Files
mercury/compiler/code_util.m
Zoltan Somogyi d1855187e5 Implement new methods of handling failures and the end points of branched
Estimated hours taken: 260

Implement new methods of handling failures and the end points of branched
control structures.

compiler/notes/failure.html:
	Fix an omission about the handling of resume_is_known in if-then-elses.
	(This omission lead to a bug in the implementation.)

	Optimize cuts across multi goals when curfr is known to be equal
	to maxfr.

	Clarify the wording in several places.

compiler/code_info.m:
	Completely rewrite the methods for handling failure.

	Separate the fields of code_info into three classes: those which
	do not change after initialization, those which record state that
	depends on where in the HLDS goal we are, and those which contain
	persistent data such as label and cell counters.

	Rename grab_code_info and slap_code_info as remember_position
	and reset_to_position, and add a wrapper around the remembered
	code_info to make it harder to make mistakes in its use.
	(Only the location-dependent fields of the remembered code_info
	are used, but putting only them into a separate data structure would
	result in more, not less, memory being allocated.)

	Gather the predicates that deal with handling branched control
	structures into a submodule.

	Reorder the declarations and definitions of access predicates
	to conform to the new order of fields.

	Reorder the declarations and definitions of the failure handling
	submodule to better reflect the separation of higher-level and
	lower-level predicates.

compiler/code_gen.m:
	Replace code_gen__generate_{det,semi,non}_goal_2 with a single
	predicate, since for most HLDS constructs the code here is the same
	anyway (the called preds check the code model when needed).

	Move classification of the various kinds of unifications to unify_gen,
	since that is where it belongs.

	Move responsibility for initializing the code generator's trace
	info to code_info.

	Move the generation of code for negations to ite_gen, since the
	handling of negations is a cut-down version of the handling of
	negations. This should make the required double maintenance easier,
	and more likely to happen.

compiler/disj_gen.m:
compiler/ite_gen.m:
	These are the two modules that handle most failures; they have
	undergone a significant rewrite. As part of this rewrite, factor
	out the remaining common code between model_non and model_{det,semi}
	goals.

compiler/unify_gen.m:
	Move classification of the various kinds of unifications here from
	code_gen. This allows us to keep several previously exported
	predicates private.

compiler/call_gen.m:
	Factor out some code that was common to ordinary calls, higher order
	calls and method calls. Move the common code that checks whether
	we are doing tracing to trace.m.

	Replace call_gen__generate_{det,semi,nondet}_builtin with a single
	predicate.

	Delete the commented out call_gen__generate_complicated_unify,
	since it will never be needed and in any case suffered from
	significant code rot.

compiler/llds.m:
	Change the mkframe instruction so that depending on one of its
	arguments, it can create either ordinary frames, or the cut-down
	frames used by the new failure handling algorithm (they have only
	three fixed fields: prevfr, redoip and redofr).

compiler/llds_out.m:
	Emit a #define MR_USE_REDOFR before including mercury_imp.h, to
	tell the runtime we are using the new failure handling scheme.
	This effectively changes the grade of the compiled module.

	Emit MR_stackvar and MR_framevar instead of detstackvar and framevar.
	This is a step towards cleaning up the name-space, and a step towards
	making both start numbering at 0. For the time being, the compiler
	internally still starts counting framevars at 0; the code in llds_out.m
	adds a +1 offset.

compiler/trace.m:
	Change the way trace info is initialized to fit in with the new
	requirements of code_info.m.

	Move the "are we tracing" check from the callers to the implementation
	of trace__prepare_for_call.

compiler/*.m:
	Minor changes in accordance with the major ones above.

compiler/options.m:
	Introduce a new option, allow_hijacks, which is set to "yes" by
	default. It is not used yet, but the idea is that when it is set to no,
	the code generator will not generate code that hijacks the nondet
	stack frame of another procedure invocation; instead, it will create
	a new temporary nondet stack frame. If the current procedure is
	model_non, it will have three fields: prevfr, redoip and redofr.
	If the current procedure is model_det or model_semi, it will have
	a fourth field that is set to the value of MR_sp. The idea is that
	the runtime system, which will be able to distinguish between
	ordinary frames (whose size is at least 5 words), 3-word and 4-word
	temporary frames, will now be able to use the redofr slots of
	all three kinds of frames and the fourth slot values of 4-word
	temporary frames as the addresses relative to which framevars
	and detstackvars respectively ought to be offset in stack layouts.

compiler/handle_options.m:
	Turn off allow_hijacks if the gc method is accurate.

runtime/mercury_stacks.h:
	Change the definitions for the nondet stack handling macros
	to accommodate the new nondet stack handling discipline.
	Define a new macro for creating temp nondet frames.

	Define MR_based_stackvar and MR_based_framevar (both of which start
	numbering slots at 1), and express other references, including
	MR_stackvar and MR_framevar and backward compatible definitions of
	detstackvar and framevar for hand-written C code, in terms of those
	two.

runtime/mercury_stack_trace.[ch]:
	Add a new function to print a dump of the fixed elements nondet stack,
	for debugging my changes. (The dump does not include variable values.)

runtime/mercury_trace_internal.c:
	Add a new undocumented command "D" for dumping the nondet stack
	(users should not know about this command, since the output is
	intelligible only to implementors).

	Add a new command "toggle_echo" that can cause the debugger to echo
	all commands. When the input to the debugger is redirected, this
	echo causes the output of the session to be much more readable.

runtime/mercury_wrapper.c:
	Save the address of the artificial bottom nondet stack frame,
	so that the new function in mercury_stack_trace.c can find out
	where to stop.

runtime/mercury_engine.c:
runtime/mercury_wrapper.c:
	Put MR_STACK_TRACE_THIS_MODULE at the tops of these modules, so that
	the labels they define (e.g. do_fail and global_success) are registered
	in the label table when their module initialization functions are
	called. This is necessary for a meaningful nondet stack dump.

runtime/mercury_grade.h:
	Add a new component to the grade string that specifies whether
	the code was compiled with the old or the new method of handling
	the nondet stack. This is important, because modules compiled
	with different nondet stack handling disciplines are not compatible.
	This component depends on whether MR_USE_REDOFR is defined or not.

runtime/mercury_imp.h:
	If MR_DISABLE_REDOFR is defined, undefine off MR_USE_REDOFR before
	including mercury_grade.h. This is to allow people to continue
	working on un-updated workspaces after this change is installed;
	they should put "EXTRA_CFLAGS = -DMR_DISABLE_REDOFR" into
	Mmake.stage.params. (This way their stage1 will use the new method
	of handling failure, while their stage2 2&3 will use the old one.)

	This change should be undone once all our workspaces have switched
	over to the new failure handling method.

tests/hard_coded/cut_test.{m,exp}:
	A new test case to tickle the various ways of handling cuts in the
	new code generator.

tests/hard_coded/Mmakefile:
	Enable the new test case.
1998-07-20 10:04:02 +00:00

959 lines
37 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1994-1998 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
%
% file: code_util.m.
%
% various utilities routines for code generation and recognition
% of builtins.
%
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- module code_util.
:- interface.
:- import_module hlds_module, hlds_pred, hlds_goal, hlds_data, prog_data, llds.
:- import_module list, assoc_list, set, std_util, term.
% Create a code address which holds the address of the specified
% procedure.
% The fourth argument should be `no' if the the caller wants the
% returned address to be valid from everywhere in the program.
% If being valid from within the current procedure is enough,
% this argument should be `yes' wrapped around the value of the
% --procs-per-c-function option and the current procedure id.
% Using an address that is only valid from within the current
% procedure may make jumps more efficient.
:- pred code_util__make_entry_label(module_info, pred_id, proc_id,
maybe(pair(int, pred_proc_id)), code_addr).
:- mode code_util__make_entry_label(in, in, in, in, out) is det.
% Create a label which holds the address of the specified procedure,
% which must be defined in the current module (procedures that are
% imported from other modules have representations only as code_addrs,
% not as labels, since their address is not known at C compilation
% time).
% The fourth argument has the same meaning as for
% code_util__make_entry_label.
:- pred code_util__make_local_entry_label(module_info, pred_id, proc_id,
maybe(pair(int, pred_proc_id)), label).
:- mode code_util__make_local_entry_label(in, in, in, in, out) is det.
% Create a label internal to a Mercury procedure.
:- pred code_util__make_internal_label(module_info, pred_id, proc_id, int,
label).
:- mode code_util__make_internal_label(in, in, in, in, out) is det.
:- pred code_util__make_proc_label(module_info, pred_id, proc_id, proc_label).
:- mode code_util__make_proc_label(in, in, in, out) is det.
:- pred code_util__make_uni_label(module_info, type_id, proc_id, proc_label).
:- mode code_util__make_uni_label(in, in, in, out) is det.
:- pred code_util__arg_loc_to_register(arg_loc, lval).
:- mode code_util__arg_loc_to_register(in, out) is det.
% Determine whether a goal might allocate some heap space,
% i.e. whether it contains any construction unifications
% or predicate calls. BEWARE that this predicate is only
% an approximation, used to decide whether or not to try to
% reclaim the heap space; currently it fails even for some
% goals which do allocate heap space, such as construction
% of boxed constants.
:- pred code_util__goal_may_allocate_heap(hlds_goal).
:- mode code_util__goal_may_allocate_heap(in) is semidet.
:- pred code_util__goal_list_may_allocate_heap(list(hlds_goal)).
:- mode code_util__goal_list_may_allocate_heap(in) is semidet.
% Negate a condition.
% This is used mostly just to make the generated code more readable.
:- pred code_util__neg_rval(rval, rval).
:- mode code_util__neg_rval(in, out) is det.
:- pred code_util__negate_the_test(list(instruction), list(instruction)).
:- mode code_util__negate_the_test(in, out) is det.
:- pred code_util__compiler_generated(pred_info).
:- mode code_util__compiler_generated(in) is semidet.
:- pred code_util__predinfo_is_builtin(pred_info).
:- mode code_util__predinfo_is_builtin(in) is semidet.
:- pred code_util__builtin_state(module_info, pred_id, proc_id, builtin_state).
:- mode code_util__builtin_state(in, in, in, out) is det.
% Given a module name, a predicate name, a proc_id and a list of
% variables as the arguments, find out if that procedure of that
% predicate is an inline builtin. If yes, the last two arguments
% return two things:
%
% - an rval to execute as a test if the builtin is semidet; and
%
% - an rval to assign to a variable if the builtin calls for this.
%
% At least one of these will be present.
%
% Each test rval returned is guaranteed to be either a unop or a binop,
% applied to arguments that are either variables (from the argument
% list) or constants.
%
% Each to be assigned rval is guaranteed to be either in a form
% acceptable for a test rval, or in the form of a variable.
:- pred code_util__translate_builtin(module_name, string, proc_id, list(var),
maybe(rval), maybe(pair(var, rval))).
:- mode code_util__translate_builtin(in, in, in, in, out, out) is semidet.
% Find out how a function symbol (constructor) is represented
% in the given type.
:- pred code_util__cons_id_to_tag(cons_id, type, module_info, cons_tag).
:- mode code_util__cons_id_to_tag(in, in, in, out) is det.
% Succeed if the given goal cannot encounter a context
% that causes any variable to be flushed to its stack slot.
% If such a goal needs a resume point, and that resume point cannot
% be backtracked to once control leaves the goal, then the only entry
% point we need for the resume point is the one with the resume
% variables in their original locations.
:- pred code_util__cannot_stack_flush(hlds_goal).
:- mode code_util__cannot_stack_flush(in) is semidet.
% Succeed if the given goal cannot fail before encountering a context
% that forces all variables to be flushed to their stack slots.
% If such a goal needs a resume point, the only entry point we need
% is the stack entry point.
:- pred code_util__cannot_fail_before_stack_flush(hlds_goal).
:- mode code_util__cannot_fail_before_stack_flush(in) is semidet.
% code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max)
% Given that we are in predicate PredId and procedure ProcId,
% return the minimum and maximum number of recursive calls that
% an execution of Goal may encounter.
:- pred code_util__count_recursive_calls(hlds_goal, pred_id, proc_id,
int, int).
:- mode code_util__count_recursive_calls(in, in, in, out, out) is det.
% Return the set of locations occupied by output arguments.
:- pred code_util__output_args(assoc_list(var, arg_info), set(lval)).
:- mode code_util__output_args(in, out) is det.
% These predicates return the set of lvals referenced in an rval
% and an lval respectively. Lvals referenced indirectly through
% lvals of the form var(_) are not counted.
:- pred code_util__lvals_in_rval(rval, list(lval)).
:- mode code_util__lvals_in_rval(in, out) is det.
:- pred code_util__lvals_in_lval(lval, list(lval)).
:- mode code_util__lvals_in_lval(in, out) is det.
%---------------------------------------------------------------------------%
:- implementation.
:- import_module prog_data, type_util, special_pred.
:- import_module bool, char, int, string, set, map, term, varset.
:- import_module require, std_util, assoc_list.
%---------------------------------------------------------------------------%
code_util__make_entry_label(ModuleInfo, PredId, ProcId, Immed, PredAddress) :-
module_info_preds(ModuleInfo, Preds),
map__lookup(Preds, PredId, PredInfo),
(
(
pred_info_is_imported(PredInfo)
;
pred_info_is_pseudo_imported(PredInfo),
% only the (in, in) mode of unification is imported
hlds_pred__in_in_unification_proc_id(ProcId)
)
->
code_util__make_proc_label(ModuleInfo, PredId, ProcId,
ProcLabel),
PredAddress = imported(ProcLabel)
;
code_util__make_local_entry_label(ModuleInfo, PredId, ProcId,
Immed, Label),
PredAddress = label(Label)
).
code_util__make_local_entry_label(ModuleInfo, PredId, ProcId, Immed, Label) :-
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel),
module_info_preds(ModuleInfo, Preds),
map__lookup(Preds, PredId, PredInfo),
(
(
pred_info_is_exported(PredInfo)
;
pred_info_is_pseudo_exported(PredInfo),
% only the (in, in) mode of a unification is exported
hlds_pred__in_in_unification_proc_id(ProcId)
)
->
(
Immed = no,
Label = exported(ProcLabel)
;
Immed = yes(ProcsPerFunc - proc(CurPredId, CurProcId)),
choose_local_label_type(ProcsPerFunc, CurPredId,
CurProcId, PredId, ProcId, ProcLabel, Label)
)
;
(
% If we want to define the label or use it to put it
% into a data structure, a label that is usable only
% within the current C module won't do.
Immed = no,
Label = local(ProcLabel)
;
Immed = yes(ProcsPerFunc - proc(CurPredId, CurProcId)),
choose_local_label_type(ProcsPerFunc, CurPredId,
CurProcId, PredId, ProcId, ProcLabel, Label)
)
).
:- pred choose_local_label_type(int, pred_id, proc_id,
pred_id, proc_id, proc_label, label).
:- mode choose_local_label_type(in, in, in, in, in, in, out) is det.
choose_local_label_type(ProcsPerFunc, CurPredId, CurProcId,
PredId, ProcId, ProcLabel, Label) :-
(
% If we want to branch to the label now,
% we prefer a form that are usable only within
% the current C module, since it is likely
% to be faster.
(
ProcsPerFunc = 0
;
PredId = CurPredId,
ProcId = CurProcId
)
->
Label = c_local(ProcLabel)
;
Label = local(ProcLabel)
).
%-----------------------------------------------------------------------------%
code_util__make_internal_label(ModuleInfo, PredId, ProcId, LabelNum, Label) :-
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel),
Label = local(ProcLabel, LabelNum).
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel) :-
module_info_pred_info(ModuleInfo, PredId, PredInfo),
pred_info_module(PredInfo, PredModule),
pred_info_name(PredInfo, PredName),
module_info_name(ModuleInfo, ThisModule),
(
code_util__compiler_generated(PredInfo)
->
pred_info_arg_types(PredInfo, ArgTypes),
(
special_pred_get_type(PredName, ArgTypes, Type),
type_to_type_id(Type, TypeId, _),
% All type_ids here should be module qualified,
% since builtin types are handled separately in
% polymorphism.m.
TypeId = qualified(TypeModule, TypeName) - Arity
->
(
ThisModule \= TypeModule,
PredName = "__Unify__",
\+ hlds_pred__in_in_unification_proc_id(ProcId)
->
DefiningModule = ThisModule
;
DefiningModule = TypeModule
),
ProcLabel = special_proc(DefiningModule, PredName,
TypeModule, TypeName, Arity, ProcId)
;
string__append_list(["code_util__make_proc_label:\n",
"cannot make label for special pred `",
PredName, "'"], ErrorMessage),
error(ErrorMessage)
)
;
(
% Work out which module supplies the code for
% the predicate.
ThisModule \= PredModule,
\+ pred_info_is_imported(PredInfo)
->
% This predicate is a specialized version of
% a pred from a `.opt' file.
DefiningModule = ThisModule
;
DefiningModule = PredModule
),
pred_info_get_is_pred_or_func(PredInfo, PredOrFunc),
pred_info_arity(PredInfo, Arity),
ProcLabel = proc(DefiningModule, PredOrFunc,
PredModule, PredName, Arity, ProcId)
).
code_util__make_uni_label(ModuleInfo, TypeId, UniModeNum, ProcLabel) :-
module_info_name(ModuleInfo, ModuleName),
( TypeId = qualified(TypeModule, TypeName) - Arity ->
( hlds_pred__in_in_unification_proc_id(UniModeNum) ->
Module = TypeModule
;
Module = ModuleName
),
ProcLabel = special_proc(Module, "__Unify__", TypeModule,
TypeName, Arity, UniModeNum)
;
error("code_util__make_uni_label: unqualified type_id")
).
%-----------------------------------------------------------------------------%
code_util__arg_loc_to_register(ArgLoc, reg(r, ArgLoc)).
%-----------------------------------------------------------------------------%
code_util__predinfo_is_builtin(PredInfo) :-
pred_info_module(PredInfo, ModuleName),
pred_info_name(PredInfo, PredName),
% code_util__translate_builtin(ModuleName, PredName, _, _, _, _).
pred_info_arity(PredInfo, Arity),
ProcId = 0,
code_util__inline_builtin(ModuleName, PredName, ProcId, Arity).
code_util__builtin_state(ModuleInfo, PredId0, ProcId, BuiltinState) :-
predicate_module(ModuleInfo, PredId0, ModuleName),
predicate_name(ModuleInfo, PredId0, PredName),
predicate_arity(ModuleInfo, PredId0, Arity),
proc_id_to_int(ProcId, ProcInt),
( code_util__inline_builtin(ModuleName, PredName, ProcInt, Arity) ->
BuiltinState = inline_builtin
;
BuiltinState = not_builtin
).
:- pred code_util__inline_builtin(module_name, string, int, int).
:- mode code_util__inline_builtin(in, in, in, in) is semidet.
code_util__inline_builtin(FullyQualifiedModule, PredName, ProcId, Arity) :-
Arity =< 3,
varset__init(VarSet),
varset__new_vars(VarSet, Arity, Args, _),
% --- not yet:
% FullyQualifiedModule = qualified(unqualified("std"), ModuleName),
FullyQualifiedModule = unqualified(ModuleName),
code_util__translate_builtin_2(ModuleName, PredName, ProcId, Args,
_, _).
code_util__translate_builtin(FullyQualifiedModule, PredName, ProcId, Args,
BinOp, AsgOp) :-
proc_id_to_int(ProcId, ProcInt),
% -- not yet:
% FullyQualifiedModule = qualified(unqualified("std"), ModuleName),
FullyQualifiedModule = unqualified(ModuleName),
code_util__translate_builtin_2(ModuleName, PredName, ProcInt, Args,
BinOp, AsgOp).
:- pred code_util__translate_builtin_2(string, string, int, list(var),
maybe(rval), maybe(pair(var, rval))).
:- mode code_util__translate_builtin_2(in, in, in, in, out, out) is semidet.
code_util__translate_builtin_2("private_builtin", "unsafe_type_cast", 0,
[X, Y], no, yes(Y - var(X))).
code_util__translate_builtin_2("builtin", "unsafe_promise_unique", 0,
[X, Y], no, yes(Y - var(X))).
code_util__translate_builtin_2("private_builtin", "builtin_int_gt", 0, [X, Y],
yes(binop((>), var(X), var(Y))), no).
code_util__translate_builtin_2("private_builtin", "builtin_int_lt", 0, [X, Y],
yes(binop((<), var(X), var(Y))), no).
code_util__translate_builtin_2("int", "builtin_plus", 0, [X, Y, Z],
no, yes(Z - binop((+), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_plus", 1, [X, Y, Z],
no, yes(X - binop((-), var(Z), var(Y)))).
code_util__translate_builtin_2("int", "builtin_plus", 2, [X, Y, Z],
no, yes(Y - binop((-), var(Z), var(X)))).
code_util__translate_builtin_2("int", "+", 0, [X, Y, Z],
no, yes(Z - binop((+), var(X), var(Y)))).
code_util__translate_builtin_2("int", "+", 1, [X, Y, Z],
no, yes(X - binop((-), var(Z), var(Y)))).
code_util__translate_builtin_2("int", "+", 2, [X, Y, Z],
no, yes(Y - binop((-), var(Z), var(X)))).
code_util__translate_builtin_2("int", "builtin_minus", 0, [X, Y, Z],
no, yes(Z - binop((-), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_minus", 1, [X, Y, Z],
no, yes(X - binop((+), var(Y), var(Z)))).
code_util__translate_builtin_2("int", "builtin_minus", 2, [X, Y, Z],
no, yes(Y - binop((-), var(X), var(Z)))).
code_util__translate_builtin_2("int", "-", 0, [X, Y, Z],
no, yes(Z - binop((-), var(X), var(Y)))).
code_util__translate_builtin_2("int", "-", 1, [X, Y, Z],
no, yes(X - binop((+), var(Y), var(Z)))).
code_util__translate_builtin_2("int", "-", 2, [X, Y, Z],
no, yes(Y - binop((-), var(X), var(Z)))).
code_util__translate_builtin_2("int", "builtin_times", 0, [X, Y, Z],
no, yes(Z - binop((*), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_times", 1, [X, Y, Z],
no, yes(X - binop((/), var(Z), var(Y)))).
code_util__translate_builtin_2("int", "builtin_times", 2, [X, Y, Z],
no, yes(Y - binop((/), var(Z), var(X)))).
code_util__translate_builtin_2("int", "*", 0, [X, Y, Z],
no, yes(Z - binop((*), var(X), var(Y)))).
code_util__translate_builtin_2("int", "*", 1, [X, Y, Z],
no, yes(X - binop((/), var(Z), var(Y)))).
code_util__translate_builtin_2("int", "*", 2, [X, Y, Z],
no, yes(Y - binop((/), var(Z), var(X)))).
code_util__translate_builtin_2("int", "builtin_div", 0, [X, Y, Z],
no, yes(Z - binop((/), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_div", 1, [X, Y, Z],
no, yes(X - binop((*), var(Y), var(Z)))).
code_util__translate_builtin_2("int", "builtin_div", 2, [X, Y, Z],
no, yes(Y - binop((/), var(X), var(Z)))).
code_util__translate_builtin_2("int", "//", 0, [X, Y, Z],
no, yes(Z - binop((/), var(X), var(Y)))).
code_util__translate_builtin_2("int", "//", 1, [X, Y, Z],
no, yes(X - binop((*), var(Y), var(Z)))).
code_util__translate_builtin_2("int", "//", 2, [X, Y, Z],
no, yes(Y - binop((/), var(X), var(Z)))).
code_util__translate_builtin_2("int", "builtin_mod", 0, [X, Y, Z],
no, yes(Z - binop((mod), var(X), var(Y)))).
code_util__translate_builtin_2("int", "rem", 0, [X, Y, Z],
no, yes(Z - binop((mod), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_left_shift", 0, [X, Y, Z],
no, yes(Z - binop((<<), var(X), var(Y)))).
code_util__translate_builtin_2("int", "<<", 0, [X, Y, Z],
no, yes(Z - binop((<<), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_right_shift", 0, [X, Y, Z],
no, yes(Z - binop((>>), var(X), var(Y)))).
code_util__translate_builtin_2("int", ">>", 0, [X, Y, Z],
no, yes(Z - binop((>>), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_bit_and", 0, [X, Y, Z],
no, yes(Z - binop((&), var(X), var(Y)))).
code_util__translate_builtin_2("int", "/\\", 0, [X, Y, Z],
no, yes(Z - binop((&), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_bit_or", 0, [X, Y, Z],
no, yes(Z - binop(('|'), var(X), var(Y)))).
code_util__translate_builtin_2("int", "\\/", 0, [X, Y, Z],
no, yes(Z - binop(('|'), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_bit_xor", 0, [X, Y, Z],
no, yes(Z - binop((^), var(X), var(Y)))).
code_util__translate_builtin_2("int", "^", 0, [X, Y, Z],
no, yes(Z - binop((^), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_unary_plus", 0, [X, Y],
no, yes(Y - var(X))).
code_util__translate_builtin_2("int", "+", 0, [X, Y],
no, yes(Y - var(X))).
code_util__translate_builtin_2("int", "builtin_unary_minus", 0, [X, Y],
no, yes(Y - binop((-), const(int_const(0)), var(X)))).
code_util__translate_builtin_2("int", "-", 0, [X, Y],
no, yes(Y - binop((-), const(int_const(0)), var(X)))).
code_util__translate_builtin_2("int", "builtin_bit_neg", 0, [X, Y],
no, yes(Y - unop(bitwise_complement, var(X)))).
code_util__translate_builtin_2("int", "\\", 0, [X, Y],
no, yes(Y - unop(bitwise_complement, var(X)))).
code_util__translate_builtin_2("int", ">", 0, [X, Y],
yes(binop((>), var(X), var(Y))), no).
code_util__translate_builtin_2("int", "<", 0, [X, Y],
yes(binop((<), var(X), var(Y))), no).
code_util__translate_builtin_2("int", ">=", 0, [X, Y],
yes(binop((>=), var(X), var(Y))), no).
code_util__translate_builtin_2("int", "=<", 0, [X, Y],
yes(binop((<=), var(X), var(Y))), no).
code_util__translate_builtin_2("float", "builtin_float_plus", 0, [X, Y, Z],
no, yes(Z - binop(float_plus, var(X), var(Y)))).
code_util__translate_builtin_2("float", "builtin_float_plus", 1, [X, Y, Z],
no, yes(X - binop(float_minus, var(Z), var(Y)))).
code_util__translate_builtin_2("float", "builtin_float_plus", 2, [X, Y, Z],
no, yes(Y - binop(float_minus, var(Z), var(X)))).
code_util__translate_builtin_2("float", "+", 0, [X, Y, Z],
no, yes(Z - binop(float_plus, var(X), var(Y)))).
code_util__translate_builtin_2("float", "+", 1, [X, Y, Z],
no, yes(X - binop(float_minus, var(Z), var(Y)))).
code_util__translate_builtin_2("float", "+", 2, [X, Y, Z],
no, yes(Y - binop(float_minus, var(Z), var(X)))).
code_util__translate_builtin_2("float", "builtin_float_minus", 0, [X, Y, Z],
no, yes(Z - binop(float_minus, var(X), var(Y)))).
code_util__translate_builtin_2("float", "builtin_float_minus", 1, [X, Y, Z],
no, yes(X - binop(float_plus, var(Y), var(Z)))).
code_util__translate_builtin_2("float", "builtin_float_minus", 2, [X, Y, Z],
no, yes(Y - binop(float_minus, var(X), var(Z)))).
code_util__translate_builtin_2("float", "-", 0, [X, Y, Z],
no, yes(Z - binop(float_minus, var(X), var(Y)))).
code_util__translate_builtin_2("float", "-", 1, [X, Y, Z],
no, yes(X - binop(float_plus, var(Y), var(Z)))).
code_util__translate_builtin_2("float", "-", 2, [X, Y, Z],
no, yes(Y - binop(float_minus, var(X), var(Z)))).
code_util__translate_builtin_2("float", "builtin_float_times", 0, [X, Y, Z],
no, yes(Z - binop(float_times, var(X), var(Y)))).
code_util__translate_builtin_2("float", "builtin_float_times", 1, [X, Y, Z],
no, yes(X - binop(float_divide, var(Z), var(Y)))).
code_util__translate_builtin_2("float", "builtin_float_times", 2, [X, Y, Z],
no, yes(Y - binop(float_divide, var(Z), var(X)))).
code_util__translate_builtin_2("float", "*", 0, [X, Y, Z],
no, yes(Z - binop(float_times, var(X), var(Y)))).
code_util__translate_builtin_2("float", "*", 1, [X, Y, Z],
no, yes(X - binop(float_divide, var(Z), var(Y)))).
code_util__translate_builtin_2("float", "*", 2, [X, Y, Z],
no, yes(Y - binop(float_divide, var(Z), var(X)))).
code_util__translate_builtin_2("float", "builtin_float_divide", 0, [X, Y, Z],
no, yes(Z - binop(float_divide, var(X), var(Y)))).
code_util__translate_builtin_2("float", "builtin_float_divide", 1, [X, Y, Z],
no, yes(X - binop(float_times, var(Y), var(Z)))).
code_util__translate_builtin_2("float", "builtin_float_divide", 2, [X, Y, Z],
no, yes(Y - binop(float_divide, var(X), var(Z)))).
code_util__translate_builtin_2("float", "/", 0, [X, Y, Z],
no, yes(Z - binop(float_divide, var(X), var(Y)))).
code_util__translate_builtin_2("float", "/", 1, [X, Y, Z],
no, yes(X - binop(float_times, var(Y), var(Z)))).
code_util__translate_builtin_2("float", "/", 2, [X, Y, Z],
no, yes(Y - binop(float_divide, var(X), var(Z)))).
code_util__translate_builtin_2("float", "+", 0, [X, Y],
no, yes(Y - var(X))).
code_util__translate_builtin_2("float", "-", 0, [X, Y],
no, yes(Y - binop(float_minus, const(float_const(0.0)), var(X)))).
code_util__translate_builtin_2("float", "builtin_float_gt", 0, [X, Y],
yes(binop(float_gt, var(X), var(Y))), no).
code_util__translate_builtin_2("float", ">", 0, [X, Y],
yes(binop(float_gt, var(X), var(Y))), no).
code_util__translate_builtin_2("float", "builtin_float_lt", 0, [X, Y],
yes(binop(float_lt, var(X), var(Y))), no).
code_util__translate_builtin_2("float", "<", 0, [X, Y],
yes(binop(float_lt, var(X), var(Y))), no).
code_util__translate_builtin_2("float", "builtin_float_ge", 0, [X, Y],
yes(binop(float_ge, var(X), var(Y))), no).
code_util__translate_builtin_2("float", ">=", 0, [X, Y],
yes(binop(float_ge, var(X), var(Y))), no).
code_util__translate_builtin_2("float", "builtin_float_le", 0, [X, Y],
yes(binop(float_le, var(X), var(Y))), no).
code_util__translate_builtin_2("float", "=<", 0, [X, Y],
yes(binop(float_le, var(X), var(Y))), no).
%-----------------------------------------------------------------------------%
% code_util__compiler_generated(PredInfo) should succeed iff
% the PredInfo is for a compiler generated predicate.
code_util__compiler_generated(PredInfo) :-
pred_info_name(PredInfo, PredName),
pred_info_arity(PredInfo, PredArity),
special_pred_name_arity(_, _, PredName, PredArity).
%-----------------------------------------------------------------------------%
% This code may _look_ nondeterministic, but it's really semidet,
% and Mercury is smart enough to know this.
code_util__goal_may_allocate_heap(Goal - _GoalInfo) :-
code_util__goal_may_allocate_heap_2(Goal).
:- pred code_util__goal_may_allocate_heap_2(hlds_goal_expr).
:- mode code_util__goal_may_allocate_heap_2(in) is semidet.
code_util__goal_may_allocate_heap_2(higher_order_call(_, _, _, _, _, _)).
code_util__goal_may_allocate_heap_2(call(_, _, _, Builtin, _, _)) :-
Builtin \= inline_builtin.
code_util__goal_may_allocate_heap_2(unify(_, _, _, construct(_,_,Args,_), _)) :-
Args = [_|_].
code_util__goal_may_allocate_heap_2(some(_Vars, Goal)) :-
code_util__goal_may_allocate_heap(Goal).
code_util__goal_may_allocate_heap_2(not(Goal)) :-
code_util__goal_may_allocate_heap(Goal).
code_util__goal_may_allocate_heap_2(conj(Goals)) :-
code_util__goal_list_may_allocate_heap(Goals).
code_util__goal_may_allocate_heap_2(disj(Goals, _)) :-
code_util__goal_list_may_allocate_heap(Goals).
code_util__goal_may_allocate_heap_2(switch(_Var, _Det, Cases, _)) :-
code_util__cases_may_allocate_heap(Cases).
code_util__goal_may_allocate_heap_2(if_then_else(_Vars, A, B, C, _)) :-
(
code_util__goal_may_allocate_heap(A)
;
code_util__goal_may_allocate_heap(B)
;
code_util__goal_may_allocate_heap(C)
).
:- pred code_util__cases_may_allocate_heap(list(case)).
:- mode code_util__cases_may_allocate_heap(in) is semidet.
code_util__cases_may_allocate_heap([case(_, Goal) | _]) :-
code_util__goal_may_allocate_heap(Goal).
code_util__cases_may_allocate_heap([_ | Cases]) :-
code_util__cases_may_allocate_heap(Cases).
code_util__goal_list_may_allocate_heap([Goal | _]) :-
code_util__goal_may_allocate_heap(Goal).
code_util__goal_list_may_allocate_heap([_ | Goals]) :-
code_util__goal_list_may_allocate_heap(Goals).
%-----------------------------------------------------------------------------%
% Negate a condition.
% This is used mostly just to make the generated code more readable.
code_util__neg_rval(Rval, NegRval) :-
( code_util__neg_rval_2(Rval, NegRval0) ->
NegRval = NegRval0
;
NegRval = unop(not, Rval)
).
:- pred code_util__neg_rval_2(rval, rval).
:- mode code_util__neg_rval_2(in, out) is semidet.
code_util__neg_rval_2(const(Const), const(NegConst)) :-
(
Const = true, NegConst = false
;
Const = false, NegConst = true
).
code_util__neg_rval_2(unop(not, Rval), Rval).
code_util__neg_rval_2(binop(Op, X, Y), binop(NegOp, X, Y)) :-
code_util__neg_op(Op, NegOp).
:- pred code_util__neg_op(binary_op, binary_op).
:- mode code_util__neg_op(in, out) is semidet.
code_util__neg_op(eq, ne).
code_util__neg_op(ne, eq).
code_util__neg_op(<, >=).
code_util__neg_op(<=, >).
code_util__neg_op(>, <=).
code_util__neg_op(>=, <).
code_util__neg_op(str_eq, str_ne).
code_util__neg_op(str_ne, str_eq).
code_util__neg_op(str_lt, str_ge).
code_util__neg_op(str_le, str_gt).
code_util__neg_op(str_gt, str_le).
code_util__neg_op(str_ge, str_lt).
code_util__neg_op(float_eq, float_ne).
code_util__neg_op(float_ne, float_eq).
code_util__neg_op(float_lt, float_ge).
code_util__neg_op(float_le, float_gt).
code_util__neg_op(float_gt, float_le).
code_util__neg_op(float_ge, float_lt).
code_util__negate_the_test([], _) :-
error("code_util__negate_the_test on empty list").
code_util__negate_the_test([Instr0 | Instrs0], Instrs) :-
( Instr0 = if_val(Test, Target) - Comment ->
code_util__neg_rval(Test, NewTest),
Instrs = [if_val(NewTest, Target) - Comment]
;
code_util__negate_the_test(Instrs0, Instrs1),
Instrs = [Instr0 | Instrs1]
).
%-----------------------------------------------------------------------------%
code_util__cons_id_to_tag(int_const(X), _, _, int_constant(X)).
code_util__cons_id_to_tag(float_const(X), _, _, float_constant(X)).
code_util__cons_id_to_tag(string_const(X), _, _, string_constant(X)).
code_util__cons_id_to_tag(code_addr_const(P,M), _, _, code_addr_constant(P,M)).
code_util__cons_id_to_tag(pred_const(P,M), _, _, pred_closure_tag(P,M)).
code_util__cons_id_to_tag(base_type_info_const(M,T,A), _, _,
base_type_info_constant(M,T,A)).
code_util__cons_id_to_tag(base_typeclass_info_const(M,C,N), _, _,
base_typeclass_info_constant(M,C,N)).
code_util__cons_id_to_tag(cons(Name, Arity), Type, ModuleInfo, Tag) :-
(
% handle the `character' type specially
Type = term__functor(term__atom("character"), [], _),
Name = unqualified(ConsName),
string__char_to_string(Char, ConsName)
->
char__to_int(Char, CharCode),
Tag = int_constant(CharCode)
;
% Use the type to determine the type_id
( type_to_type_id(Type, TypeId0, _) ->
TypeId = TypeId0
;
% the type-checker should ensure that this never happens
error("code_util__cons_id_to_tag: invalid type")
),
% Given the type_id, lookup up the constructor tag
% table for that type
module_info_types(ModuleInfo, TypeTable),
map__lookup(TypeTable, TypeId, TypeDefn),
hlds_data__get_type_defn_body(TypeDefn, TypeBody),
(
TypeBody = du_type(_, ConsTable0, _, _)
->
ConsTable = ConsTable0
;
% this should never happen
error(
"code_util__cons_id_to_tag: type is not d.u. type?"
)
),
% Finally look up the cons_id in the table
map__lookup(ConsTable, cons(Name, Arity), Tag)
).
%-----------------------------------------------------------------------------%
code_util__cannot_stack_flush(GoalExpr - _) :-
code_util__cannot_stack_flush_2(GoalExpr).
:- pred code_util__cannot_stack_flush_2(hlds_goal_expr).
:- mode code_util__cannot_stack_flush_2(in) is semidet.
code_util__cannot_stack_flush_2(unify(_, _, _, Unify, _)) :-
Unify \= complicated_unify(_, _).
code_util__cannot_stack_flush_2(call(_, _, _, BuiltinState, _, _)) :-
BuiltinState = inline_builtin.
code_util__cannot_stack_flush_2(conj(Goals)) :-
code_util__cannot_stack_flush_goals(Goals).
code_util__cannot_stack_flush_2(switch(_, _, Cases, _)) :-
code_util__cannot_stack_flush_cases(Cases).
:- pred code_util__cannot_stack_flush_goals(list(hlds_goal)).
:- mode code_util__cannot_stack_flush_goals(in) is semidet.
code_util__cannot_stack_flush_goals([]).
code_util__cannot_stack_flush_goals([Goal | Goals]) :-
code_util__cannot_stack_flush(Goal),
code_util__cannot_stack_flush_goals(Goals).
:- pred code_util__cannot_stack_flush_cases(list(case)).
:- mode code_util__cannot_stack_flush_cases(in) is semidet.
code_util__cannot_stack_flush_cases([]).
code_util__cannot_stack_flush_cases([case(_, Goal) | Cases]) :-
code_util__cannot_stack_flush(Goal),
code_util__cannot_stack_flush_cases(Cases).
%-----------------------------------------------------------------------------%
code_util__cannot_fail_before_stack_flush(GoalExpr - GoalInfo) :-
goal_info_get_determinism(GoalInfo, Detism),
determinism_components(Detism, CanFail, _),
( CanFail = cannot_fail ->
true
;
code_util__cannot_fail_before_stack_flush_2(GoalExpr)
).
:- pred code_util__cannot_fail_before_stack_flush_2(hlds_goal_expr).
:- mode code_util__cannot_fail_before_stack_flush_2(in) is semidet.
code_util__cannot_fail_before_stack_flush_2(conj(Goals)) :-
code_util__cannot_fail_before_stack_flush_conj(Goals).
:- pred code_util__cannot_fail_before_stack_flush_conj(list(hlds_goal)).
:- mode code_util__cannot_fail_before_stack_flush_conj(in) is semidet.
code_util__cannot_fail_before_stack_flush_conj([]).
code_util__cannot_fail_before_stack_flush_conj([Goal | Goals]) :-
Goal = GoalExpr - GoalInfo,
(
(
GoalExpr = call(_, _, _, BuiltinState, _, _),
BuiltinState \= inline_builtin
;
GoalExpr = higher_order_call(_, _, _, _, _, _)
)
->
true
;
goal_info_get_determinism(GoalInfo, Detism),
determinism_components(Detism, cannot_fail, _)
->
code_util__cannot_fail_before_stack_flush_conj(Goals)
;
fail
).
%-----------------------------------------------------------------------------%
code_util__count_recursive_calls(Goal - _, PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_2(Goal, PredId, ProcId, Min, Max).
:- pred code_util__count_recursive_calls_2(hlds_goal_expr, pred_id, proc_id,
int, int).
:- mode code_util__count_recursive_calls_2(in, in, in, out, out) is det.
code_util__count_recursive_calls_2(not(Goal), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(some(_, Goal), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(unify(_, _, _, _, _), _, _, 0, 0).
code_util__count_recursive_calls_2(higher_order_call(_, _,_, _, _, _), _, _,
0, 0).
code_util__count_recursive_calls_2(class_method_call(_, _,_, _, _, _), _, _,
0, 0).
code_util__count_recursive_calls_2(pragma_c_code(_,_,_, _, _, _, _), _, _,
0, 0).
code_util__count_recursive_calls_2(call(CallPredId, CallProcId, _, _, _, _),
PredId, ProcId, Count, Count) :-
(
PredId = CallPredId,
ProcId = CallProcId
->
Count = 1
;
Count = 0
).
code_util__count_recursive_calls_2(conj(Goals), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_conj(Goals, PredId, ProcId, 0, 0,
Min, Max).
code_util__count_recursive_calls_2(par_conj(Goals, _), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_conj(Goals, PredId, ProcId, 0, 0, Min, Max).
code_util__count_recursive_calls_2(disj(Goals, _), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_disj(Goals, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(switch(_, _, Cases, _), PredId, ProcId,
Min, Max) :-
code_util__count_recursive_calls_cases(Cases, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(if_then_else(_, Cond, Then, Else, _),
PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls(Cond, PredId, ProcId, CMin, CMax),
code_util__count_recursive_calls(Then, PredId, ProcId, TMin, TMax),
code_util__count_recursive_calls(Else, PredId, ProcId, EMin, EMax),
CTMin is CMin + TMin,
CTMax is CMax + TMax,
int__min(CTMin, EMin, Min),
int__max(CTMax, EMax, Max).
:- pred code_util__count_recursive_calls_conj(list(hlds_goal),
pred_id, proc_id, int, int, int, int).
:- mode code_util__count_recursive_calls_conj(in, in, in, in, in, out, out)
is det.
code_util__count_recursive_calls_conj([], _, _, Min, Max, Min, Max).
code_util__count_recursive_calls_conj([Goal | Goals], PredId, ProcId,
Min0, Max0, Min, Max) :-
code_util__count_recursive_calls(Goal, PredId, ProcId, Min1, Max1),
Min2 is Min0 + Min1,
Max2 is Max0 + Max1,
code_util__count_recursive_calls_conj(Goals, PredId, ProcId,
Min2, Max2, Min, Max).
:- pred code_util__count_recursive_calls_disj(list(hlds_goal),
pred_id, proc_id, int, int).
:- mode code_util__count_recursive_calls_disj(in, in, in, out, out) is det.
code_util__count_recursive_calls_disj([], _, _, 0, 0).
code_util__count_recursive_calls_disj([Goal | Goals], PredId, ProcId,
Min, Max) :-
( Goals = [] ->
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min, Max)
;
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min0, Max0),
code_util__count_recursive_calls_disj(Goals, PredId, ProcId,
Min1, Max1),
int__min(Min0, Min1, Min),
int__max(Max0, Max1, Max)
).
:- pred code_util__count_recursive_calls_cases(list(case),
pred_id, proc_id, int, int).
:- mode code_util__count_recursive_calls_cases(in, in, in, out, out) is det.
code_util__count_recursive_calls_cases([], _, _, _, _) :-
error("empty cases in code_util__count_recursive_calls_cases").
code_util__count_recursive_calls_cases([case(_, Goal) | Cases], PredId, ProcId,
Min, Max) :-
( Cases = [] ->
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min, Max)
;
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min0, Max0),
code_util__count_recursive_calls_cases(Cases, PredId, ProcId,
Min1, Max1),
int__min(Min0, Min1, Min),
int__max(Max0, Max1, Max)
).
code_util__output_args([], LiveVals) :-
set__init(LiveVals).
code_util__output_args([_V - arg_info(Loc, Mode) | Args], Vs) :-
code_util__output_args(Args, Vs0),
(
Mode = top_out
->
code_util__arg_loc_to_register(Loc, Reg),
set__insert(Vs0, Reg, Vs)
;
Vs = Vs0
).
%-----------------------------------------------------------------------------%
code_util__lvals_in_rval(lval(Lval), [Lval | Lvals]) :-
code_util__lvals_in_lval(Lval, Lvals).
code_util__lvals_in_rval(var(_), []).
code_util__lvals_in_rval(create(_, _, _, _, _), []).
code_util__lvals_in_rval(mkword(_, Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_rval(const(_), []).
code_util__lvals_in_rval(unop(_, Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_rval(binop(_, Rval1, Rval2), Lvals) :-
code_util__lvals_in_rval(Rval1, Lvals1),
code_util__lvals_in_rval(Rval2, Lvals2),
list__append(Lvals1, Lvals2, Lvals).
code_util__lvals_in_rval(mem_addr(MemRef), Lvals) :-
code_util__lvals_in_mem_ref(MemRef, Lvals).
code_util__lvals_in_lval(reg(_, _), []).
code_util__lvals_in_lval(stackvar(_), []).
code_util__lvals_in_lval(framevar(_), []).
code_util__lvals_in_lval(succip, []).
code_util__lvals_in_lval(maxfr, []).
code_util__lvals_in_lval(curfr, []).
code_util__lvals_in_lval(succip(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(redofr(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(redoip(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(succfr(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(prevfr(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(hp, []).
code_util__lvals_in_lval(sp, []).
code_util__lvals_in_lval(field(_, Rval1, Rval2), Lvals) :-
code_util__lvals_in_rval(Rval1, Lvals1),
code_util__lvals_in_rval(Rval2, Lvals2),
list__append(Lvals1, Lvals2, Lvals).
code_util__lvals_in_lval(lvar(_), []).
code_util__lvals_in_lval(temp(_, _), []).
code_util__lvals_in_lval(mem_ref(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
:- pred code_util__lvals_in_mem_ref(mem_ref, list(lval)).
:- mode code_util__lvals_in_mem_ref(in, out) is det.
code_util__lvals_in_mem_ref(stackvar_ref(_), []).
code_util__lvals_in_mem_ref(framevar_ref(_), []).
code_util__lvals_in_mem_ref(heap_ref(Rval, _, _), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
%-----------------------------------------------------------------------------%