var_map was being overwritten using an entry from a dummy typevarset. Actually the optimization to overwrite the location of the type_info after extracting it from a typeclass_info was wrong because the type_info won't be in that location in other branches. compiler/higher_order.m: Rework the handling of type substitutions. Now the types of the called procedure are `inlined' into the calling procedure, rather than building up the types of the specialised version using the higher-order arguments. The advantage of this is that the code is a bit simpler and handles extra type_infos properly. The disadvantage is that the argument types for specialised versions may be more specific than they need to be, so in some cases more specialised versions will be created than before. Also, don't actually rebuild the higher-order terms in the specialised versions - just pass the terms through in case they are needed. Handle the extra typeinfos required for --typeinfo-liveness. Specialize calls to unify/2, index/2 and compare/3. Specialize class_method_calls. Specialize calls to the predicates in private_builtin.m which manipulate typeclass_infos. compiler/type_util.m: type_to_type_id now fails on the dummy `constraint' type. Remove typeinfos for non-variable types from the typeinfo_varmap after inlining and higher-order specialisation. compiler/inlining.m: Factor out some common code to handle type substitutions for use by higher_order.m. compiler/hlds_pred.m: Return the list of extra type_info variables added to the argument list. compiler/goal_util.m: Take a set of non-locals as an argument to goal_util__extra_nonlocal_typeinfos rather than extracting them from a goal. compiler/special_pred.m: Handle unmangled unify/compare/index in special_pred_get_type. compiler/base_type_layout.m: Don't generate references to the typeinfo for `private_builtin:constraint' - it doesn't exist. compiler/unused_args.m: Don't barf on specialised unification predicate names. compiler/options.m: Added options: `--type-specialization' (default off). `--higher-order-size-limit' - restrict the size of specialized versions produced by higher_order.m. `--disable-opt-for-trace' (default on) - where possible don't change the options to make the trace match the source code. compiler/handle_options.m: Don't disable higher_order.m when --typeinfo-liveness is set. Handle `--disable-opt-for-trace'. compiler/hlds_data.m: compiler/*.m: Add the instance number to `base_typeclass_info_const' cons_ids, so that higher_order.m can easily index into the list of instances for a class to find the methods. compiler/hlds_out.m: Use the correct varset when printing out the constraint proofs. Write the typeclass_info_varmap for each procedure. compiler/mercury_to_mercury.m: Print type variables with variable numbers. library/private_builtin.m: Add the argument to the typeclass_info type to hold the representation of the constraint. runtime/mercury_ho_call.c: Semidet and nondet class_method_calls where (0 < num_arg_typeclass_infos < 4) were aborting at runtime because arguments were being placed starting at r1 rather than at r(1 + num_arg_typeclass_infos). doc/user_guide.texi Document the new options. compiler/notes/compiler_design.html: Update the role of higher_order.m. tests/hard_coded/typeclasses/extra_typeinfo.m: Test case for the mercury_ho_call.c bug and the polymorphism.m extract_typeinfo bug and for updating the typeclass_info_varmap for specialised versions. |
||
|
|
d1855187e5 |
Implement new methods of handling failures and the end points of branched
Estimated hours taken: 260
Implement new methods of handling failures and the end points of branched
control structures.
compiler/notes/failure.html:
Fix an omission about the handling of resume_is_known in if-then-elses.
(This omission lead to a bug in the implementation.)
Optimize cuts across multi goals when curfr is known to be equal
to maxfr.
Clarify the wording in several places.
compiler/code_info.m:
Completely rewrite the methods for handling failure.
Separate the fields of code_info into three classes: those which
do not change after initialization, those which record state that
depends on where in the HLDS goal we are, and those which contain
persistent data such as label and cell counters.
Rename grab_code_info and slap_code_info as remember_position
and reset_to_position, and add a wrapper around the remembered
code_info to make it harder to make mistakes in its use.
(Only the location-dependent fields of the remembered code_info
are used, but putting only them into a separate data structure would
result in more, not less, memory being allocated.)
Gather the predicates that deal with handling branched control
structures into a submodule.
Reorder the declarations and definitions of access predicates
to conform to the new order of fields.
Reorder the declarations and definitions of the failure handling
submodule to better reflect the separation of higher-level and
lower-level predicates.
compiler/code_gen.m:
Replace code_gen__generate_{det,semi,non}_goal_2 with a single
predicate, since for most HLDS constructs the code here is the same
anyway (the called preds check the code model when needed).
Move classification of the various kinds of unifications to unify_gen,
since that is where it belongs.
Move responsibility for initializing the code generator's trace
info to code_info.
Move the generation of code for negations to ite_gen, since the
handling of negations is a cut-down version of the handling of
negations. This should make the required double maintenance easier,
and more likely to happen.
compiler/disj_gen.m:
compiler/ite_gen.m:
These are the two modules that handle most failures; they have
undergone a significant rewrite. As part of this rewrite, factor
out the remaining common code between model_non and model_{det,semi}
goals.
compiler/unify_gen.m:
Move classification of the various kinds of unifications here from
code_gen. This allows us to keep several previously exported
predicates private.
compiler/call_gen.m:
Factor out some code that was common to ordinary calls, higher order
calls and method calls. Move the common code that checks whether
we are doing tracing to trace.m.
Replace call_gen__generate_{det,semi,nondet}_builtin with a single
predicate.
Delete the commented out call_gen__generate_complicated_unify,
since it will never be needed and in any case suffered from
significant code rot.
compiler/llds.m:
Change the mkframe instruction so that depending on one of its
arguments, it can create either ordinary frames, or the cut-down
frames used by the new failure handling algorithm (they have only
three fixed fields: prevfr, redoip and redofr).
compiler/llds_out.m:
Emit a #define MR_USE_REDOFR before including mercury_imp.h, to
tell the runtime we are using the new failure handling scheme.
This effectively changes the grade of the compiled module.
Emit MR_stackvar and MR_framevar instead of detstackvar and framevar.
This is a step towards cleaning up the name-space, and a step towards
making both start numbering at 0. For the time being, the compiler
internally still starts counting framevars at 0; the code in llds_out.m
adds a +1 offset.
compiler/trace.m:
Change the way trace info is initialized to fit in with the new
requirements of code_info.m.
Move the "are we tracing" check from the callers to the implementation
of trace__prepare_for_call.
compiler/*.m:
Minor changes in accordance with the major ones above.
compiler/options.m:
Introduce a new option, allow_hijacks, which is set to "yes" by
default. It is not used yet, but the idea is that when it is set to no,
the code generator will not generate code that hijacks the nondet
stack frame of another procedure invocation; instead, it will create
a new temporary nondet stack frame. If the current procedure is
model_non, it will have three fields: prevfr, redoip and redofr.
If the current procedure is model_det or model_semi, it will have
a fourth field that is set to the value of MR_sp. The idea is that
the runtime system, which will be able to distinguish between
ordinary frames (whose size is at least 5 words), 3-word and 4-word
temporary frames, will now be able to use the redofr slots of
all three kinds of frames and the fourth slot values of 4-word
temporary frames as the addresses relative to which framevars
and detstackvars respectively ought to be offset in stack layouts.
compiler/handle_options.m:
Turn off allow_hijacks if the gc method is accurate.
runtime/mercury_stacks.h:
Change the definitions for the nondet stack handling macros
to accommodate the new nondet stack handling discipline.
Define a new macro for creating temp nondet frames.
Define MR_based_stackvar and MR_based_framevar (both of which start
numbering slots at 1), and express other references, including
MR_stackvar and MR_framevar and backward compatible definitions of
detstackvar and framevar for hand-written C code, in terms of those
two.
runtime/mercury_stack_trace.[ch]:
Add a new function to print a dump of the fixed elements nondet stack,
for debugging my changes. (The dump does not include variable values.)
runtime/mercury_trace_internal.c:
Add a new undocumented command "D" for dumping the nondet stack
(users should not know about this command, since the output is
intelligible only to implementors).
Add a new command "toggle_echo" that can cause the debugger to echo
all commands. When the input to the debugger is redirected, this
echo causes the output of the session to be much more readable.
runtime/mercury_wrapper.c:
Save the address of the artificial bottom nondet stack frame,
so that the new function in mercury_stack_trace.c can find out
where to stop.
runtime/mercury_engine.c:
runtime/mercury_wrapper.c:
Put MR_STACK_TRACE_THIS_MODULE at the tops of these modules, so that
the labels they define (e.g. do_fail and global_success) are registered
in the label table when their module initialization functions are
called. This is necessary for a meaningful nondet stack dump.
runtime/mercury_grade.h:
Add a new component to the grade string that specifies whether
the code was compiled with the old or the new method of handling
the nondet stack. This is important, because modules compiled
with different nondet stack handling disciplines are not compatible.
This component depends on whether MR_USE_REDOFR is defined or not.
runtime/mercury_imp.h:
If MR_DISABLE_REDOFR is defined, undefine off MR_USE_REDOFR before
including mercury_grade.h. This is to allow people to continue
working on un-updated workspaces after this change is installed;
they should put "EXTRA_CFLAGS = -DMR_DISABLE_REDOFR" into
Mmake.stage.params. (This way their stage1 will use the new method
of handling failure, while their stage2 2&3 will use the old one.)
This change should be undone once all our workspaces have switched
over to the new failure handling method.
tests/hard_coded/cut_test.{m,exp}:
A new test case to tickle the various ways of handling cuts in the
new code generator.
tests/hard_coded/Mmakefile:
Enable the new test case.
|
||
|
|
6455e041cb |
Merge in the changes from the existential types branch,
Estimated hours taken: 6
(plus another 80 or so already recorded for
my commits on the existential_types branch)
Merge in the changes from the existential types branch,
and make some modifications to address dgj's code review comments.
These changes add support for existentially quantified type variables
and type class constraints on functions and predicates.
(Existential data types, however, are not supported -- see below.)
Existentially quantified type variables are introduced with
an explicit `some [T]', e.g. `:- some [T] pred foo(T)'.
Existentially quantified type class constraints are introduced
with `&' instead of `<=', e.g. `:- some [T] (pred foo(T) & ord(T))'.
There's still several limitations:
0. XXX It's not yet documented in the language reference manual.
1. XXX It doesn't do any mode checking or mode reordering.
If you write code that uses existentially typed procedures in the
wrong order, then you'll get an internal error in polymorphism.m
or in the code generator. (Cases where a type_info has no
producer at all are caught by the check for unbound type
variables in post_typecheck.m.)
To support this, we need to change things so that polymorphism.m
gets invoked before mode checking.
2. Using `in' modes on arguments of existential type won't work.
If you try, you will get a compile error.
It would be nice to extend things to allow this kind of
"implied mode" for type_infos, where an existential type
becomes a universal type if some value of that type is
input. Supporting this would require first fixing
limitation 1 (described above) and then
3. There's no support for `pragma c_code' for procedures
with existential type class constraints.
(In fact, there's not really any support for `pragma c_code'
for procedures with universal type class constraints either --
the C code has no way of getting access to the type class info.)
4. XXX Taking the address of something which is existentially typed
should be illegal, but we don't check this.
In addition, these changes in this batch make a start towards allowing
existentially typed data types. The compiler now accepts existential
quantifiers and type class constraints on type definitions, and type
checks them accordingly (assuming all functor occurrences are
deconstructors, not constructors -- see limitation 2 above). But
there's no special handling for them in polymorphism.m, so if you try
to use them, it will abort with an internal error.
The changes also includes fixes for a couple of bugs in typechecking
and polymorphism that I discovered while making the above changes,
and an improvement to the error reporting from typecheck.m in one case.
Those changes are listed separately below.
compiler/prog_data.m:
Add a new type `class_constraints', which holds two different
lists of constraints, namely the existentially quantified constraints
and the universally quantified ones.
Add a new field to the parse tree representation of pred and
func declarations to hold a list of the existentially quantified
type variables, and change the `list(class_constraint)' into
`class_constraints' so that we can store existential constraints too.
Add new fields to the `constructor' data type (formerly just a pair)
to hold the existentially quantified type variables and
type class constraints.
compiler/hlds_pred.m:
Add several new fields to the pred_info:
- a list of the existentially quantified type variables;
- a list of the "HeadTypeParams": type variables which
cannot be bound by this predicate (i.e. those whose type_infos
come from this pred's caller or are returned from
other preds called by this one);
- and a list of unsatisfied type class constraints.
Add a predicate pred_info_get_univ_quant_tvars to compute the
universally quantified type variables.
Change the pred constraints field from `list(class_constraint)'
to `class_constraints' so that it can hold existential constraints too.
compiler/hlds_data.m:
Add new fields to hlds_cons_defn to hold the existentially
quantified type variables and type class constraints.
compiler/*.m:
Minor changes to reflect the above-mentioned data structure
changes in prog_data.m, hlds_pred.m, and hlds_data.m.
compiler/prog_io.m:
Add code to parse the new constructs.
Also rewrite the code for parsing purity specifiers,
type quantifiers and type class constraints, using basically
the method suggested by Peter Schachte: treat these as
"declaration attributes", and have parse_decl strip off
all the declaration attributes into a seperate list and
then pass that list to process_decl, which for each different
kind of declaration processes the attributes which are
appropriate for that declaration and then calls check_no_attributes
to ensure that there were no inappropriate attributes.
The purpose of this rewrite was to allow it to handle the new
constructs properly, and to avoid unnecessary code duplication.
compiler/mercury_to_mercury.m:
Add code to pretty-print the new constructs.
compiler/make_hlds.m:
Copy the new fields in the parse tree into the
corresponding new fields in the pred_info.
Add code to check for various misuses of quantifiers.
compiler/hlds_out.m:
Print out the new fields in the pred_info (except the
unsatisfied type class constraints -- if these are non-empty,
post_typecheck.m will print them out in the error message).
When printing out types, pass the AppendVarNums parameter down,
so that HLDS dumps will distinguish between different type
variables that have the same name.
Delete hlds_out__write_constructor, since it was doing exactly
the same thing as mercury__output_ctor.
compiler/typecheck.m:
Lots of changes to handle existential types and existential
type class constraints.
compiler/post_typecheck.m:
When checking for unbound type variables,
use the value of HeadTypeParams from the pred_info.
compiler/type_util.m:
Delete `type_and_constraint_list_matches_exactly', since it was not
used. Add various `apply_variable_renaming_to_*' predicates for
renaming constraints.
compiler/polymorphism.m:
Lots of changes to handle existential types and existential
type class constraints.
Also some changes to make the code more maintainable:
compiler/prog_data.m:
compiler/hlds_goal.m:
compiler/mercury_to_mercury.m:
Put curly braces around the definitions of 'some'/2 and '&'/2 functors
in `:- type' definitions, to avoid them being misinterpreted as
existential type constraints.
compiler/goal_util.m:
compiler/polymorphism.m:
compiler/hlds_pred.m:
compiler/lambda.m:
Include type_infos for existentially quantified type variables
and type_class_infos for existential constraints
in the set of extra variables computed by
goal_util__extra_type_info_vars.
compiler/inlining.m:
Change inlining__do_goal to handle inlining of calls to
existentially typed predicates -- for them, instead of not
binding any type variables at all in the caller, it allows the
call to bind any type variables in the caller except for those
that are universally quantified.
compiler/inlining.m:
compiler/deforest.m:
Call pred_info_get_univ_quant_tvars and pass the
result to inlining__do_inline_goal.
tests/hard_coded/Mmakefile:
tests/hard_coded/existential_types_test.{m,exp}:
tests/hard_coded/typeclasses/Mmakefile:
tests/hard_coded/typeclasses/existential_type_classes.{m,exp}:
Test cases for the use of existential types and
existential type class constraints.
----------
Improve an error message.
compiler/typecheck.m:
Improve error reporting by checking type class constraints for
satisfiability as we go and thus reporting unsatisfiable constraints
as soon as possible, rather than only at the end of the clause.
Previously we already did that for the case of ground constraints,
but they are not the only unsatsfiable constraints: constraints
on head type params (type variables which cannot be bound) are
also unsatisfiable if they can't be eliminated straight away
by context reduction.
tests/invalid/Mmakefile:
tests/invalid/typeclass_test_7.{m,err_exp}:
Regression test for the above change.
----------
Avoid problems where type inference was reporting some
spurious errors for predicates using type classes,
because the check for unsatisfied type class constraints
was being done before the final pass of type inference
had finished.
compiler/hlds_pred.m:
Add new field to the pred_info containing the unproven
type class constraints.
compiler/typecheck.m:
When inferring type class constraints, make sure that before
we save the results back in the pred_info, we restrict the
constraints to the head type variables. Constraints
on other type variables should be treated as
unsatisfied constraints.
Don't check for unsatisfied type class constraints at the
end of each pass; instead, just save the unproven type class
constraints in the pred_info.
compiler/post_typecheck.m:
Check for unsatisfied type class constraints, using
the new field in the pred_info.
tests/hard_coded/typeclasses/Mmakefile:
tests/hard_coded/typeclasses/inference_test_2.{m,exp}:
tests/invalid/Mmakefile:
tests/invalid/typeclass_test_8.{m,err_exp}:
Add regression tests for this change.
----------
Fix a bug with the computation of the non-locals for
predicates with more than one constraint on the same type variable --
it was only including one of the type-class-infos, rather than all of them.
compiler/goal_util.m:
Change `goal_util__extra_nonlocal_typeinfos' so that it gets
passed the TypeClassInfoVarMap and uses this to include all
the appropriate typeclass infos in the extra nonlocals.
compiler/hlds_pred.m:
compiler/lambda.m:
compiler/polymorphism.m:
Pass the TypeClassInfoVarMap to `goal_util__extra_nonlocal_typeinfos'.
tests/hard_coded/typeclasses/Mmakefile:
tests/hard_coded/typeclasses/lambda_multi_constraint_same_tvar.{m,exp}:
Regression test for the above-mentioned bug.
|
||
|
|
a70b59e83c |
Add a test to find the number of words needed to represent a
configure.in:
Add a test to find the number of words needed to represent a
synchronization term.
boehm_gc/gc.h:
fix a declaration by replacing the args () with (void).
boehm_gc/solaris_pthreads.c:
add a missing include
check the return values of pthread calls.
compiler/*.m:
Add handling for the new HLDS goal type par_conj.
Add handling for the four new LLDS instructions:
init_sync_term
fork
join_and_terminate
join_and_continue
compiler/code_info.m:
add a new alternative for slot_contents - sync_term.
compiler/handle_options.m:
add .par as part of the grade
compiler/hlds_goal.m:
add the new goal type par_conj.
compiler/instmap.m:
add instmap__unify which takes a list of instmaps
and abstractly unifies them.
add unify_instmap_delta which tajes two instmap deltas
and abstractly unifies them.
compiler/llds.m:
add the new llds instructions.
compiler/mode_info.m:
add par_conj as a lock reason.
library/Makefile:
work around a bug in the solaris version pthread.h
library/benchmarking.m:
reference the stack zones from the engine structure
rather than from global variables.
library/{nc,sp}_builtin.nl:
add an op declaration for &.
library/std_util.m:
change references to global variables to references inside
the engine structure.
runtime/Mmakefile:
add mercury_thread.{c,h}
add THREADLIBS to the libraries
runtime/*.{c,h}
Remove some old junk from the previous processes/shrd-mem
changes that found their way into the repository.
Add MR_ prefixes to lots of names.
runtime/mercury_context.c:
Add init_thread_stuff for creating and initializing a
context structure for the current thread.
runtime/mercury_context.h:
add a field to the mercury context which stores the thread id
of the thread where this context originated.
add various macros for implementing the new llds instructions.
runtime/mercury_engine.c:
initialize the engine structure, rather than a bunch of globals.
runtime/mercury_engine.h:
declare the mercury_engine structure.
runtime/mercury_regorder.h:
if MR_THREAD_SAFE, and there is at least one global register
then use mr0 as a pointer to the mercury engine structure.
scripts/init_grade_options.sh-subr
add thread_safe
scripts/mgnuc.in
add THREAD_OPTS
scripts/ml.in:
add THREAD_LIBS
|
||
|
|
247b1c24b9 |
Fix various invasions of the user's namespace by `mercury_builtin.m',
Estimated hours taken: 6
Fix various invasions of the user's namespace by `mercury_builtin.m',
by splitting mercury_builtin.m into two modules, called builtin.m and
private_builtin.m, and ensuring that the latter is imported as if
by `:- use_module' rather than `:- import_module'.
library/builtin.m:
library/private_builtin.m:
Split mercury_builtin.m into two modules, builtin.m,
which contains stuff intended to be public,
and private_builtin.m, which contains implementation
details that are not supposed to be public.
library/mercury_builtin.m:
Add a comment saying that this module is no longer used, and
should eventually be removed. I have not removed it yet, since
that would prevent bootstrapping with the current compiler. It
will be removed as a seperate change later, once all the
changes have propagated.
compiler/prog_util.m:
Change the definition of mercury_private_builtin_module/1 and
mercury_public_builtin_module so that instead of automatically
importing mercury_builtin.m as if by `import_module', the
copiler will now automatically import builtin.m as if by
`import_module' and private_builtin.m as if by `use_module'.
compiler/polymorphism.m:
Change a call to mercury_private_builtin_module/1 for
unsafe_promise_unique to instead call mercury_public_builtin_module/1.
compiler/unify_proc.m:
Avoid hard-coding "mercury_builtin" by instead
calling one of mercury_{private,public}_builtin_module/1.
runtime/mercury_type_info.[ch]:
library/term.m:
library/std_util.m:
compiler/code_util.m:
Change a few hard-coded instances of "mercury_builtin"
to "builtin" or "private_builtin" as appropriate.
runtime/mercury_trace_util.c:
runtime/mercury_trace_internal.c:
library/prolog.m:
compiler/*.m:
Update comments that refer to "mercury_builtin" to instead
refer to either "builtin" or "private_builtin".
doc/Mmakefile:
Don't include the interface to private_builtin.m in the
library reference manual.
tools/bootcheck:
Add `-p'/`--copy-profiler' option. This is needed to get
the above changes to bootstrap.
tools/test_mercury:
Pass `-p' to tools/bootcheck.
tests/term/*.trans_opt_exp:
s/mercury_builtin/builtin/g
|
||
|
|
67d8308260 | Same as previous message. | ||
|
|
11d8161692 |
Add support for nested modules.
Estimated hours taken: 50
Add support for nested modules.
- module names may themselves be module-qualified
- modules may contain `:- include_module' declarations
which name sub-modules
- a sub-module has access to all the declarations in the
parent module (including its implementation section).
This support is not yet complete; see the BUGS and LIMITATIONS below.
LIMITATIONS
- source file names must match module names
(just as they did previously)
- mmc doesn't allow path names on the command line any more
(e.g. `mmc --make-int ../library/foo.m').
- import_module declarations must use the fully-qualified module name
- module qualifiers must use the fully-qualified module name
- no support for root-qualified module names
(e.g. `:parent:child' instead of `parent:child').
- modules may not be physically nested (only logical nesting, via
`include_module').
BUGS
- doesn't check that the parent module is imported/used before allowing
import/use of its sub-modules.
- doesn't check that there is an include_module declaration in the
parent for each module claiming to be a child of that parent
- privacy of private modules is not enforced
-------------------
NEWS:
Mention that we support nested modules.
library/ops.m:
library/nc_builtin.nl:
library/sp_builtin.nl:
compiler/mercury_to_mercury.m:
Add `include_module' as a new prefix operator.
Change the associativity of `:' from xfy to yfx
(since this made parsing module qualifiers slightly easier).
compiler/prog_data.m:
Add new `include_module' declaration.
Change the `module_name' and `module_specifier' types
from strings to sym_names, so that module names can
themselves be module qualified.
compiler/modules.m:
Add predicates module_name_to_file_name/2 and
file_name_to_module_name/2.
Lots of changes to handle parent module dependencies,
to create parent interface (`.int0') files, to read them in,
to output correct dependencies information for them to the
`.d' and `.dep' files, etc.
Rewrite a lot of the code to improve the readability
(add comments, use subroutines, better variable names).
Also fix a couple of bugs:
- generate_dependencies was using the transitive implementation
dependencies rather than the transitive interface dependencies
to compute the `.int3' dependencies when writing `.d' files
(this bug was introduced during crs's changes to support
`.trans_opt' files)
- when creating the `.int' file, it was reading in the
interfaces for modules imported in the implementation section,
not just those in the interface section.
This meant that the compiler missed a lot of errors.
library/graph.m:
library/lexer.m:
library/term.m:
library/term_io.m:
library/varset.m:
compiler/*.m:
Add `:- import_module' declarations to the interface needed
by declarations in the interface. (The previous version
of the compiler did not detect these missing interface imports,
due to the above-mentioned bug in modules.m.)
compiler/mercury_compile.m:
compiler/intermod.m:
Change mercury_compile__maybe_grab_optfiles and
intermod__grab_optfiles so that they grab the opt files for
parent modules as well as the ones for imported modules.
compiler/mercury_compile.m:
Minor changes to handle parent module dependencies.
(Also improve the wording of the warning about trans-opt
dependencies.)
compiler/make_hlds.m:
compiler/module_qual.m:
Ignore `:- include_module' declarations.
compiler/module_qual.m:
A couple of small changes to handle nested module names.
compiler/prog_out.m:
compiler/prog_util.m:
Add new predicates string_to_sym_name/3 (prog_util.m) and
sym_name_to_string/{2,3} (prog_out.m).
compiler/*.m:
Replace many occurrences of `string' with `module_name'.
Change code that prints out module names or converts
them to strings or filenames to handle the fact that
module names are now sym_names intead of strings.
Also change a few places (e.g. in intermod.m, hlds_module.m)
where the code assumed that any qualified symbol was
fully-qualified.
compiler/prog_io.m:
compiler/prog_io_goal.m:
Move sym_name_and_args/3, parse_qualified_term/4 and
parse_qualified_term/5 preds from prog_io_goal.m to prog_io.m,
since they are very similar to the parse_symbol_name/2 predicate
already in prog_io.m. Rewrite these predicates, both
to improve maintainability, and to handle the newly
allowed syntax (module-qualified module names).
Rename parse_qualified_term/5 as `parse_implicit_qualified_term'.
compiler/prog_io.m:
Rewrite the handling of `:- module' and `:- end_module'
declarations, so that it can handle nested modules.
Add code to parse `include_module' declarations.
compiler/prog_util.m:
compiler/*.m:
Add new predicates mercury_public_builtin_module/1 and
mercury_private_builtin_module/1 in prog_util.m.
Change most of the hard-coded occurrences of "mercury_builtin"
to call mercury_private_builtin_module/1 or
mercury_public_builtin_module/1 or both.
compiler/llds_out.m:
Add llds_out__sym_name_mangle/2, for mangling module names.
compiler/special_pred.m:
compiler/mode_util.m:
compiler/clause_to_proc.m:
compiler/prog_io_goal.m:
compiler/lambda.m:
compiler/polymorphism.m:
Move the predicates in_mode/1, out_mode/1, and uo_mode/1
from special_pred.m to mode_util.m, and change various
hard-coded definitions to instead call these predicates.
compiler/polymorphism.m:
Ensure that the type names `type_info' and `typeclass_info' are
module-qualified in the generated code. This avoids a problem
where the code generated by polymorphism.m was not considered
type-correct, due to the type `type_info' not matching
`mercury_builtin:type_info'.
compiler/check_typeclass.m:
Simplify the code for check_instance_pred and
get_matching_instance_pred_ids.
compiler/mercury_compile.m:
compiler/modules.m:
Disallow directory names in command-line arguments.
compiler/options.m:
compiler/handle_options.m:
compiler/mercury_compile.m:
compiler/modules.m:
Add a `--make-private-interface' option.
The private interface file `<module>.int0' contains
all the declarations in the module; it is used for
compiling sub-modules.
scripts/Mmake.rules:
scripts/Mmake.vars.in:
Add support for creating `.int0' and `.date0' files
by invoking mmc with `--make-private-interface'.
doc/user_guide.texi:
Document `--make-private-interface' and the `.int0'
and `.date0' file extensions.
doc/reference_manual.texi:
Document nested modules.
util/mdemangle.c:
profiler/demangle.m:
Demangle names with multiple module qualifiers.
tests/general/Mmakefile:
tests/general/string_format_test.m:
tests/general/string_format_test.exp:
tests/general/string__format_test.m:
tests/general/string__format_test.exp:
tests/general/.cvsignore:
Change the `:- module string__format_test' declaration in
`string__format_test.m' to `:- module string_format_test',
because with the original declaration the `__' was taken
as a module qualifier, which lead to an error message.
Hence rename the file accordingly, to avoid the warning
about file name not matching module name.
tests/invalid/Mmakefile:
tests/invalid/missing_interface_import.m:
tests/invalid/missing_interface_import.err_exp:
Regression test to check that the compiler reports
errors for missing `import_module' in the interface section.
tests/invalid/*.err_exp:
tests/warnings/unused_args_test.exp:
tests/warnings/unused_import.exp:
Update the expected diagnostics output for the test cases to
reflect a few minor changes to the warning messages.
tests/hard_coded/Mmakefile:
tests/hard_coded/parent.m:
tests/hard_coded/parent.child.m:
tests/hard_coded/parent.exp:
tests/hard_coded/parent2.m:
tests/hard_coded/parent2.child.m:
tests/hard_coded/parent2.exp:
Two simple tests case for the use of nested modules with
separate compilation.
|
||
|
|
4ab55e32a5 |
Fix a bug in the optimization where polymorphism.m passes a
Estimated hours taken: 5 Fix a bug in the optimization where polymorphism.m passes a base_type_info in place of a type_info for non-polymorphic types. The type of the variable was `base_type_info' not `type_info'. This caused inlining.m to be unable to compute a type substitution, and code_util__cons_id_to_tag aborted on an unsubstituted type variable. compiler/mercury_builtin.m compiler/code_util.m Add a new builtin, unsafe_type_cast/2, used by common.m to preserve type correctness. Make unsafe_promise_unique/2 a builtin, since it is basically the same as unsafe_type_cast/2. compiler/polymorphism.m Set the type of a `base_type_info' passed where a `type_info' is expected to `type_info'. Don't add the type_info argument for unsafe_type_cast, since it is not needed and would make the code in common.m more complicated. compiler/common.m Generate a call to unsafe_type_cast rather than an assignment unification when the assignment would not be type correct. tests/valid/inlining_bug.m Regression test. tests/general/common_type_cast.m tests/general/common_type_cast.exp Test of type casts. |
||
|
|
968b084fbe |
Delete all the obsolete code using magic numbers (e.g. 10000)
Estimated hours taken: 0.75 compiler/bytecode.m: compiler/code_util.m: compiler/const_prop.m: compiler/hlds_out.m: compiler/intermod.m: compiler/llds_out.m: compiler/make_hlds.m: compiler/mercury_to_c.m: compiler/modes.m: compiler/special_pred.m: compiler/term_errors.m: compiler/trace.m: Delete all the obsolete code using magic numbers (e.g. 10000) for proc_ids. This old hack, whereby make_hlds.m assigned mode numbers based on the priority given to the determinism of each mode, is not needed anymore. It is no longer needed because modecheck_call.m now chooses the mode that is the best fit (based on a variety of factors) rather than just picking the first allowable mode. tests/invalid/duplicate_modes.err_exp: The output for this test changed, in insignificant ways: the order in which it reported the duplicates modes changed, because the mode numbers had changed. |
||
|
|
5013dd9c76 |
Implement nondet pragma C codes.
Estimated hours taken: 40
Implement nondet pragma C codes.
runtime/mercury_stacks.h:
Define a new macro, mkpragmaframe, for use in the implementation
of nondet pragma C codes. This new macro includes space for a
struct with a given sruct tag in the nondet stack frame being created.
compiler/{prog_data.m,hlds_goal.m}:
Revise the representation of pragma C codes, both as the item and
in the HLDS.
compiler/prog_io_pragma.m:
Parse nondet pragma C declarations.
Fix the indentation in some places.
compiler/llds.m:
Include an extra argument in mkframe instructions. This extra argument
gives the details of the C structure (if any) to be included in the
nondet stack frame to be created.
Generalize the LLDS representation of pragma C codes. Instead of a
fixed sequence of <assign from inputs, user c code, assign to outputs>,
let the sequence contain these elements, as well as arbitrary
compiler-generated C code, in any order and possibly with repetitions.
This flexibility is needed for nondet pragma C codes.
Add a field to pragma C codes to say whether they can call Mercury.
Some optimizations can do a better job if they know that a pragma C
code cannot call Mercury.
Add another field to pragma C codes to give the name of the label
they refer to (if any). This is needed to prevent labelopt from
incorrectly optimizing away the label definition.
Add a new alternative to the type pragma_c_decl, to describe the
declaration of the local variable that points to the save struct.
compiler/llds_out.m:
Output mkframe instructions that specify a struct as invoking the new
mkpragmaframe macro, and make sure that the struct is declared just
before the procedure that uses it.
Other minor changes to keep up with the changes to the representation
of pragma C code in the LLDS, and to make the output look a bit nicer.
compiler/pragma_c_gen.m:
Add code to generate code for nondet pragma C codes. Revise the utility
predicates and their data structures a bit to make this possible.
compiler/code_gen.m:
Add code for the necessary special handling of prologs and epilogs
of procedures defined by nondet pragma C codes. The prologs need
to be modified to include a programmer-defined C structure in the
nondet stack frame and to communicate the location of this structure
to the pragma C code, whereas the functionality of the epilog is
taken care of by the pragma C code itself.
compiler/make_hlds.m:
When creating a proc_info for a procedure defined by a pragma C code,
we used to insert unifications between the headvars and the vars of
the pragma C code into the body goal. We now perform substitutions
instead. This removes a factor that would complicate the generation
of code for nondet pragma C codes.
Pass a moduleinfo down the procedures that warn about singletons
(and other basic scope errors). When checking whether to warn about
an argument of a pragma C code not being mentioned in the C code
fragment, we need to know whether the argument is input or output,
since input variables should appear in some code fragments in a
nondet pragma C code and must not appear in others. The
mode_is_{in,out}put checks need the moduleinfo.
(We do not need to check for any variables being mentioned where
they shouldn't be. The C compiler will fail in the presence of any
errors of that type, and since those variables could be referred
to via macros whose definitions we do not see, we couldn't implement
a reliable test anyway.)
compiler/opt_util.m:
Recognize that some sorts of pragma_c codes cannot affect the data
structures that control backtracking. This allows peepholing to
do a better job on code sequences produced for nondet pragma C codes.
Recognize that the C code strings inside some pragma_c codes refer to
other labels in the procedure. This prevents labelopt from incorrectly
optimizing away these labels.
compiler/dupelim.m:
If a label is referred to from within a C code string, then do not
attempt to optimize it away.
compiler/det_analysis.m:
Remove a now incorrect part of an error message.
compiler/*.m:
Minor changes to conform to changes to the HLDS and LLDS data
structures.
|
||
|
|
bb4442ddc1 |
Update copyright dates for 1998.
Estimated hours taken: 0.5 compiler/*.m: Update copyright dates for 1998. |
||
|
|
7406335105 |
This change implements typeclasses. Included are the necessary changes to
Estimated hours taken: 500 or so This change implements typeclasses. Included are the necessary changes to the compiler, runtime and library. compiler/typecheck.m: Typecheck the constraints on a pred by adding constraints for each call to a pred/func with constraints, and eliminating constraints by applying context reduction. While reducing the constraints, keep track of the proofs so that polymorphism can produce the tyepclass_infos for eliminated constraints. compiler/polymorphism.m: Perform the source-to-source transformation which turns code with typeclass constraints into code without constraints, but with extra "typeclass_info", or "dictionary" parameters. Also, rather than always having a type_info directly for each type variable, sometimes the type_info is hidden inside a typeclass_info. compiler/bytecode*.m: Insert some code to abort if bytecode generation is used when typeclasses are used. compiler/call_gen.m: Generate code for a class_method_call, which forms the body of a class method (by selecting the appropriate proc from the typeclass_info). compiler/dead_proc_elim.m: Don't eliminate class methods if they are potentially used outside the module compiler/hlds_data.m: Define data types to store: - the typeclass definitions - the instances of a class - "constraint_proof". ie. the proofs of redundancy of a constraint. This info is used by polymorphism to construct the typeclass_infos for a constraint. - the "base_tyepclass_info_constant", which is analagous the the base_type_info_constant compiler/hlds_data.m: Define the class_method_call goal. This goal is inserted into the body of class method procs, and is responsible for selecting the appropriate part of the typeclass_info to call. compiler/hlds_data.m: Add the class table and instance table to the module_info. compiler/hlds_out.m: Output info about base_typeclass_infos and class_method_calls compiler/hlds_pred.m: Change the representation of the locations of type_infos from "var" to type_info_locn, which is either a var, or part of a typeclass_info, since now the typeclass_infos contain the type_infos for the type that they constrain. Add constraints to the pred_info. Add constraint_proofs to the pred_info (so that typeclass.m can annotate the pred_info with the reasons that constraints were eliminated, so that polymorphism.m can in turn generate the typeclass_infos for the constraints). Add the "class_method" marker. compiler/lambda.m: A feable attempt at adding class ontexts to lambda expressions, untested and almost certainly not working. compiler/llds_out.m: Output the code addresses for do_*det_class_method, and output appropriately mangled symbol names for base_typeclass_infos. compiler/make_hlds.m: Add constraints to the types on pred and func decls, and add class and instance declarations to the class_table and instance_table respectively. compiler/mercury_compile.m: Add the check_typeclass pass. compiler/mercury_to_mercury.m: Output constraints of pred and funcs, and output typeclass and instance declarations. compiler/module_qual.m: Module qualify typeclass names in pred class contexts, and qualify the typeclass and instance decls themselves. compiler/modules.m: Output typeclass declarations in the short interface too. compiler/prog_data.m: Add the "typeclass" and "instance" items. Define the types to store information about the declarations, including class contexts on pred and func decls. compiler/prog_io.m: Parse constraints on pred and func declarations. compiler/prod_out.m: Output class contexts on pred and func decls. compiler/type_util.m: Add preds to apply a substitution to a class_constraint, and to a list of class constraints. Add type_list_matches_exactly/2. Also add typeclass_info and base_typeclass_info as types which should not be optimised as no_tag types (seeing that we cheat a bit about their representation). compiler/notes/compiler_design.html: Add notes on module qualification of class contexts. Needs expansion to include more stuff on typeclasses. compiler/*.m: Various minor changes. New Files: compiler/base_typeclass_info.m: Produce one base_typeclass_info for each instance declaration. compiler/prog_io_typeclass.m: Parse typeclass and instance declarations. compiler/check_typeclass.m: Check the conformance of an instance declaration to the typeclass declaration, including building up a proof of how superclass constraints are satisfied so that polymorphism.m is able to construct the typeclass_info, including the superclass typeclass_infos. library/mercury_builtin.m: Implement that base_typeclass_info and typeclass_info types, as well as the predicates type_info_from_typeclass_info/3 to extract a type_info from a typeclass_info, and superclass_from_typeclass_info/3 for extracting superclasses. library/ops.m: Add "typeclass" and "instance" as operators. library/string.m: Add a (in, uo) mode for string__length/3. runtime/mercury_ho_call.c: Implement do_call_*det_class_method, which are the pieces of code responsible for extracting the correct code address from the typeclass_info, setting up the arguments correctly, then executing the code. runtime/mercury_type_info.h: Macros for accessing the typeclass_info structure. |
||
|
|
5976f769f7 |
Fix a bug for the case of a higher-order function call in code
Estimated hours taken: 1 Fix a bug for the case of a higher-order function call in code with common sub-expression; mercury 0.7 failed this test, reporting "Software Error: modecheck fails when repeated", due to confusion between h.o. _function_ call and h.o. _predicate_ call. compiler/hlds_goal.m: Add `pred_or_func' field to HLDS higher_order_calls. compiler/modes.m: compiler/modecheck_call.m: compiler/hlds_out.m: compiler/*.m: Add code to handle new field for higher_order_call goals. tests/valid/Mmake: tests/valid/ho_func_call.m: Regression test for the above-mentioned bug. |
||
|
|
99184d3578 |
Implement support for types with user-defined equality predicates.
Estimated hours taken: 30 Implement support for types with user-defined equality predicates. Types with user-defined equality predicates are called "non-canonical types"; they may have more than one representation for the same abstract value. That means that any attempt to deconstruct a value of a non-canonical type, i.e. any attempt to peek at the representation, must be cc_multi. This also implies that conceptually speaking, non-canonical types are not members of the type classes `comparable' (compare/3) or `deconstructible' (index/2, argument/3, functor/3, deconstruct/5). Since we don't support type classes yet, that just means that the type-class checking is done at runtime, i.e. any call to one of those functions for a non-canonical type will call error/1 or fatal_error(). To make non-canonical types useful, we really need type classes, so that the user can provide instance definitions for `comparable' and `deconstructible' for such types. It might also be a good idea to have a type-class `canonicalizable' which provides a function to convert its argument to some canonical type (that would require existential types to do nicely, but alternatively we could just use `univ'). Note that currently the only mechanism for promising that things are unique is via the C interface. compiler/det_analysis.m: Add code to check unifications that examine the representation of a type with a user-defined equality predicate. Any such unification must occur in a single-solution context and must not be able to fail. Such unifications determinism have determinism cc_multi. compiler/det_report.m: Add code to report errors for misuse of types with user-defined equality predicates. (Also some other stylistic improvements: split up a complicated predicate into subroutines, and avoid some unnecessary code duplication.) compiler/prog_data.m: compiler/hlds_data.m: Add a new `maybe(sym_name)' field to the du_type/3 constructor to hold the name of the user-defined equality pred for the type, if any. compiler/prog_io.m: Add code to parse the new `... where equality is <name>.' syntax. Delete the old support for `... where <condition>'. compiler/hlds_out.m: compiler/mercury_to_mercury.m: compiler/mercury_to_goedel.m: Print out the new field. compiler/base_type_layout.m: compiler/code_util.m: compiler/dense_switch.m: compiler/equiv_type.m: compiler/intermod.m: compiler/make_hlds.m: compiler/mode_util.m: compiler/module_qual.m: compiler/modules.m: compiler/switch_detection.m: compiler/tag_switch.m: compiler/type_util.m: compiler/typecheck.m: compiler/unify_gen.m: Trivial changes to ignore (or leave unchanged) the new field in `du_type'. compiler/modecheck_unify.m: Pass the term__context to unify_proc__request_unify. compiler/typecheck.m: Typecheck the compiler-generated unify predicates for types with user-defined equality preds. compiler/unify_proc.m: For d.u. types, if the type has a user-defined equality predicate then generate code for the compiler-generated unify predicate that just calls the specified predicate, and generate code for the compiler-generated compare and index predicates that just calls some procedures in mercury_builtin.m that report appropriate error messages. Ensure that the automatically-generated predicates have appropriate term__contexts everywhere, so that if the user-defined equality predicate name is ambiguous, non-existent, or has the wrong type, mode, or determinism, then the error messages from type checking, mode checking, or determinism checking refer to the type declaration. library/mercury_builtin.m: Add predicates builtin_index_non_canonical_type/2 and builtin_compare_non_canonical_type/2, used by the code generated by compiler/unify_proc.m. doc/reference_manual.texi: Document the support for user-defined equality predicates. library/std_util.m: Change ML_expand() to return an indication of whether or not the type is a non-canonical type (one with a user-defined equality predicate). Change argument/2, functor/2, and deconstruct/4 to abort if called for a non-canonical type. |
||
|
|
04b720630b |
Update the copyright messages so that (a) they contain the correct years
and (b) they say "Copyright (C) ... _The_ University of Melbourne". |
||
|
|
327a5131e2 |
Remove support for term_to_type and type_to_term implemented as special
Estimated hours taken: 5 Remove support for term_to_type and type_to_term implemented as special preds. Remove support for one-cell and one-or-two-cell type_infos (now shared-one-or-two-cell type_infos). Move definitions that were in mercury_builtin.m back to where they belong. This code has been removed because it is no longer used, and was no longer being maintained but was still quite complex. compiler/globals.m: compiler/handle_options.m: compiler/mercury_compile.m: compiler/options.m: Remove one_cell and one_or_two_cell from type_info methods. compiler/polymorphism.m: Remove term_to_type and type_to_term support. Remove one_cell and one_or_two_cell from type_info methods. Fix documentation to reflect the new situation. compiler/special_pred.m: compiler/unify_proc.m: Remove term_to_type and type_to_term support. library/list.m: Put the definition of `list' back into list.m library/mercury_builtin.m: Take the definitions of `list', `term', `var', `var__supply', etc, out of this module. Remove type_to_term, term_to_type, det_term_to_type, term__init_var_supply, term__create_var, term__var_to_int and term__context_init. Remove references to USE_TYPE_TO_TERM and #ifdefs around SHARED_ONE_OR_TWO_CELL_TYPE_INFO. library/std_util.m: Remove references ONE_OR_TWO_CELL_TYPE_INFO, and code that handles one-cell typeinfo comparisons. library/term.m: Add type_to_term, term_to_type, det_term_to_type, term__init_var_supply, term__create_var, term__var_to_int and term__context_init back to term.m. Add new implementation of type_to_term/2. library/uniq_array.m: Fix a typo in a comment - term_to_type/3 instead of term_to_type/2. runtime/call.mod: Remove special case code for unify, compare, index for one-cell typeinfos. Remove code for type_to_term/2. runtime/type_info.h: Remove references to ONE_CELL_TYPE_INFO or ONE_OR_TWO_CELL_TYPE_INFO. Make sure only SHARED_ONE_OR_TWO_CELL_TYPE_INFO. Remove references to USE_TYPE_TO_TERM. compiler/base_type_layout.m: compiler/bytecode_gen.m: compiler/code_util.m: compiler/delay_slot.m: compiler/det_util.m: compiler/fact_table.m: compiler/hlds_data.m: compiler/hlds_goal.m: compiler/mode_debug.m: compiler/tree.m: library/bag.m: library/queue.m: Import module `list' or `term' (or both). |
||
|
|
e3471f333f |
Fix a bug in inlining of polymorphic pragma c_code procedures.
Estimated hours taken: 3 Fix a bug in inlining of polymorphic pragma c_code procedures. The bug was that if the actual argument type has a specific type of say `float', then the C variable for the corresponding formal parameter will be declared to have type `Float', whereas without inlining the argument type would have been polymorphic and so the C variable would have been declared to have type `Word'. Hence we need to keep track of the original argument types, before any inlining or specialization has occurred, and use these original argument types to determine how to declare the C variables, rather than using the actual argument types for this particular specialization. compiler/hlds_goal.m: Add a new field to pragma_c_code goals, holding the original argument types (before any inlining or specialization) of the pragma_c_code procedure. compiler/make_hlds.m: Initialize this field with the declared argument types for the pragma c_code procedure. compiler/polymorphism.m: Update this field to account for the inserted type_info variables. compiler/code_gen.m: Pass this field to pragma_c_gen.m. compiler/pragma_c_gen.m: Use the original argument types field for the pragma variable declarations, rather than looking up the actual types of the arguments. compiler/*.m: Trivial changes to handle new field. compiler/live_vars.m: Comment out some code to avoid a warning about `fail' in the condition of an if-then-else. |
||
|
|
270b744039 |
Clean up the handlng of integer division and remainder.
Estimated hours taken: 8 Clean up the handlng of integer division and remainder. library/int.m: Add a new function `div'. The idea is that `div' is the same as `//', except that `div' will round toward minus infinity, whereas `//' will round toward zero. `div' is more well-behaved, `//' is more efficient. Change the behaviour of `mod' so that it is remainder after `div' rather than remainder after `//'. This makes it more well-behaved, but less efficient. Add a new function `rem', which is the new name for what `mod' used to do (i.e. remainder after `//'). compiler/llds.m: Add some comments about the `/' and `mod' llds operators. (The `mod' llds operator should probably be renamed `rem', but I haven't done that yet.) compiler/code_util.m: Recognize `int:rem', rather than `int:mod', as the llds `mod' operator. tests/hard_coded/division_test.m: Add some test cases for `div', `mod', `//', and `rem' on negative numbers. |
||
|
|
9fae8f01d9 |
Fix a bug reported by Renaud Paquay from Mission Critical.
Estimated hours taken: 0.5 Fix a bug reported by Renaud Paquay from Mission Critical. compiler/code_util.m: Handle empty disjunctions in code_util__count_recursive_calls_disj: don't call error/1, because empty disjunctions are perfectly valid (they just mean `fail'). |
||
|
|
d7319104f9 |
Making the types pred_id and proc_id (almost) abstract.
Estimated hours taken: 7
Making the types pred_id and proc_id (almost) abstract.
compiler/code_util.m:
Changed the type of several predicates:
code_util__make_uni_label/4 (arg 3 was int, now proc_id)
code_util__inline_builtin/4 (arg 3 was proc_id, now int)
Added predicate code_util__translate_builtin_2/6.
compiler/hlds_module.m:
Moved invalid_pred_id/1 to hlds_pred.m
compiler/hlds_pred.m:
Types pred_id/0 and proc_id are now abstract.
Added predicates:
hlds_pred__initial_pred_id/1, hlds_pred__initial_proc_id/1,
hlds_pred__next_pred_id/2, hlds_pred__next_proc_id/2,
pred_id_to_int/2, proc_id_to_int/2,
hlds_pred__in_in_unification_proc_id/1
Moved predicate invalid_pred_id/1 (from hlds_module.m).
compiler/*.m:
Miscellaneous minor changes to cast pred/proc_ids to ints
where appropriate.
|
||
|
|
3ec8a17ffc |
Enable the code to treat `__' as an alternative syntax for module
Estimated hours taken: 8 Enable the code to treat `__' as an alternative syntax for module qualification, after fixing various places in the compiler where we use `__' in ways that are incompatible with this. compiler/prog_io.m: compiler/prog_io_goal.m: Uncomment the code to handle `__' as module qualification. compiler/intermod.m: compiler/hlds_module.m: compiler/modecheck_unify.m: Fix bugs in the handling of module qualified higher-order terms. compiler/*.m: s/hlds__/hlds_/g compiler/passes_aux.m: s/process__/process_/g compiler/pragma_c_gen.m: compiler/code_gen.m: s/code_gen__/pragma_c_gen__/ for the predicates defined in pragma_c_gen.m (this ought to have been done when the code was first moved from code_gen.m to pragma_c_gen.m). compiler/llds.m: s/llds__proc_id/llds_proc_id/g The reason for this was to avoid ambiguity between proc_id in hlds_pred.m and llds__proc_id in llds.m. compiler/quantification.m: compiler/make_hlds.m: compiler/mercury_to_c.m: s/goal_vars/quantification__goal_vars/g The reason for this was to avoid ambiguity between goal_vars in quantification.m and goal_util__goal_vars in goal_util.m. compiler/dupelim.m: compiler/optimize.m: s/dupelim__main/dupelim_main/g The reason for this change is that a program can only have one main/2 predicate. compiler/prog_io_dcg.m: Remove the old "temporary hack" to strip off and ignore io__gc_call/1, since the new handling of `__' broke it. It was only useful for optimizing NU-Prolog performance, which we don't care about anymore. compiler/mercury_compile.m: compiler/modules.m: compiler/intermod.m: compiler/prog_io.m: Remove occurrences of io__gc_call. compiler/llds_out.m: compiler/base_type_info.m: Ensure that we properly handle the special hacks in mercury_builtin where predicates from other modules (e.g. term__context_init) are defined in mercury_builtin because they are needed for type_to_term and term_to_type. llds_out.m: don't put `mercury_builtin' in the mangled names for those symbols. base_type_info.m: handle types whose status is "imported" in their own module. |
||
|
|
89d00fc12d |
The first argument of code_util__predinfo_is_builtin/2 was unused, so it has
Estimated hours taken: 0.5 The first argument of code_util__predinfo_is_builtin/2 was unused, so it has been replaced by code_util__predinfo_is_builtin/1 compiler/code_util.m: changed code_util__predinfo_is_builtin(_ModuleInfo, PredInfo) to code_util__predinfo_is_builtin(PredInfo). compiler/unused_args.m: compiler/typecheck.m: compiler/make_hlds.m: compiler/intermod.m: Fixed each usage of code_util__predinfo_is_builtin. |
||
|
|
1839ebb663 |
Module qualification of constructors.
Estimated hours taken: 15
Module qualification of constructors.
compiler/modes.m
compiler/unique_modes.m
compiler/modecheck_unify.m
compiler/modecheck_call.m
Enable propagate_type_info_into_modes.
Use type information to module qualify cons_ids.
compiler/mode_util.m
Use propagate_type_information_into_modes to module qualify cons_ids
in bound insts.
typed_ground/2 and free/1 insts are not yet generated, since they
are not yet used anywhere.
Avoid expanding insts when propagating type information, since
that is not yet useful.
I still need to fix the handling of
inst_matches_{initial, final, binding}(
ground(_, _), bound(_, [all_functors_in_the_type]))
compiler/typecheck.m
Don't assume a module qualified cons_id is a function call
or higher-order pred constant.
compiler/modes.m
compiler/unique_modes.m
compiler/modecheck_unify.m
compiler/instmap.m
compiler/inst_match.m
Remove some unnecessary conversion between cons_ids and consts.
compiler/typecheck.m
compiler/mode_errors.m
Strip builtin qualifiers from cons_ids.
compiler/mercury_to_mercury.m
Output module qualified cons_ids.
compiler/prog_io.m
compiler/prog_io_util.m
Module qualify constructors in type definitions.
Parse qualified cons_ids in bound insts.
compiler/hlds_data.m
Remove cons_id_to_const/3, since it doesn't make much sense any more.
Add cons_id_arity/2 and cons_id_and_args_to_term/3.
compiler/make_hlds.m
Add both qualified and unqualified versions of each cons_id to
the cons_table.
compiler/det_util.m
Handle module qualified cons_ids in det_util__interpret_unify.
compiler/code_util.m
Remove some dead code in code_util__cons_id_to_tag to do with
tags for higher-order terms. Don't assume module qualified
cons_ids are higher-order pred constants.
compiler/polymorphism.m
Module qualify type_info cons_ids.
|
||
|
|
857ce0c472 |
Cleaned up the handling of labels for specialized versions of predicates
Estimated hours taken: 3
Cleaned up the handling of labels for specialized versions of predicates
from other modules.
compiler/llds.m:
Changed the representation of proc_label slightly.
Each proc_label now contains the name of the module producing the
code for a predicate as well as the module containing the declaration
for the predicate.
compiler/code_util.m:
compiler/llds_out.m:
Fixed a bug in my last change that resulted in duplicate label
names for specialized versions of predicates.
The name of the module producing the code for the predicate
is added as an extra qualifier in the label for specialised
versions of predicates from other modules.
compiler/base_type_info.m:
compiler/opt_util.m:
compiler/opt_debug.m:
compiler/shapes.m:
Fixed uses of proc_label.
|
||
|
|
91c4330db7 |
The first half of a change to introduce nondet pragma C goals.
Estimated hours taken: 12 The first half of a change to introduce nondet pragma C goals. This half makes the necessary modifications to the HLDS; the next half will modify the LLDS and emit it. prog_data: Add a new pragma type for nondet pragma c_codes; these specify the names of a a bunch of variables to save across backtracking, and a list of label names to which backtracking may take place. Rename is_recursive to may_call_mercury, since this is a more direct expression of the meaning. prog_io: Move much of the functionality to new files. prog_io_dcg, prog_io_goal, prog_io_pragma, prog_io_util: New files, made up of pieces of prog_io. hlds_goal: Add an extra argument to the pragma_c_goals to store the extra information present in the new type of pragma c_codes. det_analysis: Take into account that the new type of pragma_c goal may have more than one solution. goal_util: Rename variables in the new field of pragma_cs. live_vars: Allocate stack slots to the saved variables in the new type of pragma_c goals. make_hlds: Handle the new type of pragma_c goals. mercury_output, hlds_out: Output the new type of pragma_c goals. garbage_out: Rename type "det" to "frame_type". others: Ignore one more arg of pragma_c goals or import prog_io_util. |
||
|
|
035f4b98d6 |
Complete the code for generating bytecodes.
Estimated hours taken: 2 Complete the code for generating bytecodes. We now handle complex construction unifications (those that create partially instantiated data structures or closures), noop-type builtins (e.g. unary plus), the output of floats, and procedures with unused variables. We can now generate bytecode for every module in the library and the compiler. bytecode, bytecode_gen: Implement the above. code_util: Fix a comment. mercury_compile: Fix a spelling error in a progress message. Write the .bytedebug file before the .bytecode file. Because the .bytecode file is not text, it has a higher than usual chance of breaking the I/O system. |