Files
mercury/compiler/code_util.m
Simon Taylor 857ce0c472 Cleaned up the handling of labels for specialized versions of predicates
Estimated hours taken: 3

Cleaned up the handling of labels for specialized versions of predicates
from other modules.

compiler/llds.m:
        Changed the representation of proc_label slightly.
        Each proc_label now contains the name of the module producing the
        code for a predicate as well as the module containing the declaration
        for the predicate.

compiler/code_util.m:
compiler/llds_out.m:
        Fixed a bug in my last change that resulted in duplicate label
        names for specialized versions of predicates.
        The name of the module producing the code for the predicate
        is added as an extra qualifier in the label for specialised
        versions of predicates from other modules.

compiler/base_type_info.m:
compiler/opt_util.m:
compiler/opt_debug.m:
compiler/shapes.m:
        Fixed uses of proc_label.
1997-01-29 00:48:13 +00:00

887 lines
34 KiB
Mathematica

%---------------------------------------------------------------------------%
% Copyright (C) 1995 University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
%
% file: code_util.m.
%
% various utilities routines for code generation and recognition
% of builtins.
%
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- module code_util.
:- interface.
:- import_module hlds_module, hlds_pred, hlds_goal, hlds_data, llds.
:- import_module list.
% Create a code address which holds the address of the specified
% procedure.
% The fourth argument should be `no' if the the caller wants the
% returned address to be valid from everywhere in the program.
% If being valid from within the current procedure is enough,
% this argument should be `yes' wrapped around the value of the
% --procs-per-c-function option and the current procedure id.
% Using an address that is only valid from within the current
% procedure may make jumps more efficient.
:- pred code_util__make_entry_label(module_info, pred_id, proc_id,
maybe(pair(int, pred_proc_id)), code_addr).
:- mode code_util__make_entry_label(in, in, in, in, out) is det.
% Create a label which holds the address of the specified procedure,
% which must be defined in the current module (procedures that are
% imported from other modules have representations only as code_addrs,
% not as labels, since their address is not known at C compilation
% time).
% The fourth argument has the same meaning as for
% code_util__make_entry_label.
:- pred code_util__make_local_entry_label(module_info, pred_id, proc_id,
maybe(pair(int, pred_proc_id)), label).
:- mode code_util__make_local_entry_label(in, in, in, in, out) is det.
% Create a label internal to a Mercury procedure.
:- pred code_util__make_internal_label(module_info, pred_id, proc_id, int,
label).
:- mode code_util__make_internal_label(in, in, in, in, out) is det.
:- pred code_util__make_proc_label(module_info, pred_id, proc_id, proc_label).
:- mode code_util__make_proc_label(in, in, in, out) is det.
:- pred code_util__make_uni_label(module_info, type_id, int, proc_label).
:- mode code_util__make_uni_label(in, in, in, out) is det.
:- pred code_util__arg_loc_to_register(arg_loc, lval).
:- mode code_util__arg_loc_to_register(in, out) is det.
% Determine whether a goal might allocate some heap space,
% i.e. whether it contains any construction unifications
% or predicate calls. BEWARE that this predicate is only
% an approximation, used to decide whether or not to try to
% reclaim the heap space; currently it fails even for some
% goals which do allocate heap space, such as construction
% of boxed constants.
:- pred code_util__goal_may_allocate_heap(hlds__goal).
:- mode code_util__goal_may_allocate_heap(in) is semidet.
:- pred code_util__goal_list_may_allocate_heap(list(hlds__goal)).
:- mode code_util__goal_list_may_allocate_heap(in) is semidet.
% Negate a condition.
% This is used mostly just to make the generated code more readable.
:- pred code_util__neg_rval(rval, rval).
:- mode code_util__neg_rval(in, out) is det.
:- pred code_util__negate_the_test(list(instruction), list(instruction)).
:- mode code_util__negate_the_test(in, out) is det.
:- pred code_util__compiler_generated(pred_info).
:- mode code_util__compiler_generated(in) is semidet.
:- pred code_util__predinfo_is_builtin(module_info, pred_info).
:- mode code_util__predinfo_is_builtin(in, in) is semidet.
:- pred code_util__builtin_state(module_info, pred_id, proc_id, builtin_state).
:- mode code_util__builtin_state(in, in, in, out) is det.
% Given a module name, a predicate name, a proc_id and a list of
% variables as the arguments, find out if that procedure of that
% predicate is an inline builtin. If yes, the last two arguments
% return two things:
%
% - an rval to execute as a test if the builtin is semidet; and
%
% - an rval to assign to a variable if the builtin calls for this.
%
% At least one of these will be present.
%
% Each test rval returned is guaranteed to be either a unop or a binop,
% applied to arguments that are either variables (from the argument
% list) or constants.
%
% Each to be assigned rval is guaranteed to be either in a form
% acceptable for a test rval, or in the form of a variable.
:- pred code_util__translate_builtin(string, string, proc_id, list(var),
maybe(rval), maybe(pair(var, rval))).
:- mode code_util__translate_builtin(in, in, in, in, out, out) is semidet.
% Find out how a function symbol (constructor) is represented
% in the given type.
:- pred code_util__cons_id_to_tag(cons_id, type, module_info, cons_tag).
:- mode code_util__cons_id_to_tag(in, in, in, out) is det.
% Succeed if the given goal cannot encounter a context
% that causes any variable to be flushed to its stack slot.
% If such a goal needs a resume point, and that resume point cannot
% be backtracked to once control leaves the goal, then the only entry
% point we need for the resume point is the one with the resume
% variables in their original locations.
:- pred code_util__cannot_stack_flush(hlds__goal).
:- mode code_util__cannot_stack_flush(in) is semidet.
% Succeed if the given goal cannot fail before encountering a context
% that forces all variables to be flushed to their stack slots.
% If such a goal needs a resume point, the only entry point we need
% is the stack entry point.
:- pred code_util__cannot_fail_before_stack_flush(hlds__goal).
:- mode code_util__cannot_fail_before_stack_flush(in) is semidet.
% code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max)
% Given that we are in predicate PredId and procedure ProcId,
% return the minimum and maximum number of recursive calls that
% an execution of Goal may encounter.
:- pred code_util__count_recursive_calls(hlds__goal, pred_id, proc_id,
int, int).
:- mode code_util__count_recursive_calls(in, in, in, out, out) is det.
%---------------------------------------------------------------------------%
:- implementation.
:- import_module prog_data, type_util, special_pred.
:- import_module bool, char, int, string, map, varset, require, std_util.
%---------------------------------------------------------------------------%
code_util__make_entry_label(ModuleInfo, PredId, ProcId, Immed, PredAddress) :-
module_info_preds(ModuleInfo, Preds),
map__lookup(Preds, PredId, PredInfo),
(
(
pred_info_is_imported(PredInfo)
;
pred_info_is_pseudo_imported(PredInfo),
% only the (in, in) mode of unification is imported
ProcId = 0
)
->
code_util__make_proc_label(ModuleInfo, PredId, ProcId,
ProcLabel),
PredAddress = imported(ProcLabel)
;
code_util__make_local_entry_label(ModuleInfo, PredId, ProcId,
Immed, Label),
PredAddress = label(Label)
).
code_util__make_local_entry_label(ModuleInfo, PredId, ProcId, Immed, Label) :-
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel),
module_info_preds(ModuleInfo, Preds),
map__lookup(Preds, PredId, PredInfo),
(
(
pred_info_is_exported(PredInfo)
;
pred_info_is_pseudo_exported(PredInfo),
% only the (in, in) mode of a unification is exported
ProcId = 0
)
->
(
Immed = no,
Label = exported(ProcLabel)
;
Immed = yes(ProcsPerFunc - proc(CurPredId, CurProcId)),
choose_local_label_type(ProcsPerFunc, CurPredId,
CurProcId, PredId, ProcId, ProcLabel, Label)
)
;
(
% If we want to define the label or use it to put it
% into a data structure, a label that is usable only
% within the current C module won't do.
Immed = no,
Label = local(ProcLabel)
;
Immed = yes(ProcsPerFunc - proc(CurPredId, CurProcId)),
choose_local_label_type(ProcsPerFunc, CurPredId,
CurProcId, PredId, ProcId, ProcLabel, Label)
)
).
:- pred choose_local_label_type(int, pred_id, proc_id,
pred_id, proc_id, proc_label, label).
:- mode choose_local_label_type(in, in, in, in, in, in, out) is det.
choose_local_label_type(ProcsPerFunc, CurPredId, CurProcId,
PredId, ProcId, ProcLabel, Label) :-
(
% If we want to branch to the label now,
% we prefer a form that are usable only within
% the current C module, since it is likely
% to be faster.
(
ProcsPerFunc = 0
;
PredId = CurPredId,
ProcId = CurProcId
)
->
Label = c_local(ProcLabel)
;
Label = local(ProcLabel)
).
%-----------------------------------------------------------------------------%
code_util__make_internal_label(ModuleInfo, PredId, ProcId, LabelNum, Label) :-
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel),
Label = local(ProcLabel, LabelNum).
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel) :-
module_info_pred_info(ModuleInfo, PredId, PredInfo),
pred_info_module(PredInfo, PredModule),
pred_info_name(PredInfo, PredName),
module_info_name(ModuleInfo, ThisModule),
(
code_util__compiler_generated(PredInfo)
->
pred_info_arg_types(PredInfo, _TypeVarSet, ArgTypes),
(
special_pred_get_type(PredName, ArgTypes, Type),
type_to_type_id(Type, TypeId, _),
% All type_ids here should be module qualified,
% since builtin types are handled separately in
% polymorphism.m.
TypeId = qualified(TypeModule, TypeName) - Arity
->
(
ThisModule \= TypeModule,
PredName = "__Unify__",
ProcId \= 0
->
DefiningModule = ThisModule
;
DefiningModule = TypeModule
),
ProcLabel = special_proc(DefiningModule, PredName,
TypeModule, TypeName, Arity, ProcId)
;
string__append_list(["code_util__make_proc_label:\n",
"cannot make label for special pred `",
PredName, "'"], ErrorMessage),
error(ErrorMessage)
)
;
(
% Work out which module supplies the code for
% the predicate.
ThisModule \= PredModule,
\+ pred_info_is_imported(PredInfo)
->
% This predicate is a specialized version of
% a pred from a `.opt' file.
DefiningModule = ThisModule
;
DefiningModule = PredModule
),
pred_info_get_is_pred_or_func(PredInfo, PredOrFunc),
pred_info_arity(PredInfo, Arity),
ProcLabel = proc(DefiningModule, PredOrFunc,
PredModule, PredName, Arity, ProcId)
).
code_util__make_uni_label(ModuleInfo, TypeId, UniModeNum, ProcLabel) :-
module_info_name(ModuleInfo, ModuleName),
( TypeId = qualified(TypeModule, TypeName) - Arity ->
( UniModeNum = 0 ->
Module = TypeModule
;
Module = ModuleName
),
ProcLabel = special_proc(Module, "__Unify__", TypeModule,
TypeName, Arity, UniModeNum)
;
error("code_util__make_uni_label: unqualified type_id")
).
%-----------------------------------------------------------------------------%
code_util__arg_loc_to_register(ArgLoc, reg(r, ArgLoc)).
%-----------------------------------------------------------------------------%
code_util__predinfo_is_builtin(_ModuleInfo, PredInfo) :-
pred_info_module(PredInfo, ModuleName),
pred_info_name(PredInfo, PredName),
% code_util__translate_builtin(ModuleName, PredName, _, _, _, _).
pred_info_arity(PredInfo, Arity),
( code_util__inline_builtin(ModuleName, PredName, 0, Arity)
; code_util__inline_builtin(ModuleName, PredName, 10000, Arity)
).
code_util__builtin_state(ModuleInfo, PredId0, ProcId, BuiltinState) :-
predicate_module(ModuleInfo, PredId0, ModuleName),
predicate_name(ModuleInfo, PredId0, PredName),
predicate_arity(ModuleInfo, PredId0, Arity),
( code_util__inline_builtin(ModuleName, PredName, ProcId, Arity) ->
BuiltinState = inline_builtin
;
BuiltinState = not_builtin
).
:- pred code_util__inline_builtin(string, string, proc_id, int).
:- mode code_util__inline_builtin(in, in, in, in) is semidet.
code_util__inline_builtin(ModuleName, PredName, ProcId, Arity) :-
Arity =< 3,
varset__init(VarSet),
varset__new_vars(VarSet, Arity, Args, _),
code_util__translate_builtin(ModuleName, PredName, ProcId, Args, _, _).
code_util__translate_builtin("mercury_builtin", "builtin_int_gt", 0, [X, Y],
yes(binop((>), var(X), var(Y))), no).
code_util__translate_builtin("mercury_builtin", "builtin_int_lt", 0, [X, Y],
yes(binop((<), var(X), var(Y))), no).
code_util__translate_builtin("int", "builtin_plus", 10000, [X, Y, Z],
no, yes(Z - binop((+), var(X), var(Y)))).
code_util__translate_builtin("int", "builtin_plus", 10001, [X, Y, Z],
no, yes(X - binop((-), var(Z), var(Y)))).
code_util__translate_builtin("int", "builtin_plus", 10002, [X, Y, Z],
no, yes(Y - binop((-), var(Z), var(X)))).
code_util__translate_builtin("int", "+", 10000, [X, Y, Z],
no, yes(Z - binop((+), var(X), var(Y)))).
code_util__translate_builtin("int", "+", 10001, [X, Y, Z],
no, yes(X - binop((-), var(Z), var(Y)))).
code_util__translate_builtin("int", "+", 10002, [X, Y, Z],
no, yes(Y - binop((-), var(Z), var(X)))).
code_util__translate_builtin("int", "builtin_minus", 10000, [X, Y, Z],
no, yes(Z - binop((-), var(X), var(Y)))).
code_util__translate_builtin("int", "builtin_minus", 10001, [X, Y, Z],
no, yes(X - binop((+), var(Y), var(Z)))).
code_util__translate_builtin("int", "builtin_minus", 10002, [X, Y, Z],
no, yes(Y - binop((-), var(X), var(Z)))).
code_util__translate_builtin("int", "-", 10000, [X, Y, Z],
no, yes(Z - binop((-), var(X), var(Y)))).
code_util__translate_builtin("int", "-", 10001, [X, Y, Z],
no, yes(X - binop((+), var(Y), var(Z)))).
code_util__translate_builtin("int", "-", 10002, [X, Y, Z],
no, yes(Y - binop((-), var(X), var(Z)))).
code_util__translate_builtin("int", "builtin_times", 10000, [X, Y, Z],
no, yes(Z - binop((*), var(X), var(Y)))).
code_util__translate_builtin("int", "builtin_times", 10001, [X, Y, Z],
no, yes(X - binop((/), var(Z), var(Y)))).
code_util__translate_builtin("int", "builtin_times", 10002, [X, Y, Z],
no, yes(Y - binop((/), var(Z), var(X)))).
code_util__translate_builtin("int", "*", 10000, [X, Y, Z],
no, yes(Z - binop((*), var(X), var(Y)))).
code_util__translate_builtin("int", "*", 10001, [X, Y, Z],
no, yes(X - binop((/), var(Z), var(Y)))).
code_util__translate_builtin("int", "*", 10002, [X, Y, Z],
no, yes(Y - binop((/), var(Z), var(X)))).
code_util__translate_builtin("int", "builtin_div", 10000, [X, Y, Z],
no, yes(Z - binop((/), var(X), var(Y)))).
code_util__translate_builtin("int", "builtin_div", 10001, [X, Y, Z],
no, yes(X - binop((*), var(Y), var(Z)))).
code_util__translate_builtin("int", "builtin_div", 10002, [X, Y, Z],
no, yes(Y - binop((/), var(X), var(Z)))).
code_util__translate_builtin("int", "//", 10000, [X, Y, Z],
no, yes(Z - binop((/), var(X), var(Y)))).
code_util__translate_builtin("int", "//", 10001, [X, Y, Z],
no, yes(X - binop((*), var(Y), var(Z)))).
code_util__translate_builtin("int", "//", 10002, [X, Y, Z],
no, yes(Y - binop((/), var(X), var(Z)))).
code_util__translate_builtin("int", "builtin_mod", 10000, [X, Y, Z],
no, yes(Z - binop((mod), var(X), var(Y)))).
code_util__translate_builtin("int", "mod", 10000, [X, Y, Z],
no, yes(Z - binop((mod), var(X), var(Y)))).
code_util__translate_builtin("int", "builtin_left_shift", 10000, [X, Y, Z],
no, yes(Z - binop((<<), var(X), var(Y)))).
code_util__translate_builtin("int", "<<", 10000, [X, Y, Z],
no, yes(Z - binop((<<), var(X), var(Y)))).
code_util__translate_builtin("int", "builtin_right_shift", 10000, [X, Y, Z],
no, yes(Z - binop((>>), var(X), var(Y)))).
code_util__translate_builtin("int", ">>", 10000, [X, Y, Z],
no, yes(Z - binop((>>), var(X), var(Y)))).
code_util__translate_builtin("int", "builtin_bit_and", 10000, [X, Y, Z],
no, yes(Z - binop((&), var(X), var(Y)))).
code_util__translate_builtin("int", "/\\", 10000, [X, Y, Z],
no, yes(Z - binop((&), var(X), var(Y)))).
code_util__translate_builtin("int", "builtin_bit_or", 10000, [X, Y, Z],
no, yes(Z - binop(('|'), var(X), var(Y)))).
code_util__translate_builtin("int", "\\/", 10000, [X, Y, Z],
no, yes(Z - binop(('|'), var(X), var(Y)))).
code_util__translate_builtin("int", "builtin_bit_xor", 10000, [X, Y, Z],
no, yes(Z - binop((^), var(X), var(Y)))).
code_util__translate_builtin("int", "^", 10000, [X, Y, Z],
no, yes(Z - binop((^), var(X), var(Y)))).
code_util__translate_builtin("int", "builtin_unary_plus", 10000, [X, Y],
no, yes(Y - var(X))).
code_util__translate_builtin("int", "+", 10000, [X, Y],
no, yes(Y - var(X))).
code_util__translate_builtin("int", "builtin_unary_minus", 10000, [X, Y],
no, yes(Y - binop((-), const(int_const(0)), var(X)))).
code_util__translate_builtin("int", "-", 10000, [X, Y],
no, yes(Y - binop((-), const(int_const(0)), var(X)))).
code_util__translate_builtin("int", "builtin_bit_neg", 10000, [X, Y],
no, yes(Y - unop(bitwise_complement, var(X)))).
code_util__translate_builtin("int", "\\", 10000, [X, Y],
no, yes(Y - unop(bitwise_complement, var(X)))).
code_util__translate_builtin("int", ">", 0, [X, Y],
yes(binop((>), var(X), var(Y))), no).
code_util__translate_builtin("int", "<", 0, [X, Y],
yes(binop((<), var(X), var(Y))), no).
code_util__translate_builtin("int", ">=", 0, [X, Y],
yes(binop((>=), var(X), var(Y))), no).
code_util__translate_builtin("int", "=<", 0, [X, Y],
yes(binop((<=), var(X), var(Y))), no).
code_util__translate_builtin("float", "builtin_float_plus", 10000, [X, Y, Z],
no, yes(Z - binop(float_plus, var(X), var(Y)))).
code_util__translate_builtin("float", "builtin_float_plus", 10001, [X, Y, Z],
no, yes(X - binop(float_minus, var(Z), var(Y)))).
code_util__translate_builtin("float", "builtin_float_plus", 10002, [X, Y, Z],
no, yes(Y - binop(float_minus, var(Z), var(X)))).
code_util__translate_builtin("float", "+", 10000, [X, Y, Z],
no, yes(Z - binop(float_plus, var(X), var(Y)))).
code_util__translate_builtin("float", "+", 10001, [X, Y, Z],
no, yes(X - binop(float_minus, var(Z), var(Y)))).
code_util__translate_builtin("float", "+", 10002, [X, Y, Z],
no, yes(Y - binop(float_minus, var(Z), var(X)))).
code_util__translate_builtin("float", "builtin_float_minus", 10000, [X, Y, Z],
no, yes(Z - binop(float_minus, var(X), var(Y)))).
code_util__translate_builtin("float", "builtin_float_minus", 10001, [X, Y, Z],
no, yes(X - binop(float_plus, var(Y), var(Z)))).
code_util__translate_builtin("float", "builtin_float_minus", 10002, [X, Y, Z],
no, yes(Y - binop(float_minus, var(X), var(Z)))).
code_util__translate_builtin("float", "-", 10000, [X, Y, Z],
no, yes(Z - binop(float_minus, var(X), var(Y)))).
code_util__translate_builtin("float", "-", 10001, [X, Y, Z],
no, yes(X - binop(float_plus, var(Y), var(Z)))).
code_util__translate_builtin("float", "-", 10002, [X, Y, Z],
no, yes(Y - binop(float_minus, var(X), var(Z)))).
code_util__translate_builtin("float", "builtin_float_times", 10000, [X, Y, Z],
no, yes(Z - binop(float_times, var(X), var(Y)))).
code_util__translate_builtin("float", "builtin_float_times", 10001, [X, Y, Z],
no, yes(X - binop(float_divide, var(Z), var(Y)))).
code_util__translate_builtin("float", "builtin_float_times", 10002, [X, Y, Z],
no, yes(Y - binop(float_divide, var(Z), var(X)))).
code_util__translate_builtin("float", "*", 10000, [X, Y, Z],
no, yes(Z - binop(float_times, var(X), var(Y)))).
code_util__translate_builtin("float", "*", 10001, [X, Y, Z],
no, yes(X - binop(float_divide, var(Z), var(Y)))).
code_util__translate_builtin("float", "*", 10002, [X, Y, Z],
no, yes(Y - binop(float_divide, var(Z), var(X)))).
code_util__translate_builtin("float", "builtin_float_divide", 10000, [X, Y, Z],
no, yes(Z - binop(float_divide, var(X), var(Y)))).
code_util__translate_builtin("float", "builtin_float_divide", 10001, [X, Y, Z],
no, yes(X - binop(float_times, var(Y), var(Z)))).
code_util__translate_builtin("float", "builtin_float_divide", 10002, [X, Y, Z],
no, yes(Y - binop(float_divide, var(X), var(Z)))).
code_util__translate_builtin("float", "/", 10000, [X, Y, Z],
no, yes(Z - binop(float_divide, var(X), var(Y)))).
code_util__translate_builtin("float", "/", 10001, [X, Y, Z],
no, yes(X - binop(float_times, var(Y), var(Z)))).
code_util__translate_builtin("float", "/", 10002, [X, Y, Z],
no, yes(Y - binop(float_divide, var(X), var(Z)))).
code_util__translate_builtin("float", "+", 10000, [X, Y],
no, yes(Y - var(X))).
code_util__translate_builtin("float", "-", 10000, [X, Y],
no, yes(Y - binop(float_minus, const(float_const(0.0)), var(X)))).
code_util__translate_builtin("float", "builtin_float_gt", 0, [X, Y],
yes(binop(float_gt, var(X), var(Y))), no).
code_util__translate_builtin("float", ">", 0, [X, Y],
yes(binop(float_gt, var(X), var(Y))), no).
code_util__translate_builtin("float", "builtin_float_lt", 0, [X, Y],
yes(binop(float_lt, var(X), var(Y))), no).
code_util__translate_builtin("float", "<", 0, [X, Y],
yes(binop(float_lt, var(X), var(Y))), no).
code_util__translate_builtin("float", "builtin_float_ge", 0, [X, Y],
yes(binop(float_ge, var(X), var(Y))), no).
code_util__translate_builtin("float", ">=", 0, [X, Y],
yes(binop(float_ge, var(X), var(Y))), no).
code_util__translate_builtin("float", "builtin_float_le", 0, [X, Y],
yes(binop(float_le, var(X), var(Y))), no).
code_util__translate_builtin("float", "=<", 0, [X, Y],
yes(binop(float_le, var(X), var(Y))), no).
%-----------------------------------------------------------------------------%
% code_util__compiler_generated(PredInfo) should succeed iff
% the PredInfo is for a compiler generated predicate.
code_util__compiler_generated(PredInfo) :-
pred_info_name(PredInfo, PredName),
pred_info_arity(PredInfo, PredArity),
( PredName = "__Unify__", PredArity = 2
; PredName = "__Compare__", PredArity = 3
; PredName = "__Index__", PredArity = 2
; PredName = "__Term_To_Type__", PredArity = 2
; PredName = "__Type_To_Term__", PredArity = 2
).
%-----------------------------------------------------------------------------%
% This code may _look_ nondeterministic, but it's really semidet,
% and Mercury is smart enough to know this.
code_util__goal_may_allocate_heap(Goal - _GoalInfo) :-
code_util__goal_may_allocate_heap_2(Goal).
:- pred code_util__goal_may_allocate_heap_2(hlds__goal_expr).
:- mode code_util__goal_may_allocate_heap_2(in) is semidet.
code_util__goal_may_allocate_heap_2(higher_order_call(_, _, _, _, _)).
code_util__goal_may_allocate_heap_2(call(_, _, _, Builtin, _, _)) :-
Builtin \= inline_builtin.
code_util__goal_may_allocate_heap_2(unify(_, _, _, construct(_,_,Args,_), _)) :-
Args = [_|_].
code_util__goal_may_allocate_heap_2(some(_Vars, Goal)) :-
code_util__goal_may_allocate_heap(Goal).
code_util__goal_may_allocate_heap_2(not(Goal)) :-
code_util__goal_may_allocate_heap(Goal).
code_util__goal_may_allocate_heap_2(conj(Goals)) :-
code_util__goal_list_may_allocate_heap(Goals).
code_util__goal_may_allocate_heap_2(disj(Goals, _)) :-
code_util__goal_list_may_allocate_heap(Goals).
code_util__goal_may_allocate_heap_2(switch(_Var, _Det, Cases, _)) :-
code_util__cases_may_allocate_heap(Cases).
code_util__goal_may_allocate_heap_2(if_then_else(_Vars, A, B, C, _)) :-
(
code_util__goal_may_allocate_heap(A)
;
code_util__goal_may_allocate_heap(B)
;
code_util__goal_may_allocate_heap(C)
).
:- pred code_util__cases_may_allocate_heap(list(case)).
:- mode code_util__cases_may_allocate_heap(in) is semidet.
code_util__cases_may_allocate_heap([case(_, Goal) | _]) :-
code_util__goal_may_allocate_heap(Goal).
code_util__cases_may_allocate_heap([_ | Cases]) :-
code_util__cases_may_allocate_heap(Cases).
code_util__goal_list_may_allocate_heap([Goal | _]) :-
code_util__goal_may_allocate_heap(Goal).
code_util__goal_list_may_allocate_heap([_ | Goals]) :-
code_util__goal_list_may_allocate_heap(Goals).
%-----------------------------------------------------------------------------%
% Negate a condition.
% This is used mostly just to make the generated code more readable.
code_util__neg_rval(Rval, NegRval) :-
( code_util__neg_rval_2(Rval, NegRval0) ->
NegRval = NegRval0
;
NegRval = unop(not, Rval)
).
:- pred code_util__neg_rval_2(rval, rval).
:- mode code_util__neg_rval_2(in, out) is semidet.
code_util__neg_rval_2(const(Const), const(NegConst)) :-
(
Const = true, NegConst = false
;
Const = false, NegConst = true
).
code_util__neg_rval_2(unop(not, Rval), Rval).
code_util__neg_rval_2(binop(Op, X, Y), binop(NegOp, X, Y)) :-
code_util__neg_op(Op, NegOp).
:- pred code_util__neg_op(binary_op, binary_op).
:- mode code_util__neg_op(in, out) is semidet.
code_util__neg_op(eq, ne).
code_util__neg_op(ne, eq).
code_util__neg_op(<, >=).
code_util__neg_op(<=, >).
code_util__neg_op(>, <=).
code_util__neg_op(>=, <).
code_util__neg_op(str_eq, str_ne).
code_util__neg_op(str_ne, str_eq).
code_util__neg_op(str_lt, str_ge).
code_util__neg_op(str_le, str_gt).
code_util__neg_op(str_gt, str_le).
code_util__neg_op(str_ge, str_lt).
code_util__neg_op(float_eq, float_ne).
code_util__neg_op(float_ne, float_eq).
code_util__neg_op(float_lt, float_ge).
code_util__neg_op(float_le, float_gt).
code_util__neg_op(float_gt, float_le).
code_util__neg_op(float_ge, float_lt).
code_util__negate_the_test([], _) :-
error("code_util__negate_the_test on empty list").
code_util__negate_the_test([Instr0 | Instrs0], Instrs) :-
( Instr0 = if_val(Test, Target) - Comment ->
code_util__neg_rval(Test, NewTest),
Instrs = [if_val(NewTest, Target) - Comment]
;
code_util__negate_the_test(Instrs0, Instrs1),
Instrs = [Instr0 | Instrs1]
).
%-----------------------------------------------------------------------------%
code_util__cons_id_to_tag(int_const(X), _, _, int_constant(X)).
code_util__cons_id_to_tag(float_const(X), _, _, float_constant(X)).
code_util__cons_id_to_tag(string_const(X), _, _, string_constant(X)).
code_util__cons_id_to_tag(code_addr_const(P,M), _, _, code_addr_constant(P,M)).
code_util__cons_id_to_tag(pred_const(P,M), _, _, pred_closure_tag(P,M)).
code_util__cons_id_to_tag(base_type_info_const(M,T,A), _, _,
base_type_info_constant(M,T,A)).
code_util__cons_id_to_tag(cons(qualified(_, _), _), _, _, _) :-
% should have been transformed into a function call or pred_const.
error("code_util__cons_id_to_tag - qualified cons_id").
code_util__cons_id_to_tag(cons(unqualified(Name), Arity),
Type, ModuleInfo, Tag) :-
(
% handle the `character' type specially
Type = term__functor(term__atom("character"), [], _),
string__char_to_string(Char, Name)
->
char__to_int(Char, CharCode),
Tag = int_constant(CharCode)
;
% handle higher-order types specially
type_is_higher_order(Type, PredOrFunc, PredArgTypes)
->
list__length(PredArgTypes, PredArity),
module_info_get_predicate_table(ModuleInfo, PredicateTable),
TotalArity is Arity + PredArity,
(
predicate_table_search_pf_name_arity(
PredicateTable, PredOrFunc, Name, TotalArity,
PredIds)
->
( PredIds = [PredId] ->
predicate_table_get_preds(PredicateTable,
Preds),
map__lookup(Preds, PredId, PredInfo),
pred_info_procedures(PredInfo, Procs),
map__keys(Procs, ProcIds),
( ProcIds = [ProcId] ->
Tag = pred_closure_tag(PredId, ProcId)
;
error("sorry, not implemented: taking address of predicate or function with multiple modes")
)
;
% cons_id ought to include the module
% prefix, so that we could use
% predicate_table__search_pf_m_n_a to
% prevent this from happening
error("code_util__cons_id_to_tag: ambiguous pred or func")
)
;
% the type-checker should ensure that this never happens
error("code_util__cons_id_to_tag: invalid pred or func")
)
;
% Use the type to determine the type_id
( type_to_type_id(Type, TypeId0, _) ->
TypeId = TypeId0
;
% the type-checker should ensure that this never happens
error("code_util__cons_id_to_tag: invalid type")
),
% Given the type_id, lookup up the constructor tag
% table for that type
module_info_types(ModuleInfo, TypeTable),
map__lookup(TypeTable, TypeId, TypeDefn),
hlds_data__get_type_defn_body(TypeDefn, TypeBody),
(
TypeBody = du_type(_, ConsTable0, _)
->
ConsTable = ConsTable0
;
% this should never happen
error(
"code_util__cons_id_to_tag: type is not d.u. type?"
)
),
% Finally look up the cons_id in the table
map__lookup(ConsTable, cons(unqualified(Name), Arity), Tag)
).
%-----------------------------------------------------------------------------%
code_util__cannot_stack_flush(GoalExpr - _) :-
code_util__cannot_stack_flush_2(GoalExpr).
:- pred code_util__cannot_stack_flush_2(hlds__goal_expr).
:- mode code_util__cannot_stack_flush_2(in) is semidet.
code_util__cannot_stack_flush_2(unify(_, _, _, Unify, _)) :-
Unify \= complicated_unify(_, _).
code_util__cannot_stack_flush_2(call(_, _, _, BuiltinState, _, _)) :-
BuiltinState = inline_builtin.
code_util__cannot_stack_flush_2(conj(Goals)) :-
code_util__cannot_stack_flush_goals(Goals).
code_util__cannot_stack_flush_2(switch(_, _, Cases, _)) :-
code_util__cannot_stack_flush_cases(Cases).
:- pred code_util__cannot_stack_flush_goals(list(hlds__goal)).
:- mode code_util__cannot_stack_flush_goals(in) is semidet.
code_util__cannot_stack_flush_goals([]).
code_util__cannot_stack_flush_goals([Goal | Goals]) :-
code_util__cannot_stack_flush(Goal),
code_util__cannot_stack_flush_goals(Goals).
:- pred code_util__cannot_stack_flush_cases(list(case)).
:- mode code_util__cannot_stack_flush_cases(in) is semidet.
code_util__cannot_stack_flush_cases([]).
code_util__cannot_stack_flush_cases([case(_, Goal) | Cases]) :-
code_util__cannot_stack_flush(Goal),
code_util__cannot_stack_flush_cases(Cases).
%-----------------------------------------------------------------------------%
code_util__cannot_fail_before_stack_flush(GoalExpr - GoalInfo) :-
goal_info_get_determinism(GoalInfo, Detism),
determinism_components(Detism, CanFail, _),
( CanFail = cannot_fail ->
true
;
code_util__cannot_fail_before_stack_flush_2(GoalExpr)
).
:- pred code_util__cannot_fail_before_stack_flush_2(hlds__goal_expr).
:- mode code_util__cannot_fail_before_stack_flush_2(in) is semidet.
code_util__cannot_fail_before_stack_flush_2(conj(Goals)) :-
code_util__cannot_fail_before_stack_flush_conj(Goals).
:- pred code_util__cannot_fail_before_stack_flush_conj(list(hlds__goal)).
:- mode code_util__cannot_fail_before_stack_flush_conj(in) is semidet.
code_util__cannot_fail_before_stack_flush_conj([]).
code_util__cannot_fail_before_stack_flush_conj([Goal | Goals]) :-
Goal = GoalExpr - GoalInfo,
(
(
GoalExpr = call(_, _, _, BuiltinState, _, _),
BuiltinState \= inline_builtin
;
GoalExpr = higher_order_call(_, _, _, _, _)
)
->
true
;
goal_info_get_determinism(GoalInfo, Detism),
determinism_components(Detism, cannot_fail, _)
->
code_util__cannot_fail_before_stack_flush_conj(Goals)
;
fail
).
%-----------------------------------------------------------------------------%
code_util__count_recursive_calls(Goal - _, PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_2(Goal, PredId, ProcId, Min, Max).
:- pred code_util__count_recursive_calls_2(hlds__goal_expr, pred_id, proc_id,
int, int).
:- mode code_util__count_recursive_calls_2(in, in, in, out, out) is det.
code_util__count_recursive_calls_2(not(Goal), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(some(_, Goal), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(unify(_, _, _, _, _), _, _, 0, 0).
code_util__count_recursive_calls_2(higher_order_call(_,_, _, _, _), _, _, 0, 0).
code_util__count_recursive_calls_2(pragma_c_code(_,_,_,_, _, _, _), _, _, 0, 0).
code_util__count_recursive_calls_2(call(CallPredId, CallProcId, _, _, _, _),
PredId, ProcId, Count, Count) :-
(
PredId = CallPredId,
ProcId = CallProcId
->
Count = 1
;
Count = 0
).
code_util__count_recursive_calls_2(conj(Goals), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_conj(Goals, PredId, ProcId, 0, 0,
Min, Max).
code_util__count_recursive_calls_2(disj(Goals, _), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_disj(Goals, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(switch(_, _, Cases, _), PredId, ProcId,
Min, Max) :-
code_util__count_recursive_calls_cases(Cases, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(if_then_else(_, Cond, Then, Else, _),
PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls(Cond, PredId, ProcId, CMin, CMax),
code_util__count_recursive_calls(Then, PredId, ProcId, TMin, TMax),
code_util__count_recursive_calls(Else, PredId, ProcId, EMin, EMax),
CTMin is CMin + TMin,
CTMax is CMax + TMax,
int__min(CTMin, EMin, Min),
int__max(CTMax, EMax, Max).
:- pred code_util__count_recursive_calls_conj(list(hlds__goal),
pred_id, proc_id, int, int, int, int).
:- mode code_util__count_recursive_calls_conj(in, in, in, in, in, out, out)
is det.
code_util__count_recursive_calls_conj([], _, _, Min, Max, Min, Max).
code_util__count_recursive_calls_conj([Goal | Goals], PredId, ProcId,
Min0, Max0, Min, Max) :-
code_util__count_recursive_calls(Goal, PredId, ProcId, Min1, Max1),
Min2 is Min0 + Min1,
Max2 is Max0 + Max1,
code_util__count_recursive_calls_conj(Goals, PredId, ProcId,
Min2, Max2, Min, Max).
:- pred code_util__count_recursive_calls_disj(list(hlds__goal),
pred_id, proc_id, int, int).
:- mode code_util__count_recursive_calls_disj(in, in, in, out, out) is det.
code_util__count_recursive_calls_disj([], _, _, _, _) :-
error("empty disj in code_util__count_recursive_calls_disj").
code_util__count_recursive_calls_disj([Goal | Goals], PredId, ProcId,
Min, Max) :-
( Goals = [] ->
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min, Max)
;
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min0, Max0),
code_util__count_recursive_calls_disj(Goals, PredId, ProcId,
Min1, Max1),
int__min(Min0, Min1, Min),
int__max(Max0, Max1, Max)
).
:- pred code_util__count_recursive_calls_cases(list(case),
pred_id, proc_id, int, int).
:- mode code_util__count_recursive_calls_cases(in, in, in, out, out) is det.
code_util__count_recursive_calls_cases([], _, _, _, _) :-
error("empty cases in code_util__count_recursive_calls_cases").
code_util__count_recursive_calls_cases([case(_, Goal) | Cases], PredId, ProcId,
Min, Max) :-
( Cases = [] ->
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min, Max)
;
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min0, Max0),
code_util__count_recursive_calls_cases(Cases, PredId, ProcId,
Min1, Max1),
int__min(Min0, Min1, Min),
int__max(Max0, Max1, Max)
).