mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-14 05:12:33 +00:00
858 lines
33 KiB
Mathematica
858 lines
33 KiB
Mathematica
%---------------------------------------------------------------------------%
|
|
% Copyright (C) 1994-1997 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%---------------------------------------------------------------------------%
|
|
%---------------------------------------------------------------------------%
|
|
%
|
|
% file: code_util.m.
|
|
%
|
|
% various utilities routines for code generation and recognition
|
|
% of builtins.
|
|
%
|
|
%---------------------------------------------------------------------------%
|
|
%---------------------------------------------------------------------------%
|
|
|
|
:- module code_util.
|
|
|
|
:- interface.
|
|
|
|
:- import_module hlds_module, hlds_pred, hlds_goal, hlds_data, llds.
|
|
:- import_module list.
|
|
|
|
% Create a code address which holds the address of the specified
|
|
% procedure.
|
|
% The fourth argument should be `no' if the the caller wants the
|
|
% returned address to be valid from everywhere in the program.
|
|
% If being valid from within the current procedure is enough,
|
|
% this argument should be `yes' wrapped around the value of the
|
|
% --procs-per-c-function option and the current procedure id.
|
|
% Using an address that is only valid from within the current
|
|
% procedure may make jumps more efficient.
|
|
|
|
:- pred code_util__make_entry_label(module_info, pred_id, proc_id,
|
|
maybe(pair(int, pred_proc_id)), code_addr).
|
|
:- mode code_util__make_entry_label(in, in, in, in, out) is det.
|
|
|
|
% Create a label which holds the address of the specified procedure,
|
|
% which must be defined in the current module (procedures that are
|
|
% imported from other modules have representations only as code_addrs,
|
|
% not as labels, since their address is not known at C compilation
|
|
% time).
|
|
% The fourth argument has the same meaning as for
|
|
% code_util__make_entry_label.
|
|
|
|
:- pred code_util__make_local_entry_label(module_info, pred_id, proc_id,
|
|
maybe(pair(int, pred_proc_id)), label).
|
|
:- mode code_util__make_local_entry_label(in, in, in, in, out) is det.
|
|
|
|
% Create a label internal to a Mercury procedure.
|
|
:- pred code_util__make_internal_label(module_info, pred_id, proc_id, int,
|
|
label).
|
|
:- mode code_util__make_internal_label(in, in, in, in, out) is det.
|
|
|
|
:- pred code_util__make_proc_label(module_info, pred_id, proc_id, proc_label).
|
|
:- mode code_util__make_proc_label(in, in, in, out) is det.
|
|
|
|
:- pred code_util__make_uni_label(module_info, type_id, proc_id, proc_label).
|
|
:- mode code_util__make_uni_label(in, in, in, out) is det.
|
|
|
|
:- pred code_util__arg_loc_to_register(arg_loc, lval).
|
|
:- mode code_util__arg_loc_to_register(in, out) is det.
|
|
|
|
% Determine whether a goal might allocate some heap space,
|
|
% i.e. whether it contains any construction unifications
|
|
% or predicate calls. BEWARE that this predicate is only
|
|
% an approximation, used to decide whether or not to try to
|
|
% reclaim the heap space; currently it fails even for some
|
|
% goals which do allocate heap space, such as construction
|
|
% of boxed constants.
|
|
|
|
:- pred code_util__goal_may_allocate_heap(hlds_goal).
|
|
:- mode code_util__goal_may_allocate_heap(in) is semidet.
|
|
|
|
:- pred code_util__goal_list_may_allocate_heap(list(hlds_goal)).
|
|
:- mode code_util__goal_list_may_allocate_heap(in) is semidet.
|
|
|
|
% Negate a condition.
|
|
% This is used mostly just to make the generated code more readable.
|
|
|
|
:- pred code_util__neg_rval(rval, rval).
|
|
:- mode code_util__neg_rval(in, out) is det.
|
|
|
|
:- pred code_util__negate_the_test(list(instruction), list(instruction)).
|
|
:- mode code_util__negate_the_test(in, out) is det.
|
|
|
|
:- pred code_util__compiler_generated(pred_info).
|
|
:- mode code_util__compiler_generated(in) is semidet.
|
|
|
|
:- pred code_util__predinfo_is_builtin(pred_info).
|
|
:- mode code_util__predinfo_is_builtin(in) is semidet.
|
|
|
|
:- pred code_util__builtin_state(module_info, pred_id, proc_id, builtin_state).
|
|
:- mode code_util__builtin_state(in, in, in, out) is det.
|
|
|
|
% Given a module name, a predicate name, a proc_id and a list of
|
|
% variables as the arguments, find out if that procedure of that
|
|
% predicate is an inline builtin. If yes, the last two arguments
|
|
% return two things:
|
|
%
|
|
% - an rval to execute as a test if the builtin is semidet; and
|
|
%
|
|
% - an rval to assign to a variable if the builtin calls for this.
|
|
%
|
|
% At least one of these will be present.
|
|
%
|
|
% Each test rval returned is guaranteed to be either a unop or a binop,
|
|
% applied to arguments that are either variables (from the argument
|
|
% list) or constants.
|
|
%
|
|
% Each to be assigned rval is guaranteed to be either in a form
|
|
% acceptable for a test rval, or in the form of a variable.
|
|
|
|
:- pred code_util__translate_builtin(string, string, proc_id, list(var),
|
|
maybe(rval), maybe(pair(var, rval))).
|
|
:- mode code_util__translate_builtin(in, in, in, in, out, out) is semidet.
|
|
|
|
% Find out how a function symbol (constructor) is represented
|
|
% in the given type.
|
|
|
|
:- pred code_util__cons_id_to_tag(cons_id, type, module_info, cons_tag).
|
|
:- mode code_util__cons_id_to_tag(in, in, in, out) is det.
|
|
|
|
% Succeed if the given goal cannot encounter a context
|
|
% that causes any variable to be flushed to its stack slot.
|
|
% If such a goal needs a resume point, and that resume point cannot
|
|
% be backtracked to once control leaves the goal, then the only entry
|
|
% point we need for the resume point is the one with the resume
|
|
% variables in their original locations.
|
|
|
|
:- pred code_util__cannot_stack_flush(hlds_goal).
|
|
:- mode code_util__cannot_stack_flush(in) is semidet.
|
|
|
|
% Succeed if the given goal cannot fail before encountering a context
|
|
% that forces all variables to be flushed to their stack slots.
|
|
% If such a goal needs a resume point, the only entry point we need
|
|
% is the stack entry point.
|
|
|
|
:- pred code_util__cannot_fail_before_stack_flush(hlds_goal).
|
|
:- mode code_util__cannot_fail_before_stack_flush(in) is semidet.
|
|
|
|
% code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max)
|
|
% Given that we are in predicate PredId and procedure ProcId,
|
|
% return the minimum and maximum number of recursive calls that
|
|
% an execution of Goal may encounter.
|
|
|
|
:- pred code_util__count_recursive_calls(hlds_goal, pred_id, proc_id,
|
|
int, int).
|
|
:- mode code_util__count_recursive_calls(in, in, in, out, out) is det.
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
:- import_module prog_data, type_util, special_pred.
|
|
:- import_module bool, char, int, string, map, term, varset, require, std_util.
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
code_util__make_entry_label(ModuleInfo, PredId, ProcId, Immed, PredAddress) :-
|
|
module_info_preds(ModuleInfo, Preds),
|
|
map__lookup(Preds, PredId, PredInfo),
|
|
(
|
|
(
|
|
pred_info_is_imported(PredInfo)
|
|
;
|
|
pred_info_is_pseudo_imported(PredInfo),
|
|
% only the (in, in) mode of unification is imported
|
|
hlds_pred__in_in_unification_proc_id(ProcId)
|
|
)
|
|
->
|
|
code_util__make_proc_label(ModuleInfo, PredId, ProcId,
|
|
ProcLabel),
|
|
PredAddress = imported(ProcLabel)
|
|
;
|
|
code_util__make_local_entry_label(ModuleInfo, PredId, ProcId,
|
|
Immed, Label),
|
|
PredAddress = label(Label)
|
|
).
|
|
|
|
code_util__make_local_entry_label(ModuleInfo, PredId, ProcId, Immed, Label) :-
|
|
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel),
|
|
module_info_preds(ModuleInfo, Preds),
|
|
map__lookup(Preds, PredId, PredInfo),
|
|
(
|
|
(
|
|
pred_info_is_exported(PredInfo)
|
|
;
|
|
pred_info_is_pseudo_exported(PredInfo),
|
|
% only the (in, in) mode of a unification is exported
|
|
hlds_pred__in_in_unification_proc_id(ProcId)
|
|
)
|
|
->
|
|
(
|
|
Immed = no,
|
|
Label = exported(ProcLabel)
|
|
;
|
|
Immed = yes(ProcsPerFunc - proc(CurPredId, CurProcId)),
|
|
choose_local_label_type(ProcsPerFunc, CurPredId,
|
|
CurProcId, PredId, ProcId, ProcLabel, Label)
|
|
)
|
|
;
|
|
(
|
|
% If we want to define the label or use it to put it
|
|
% into a data structure, a label that is usable only
|
|
% within the current C module won't do.
|
|
Immed = no,
|
|
Label = local(ProcLabel)
|
|
;
|
|
Immed = yes(ProcsPerFunc - proc(CurPredId, CurProcId)),
|
|
choose_local_label_type(ProcsPerFunc, CurPredId,
|
|
CurProcId, PredId, ProcId, ProcLabel, Label)
|
|
)
|
|
).
|
|
|
|
|
|
:- pred choose_local_label_type(int, pred_id, proc_id,
|
|
pred_id, proc_id, proc_label, label).
|
|
:- mode choose_local_label_type(in, in, in, in, in, in, out) is det.
|
|
|
|
choose_local_label_type(ProcsPerFunc, CurPredId, CurProcId,
|
|
PredId, ProcId, ProcLabel, Label) :-
|
|
(
|
|
% If we want to branch to the label now,
|
|
% we prefer a form that are usable only within
|
|
% the current C module, since it is likely
|
|
% to be faster.
|
|
(
|
|
ProcsPerFunc = 0
|
|
;
|
|
PredId = CurPredId,
|
|
ProcId = CurProcId
|
|
)
|
|
->
|
|
Label = c_local(ProcLabel)
|
|
;
|
|
Label = local(ProcLabel)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
code_util__make_internal_label(ModuleInfo, PredId, ProcId, LabelNum, Label) :-
|
|
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel),
|
|
Label = local(ProcLabel, LabelNum).
|
|
|
|
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel) :-
|
|
module_info_pred_info(ModuleInfo, PredId, PredInfo),
|
|
pred_info_module(PredInfo, PredModule),
|
|
pred_info_name(PredInfo, PredName),
|
|
module_info_name(ModuleInfo, ThisModule),
|
|
(
|
|
code_util__compiler_generated(PredInfo)
|
|
->
|
|
pred_info_arg_types(PredInfo, _TypeVarSet, ArgTypes),
|
|
(
|
|
special_pred_get_type(PredName, ArgTypes, Type),
|
|
type_to_type_id(Type, TypeId, _),
|
|
% All type_ids here should be module qualified,
|
|
% since builtin types are handled separately in
|
|
% polymorphism.m.
|
|
TypeId = qualified(TypeModule, TypeName) - Arity
|
|
->
|
|
(
|
|
ThisModule \= TypeModule,
|
|
PredName = "__Unify__",
|
|
\+ hlds_pred__in_in_unification_proc_id(ProcId)
|
|
->
|
|
DefiningModule = ThisModule
|
|
;
|
|
DefiningModule = TypeModule
|
|
),
|
|
ProcLabel = special_proc(DefiningModule, PredName,
|
|
TypeModule, TypeName, Arity, ProcId)
|
|
;
|
|
string__append_list(["code_util__make_proc_label:\n",
|
|
"cannot make label for special pred `",
|
|
PredName, "'"], ErrorMessage),
|
|
error(ErrorMessage)
|
|
)
|
|
;
|
|
(
|
|
% Work out which module supplies the code for
|
|
% the predicate.
|
|
ThisModule \= PredModule,
|
|
\+ pred_info_is_imported(PredInfo)
|
|
->
|
|
% This predicate is a specialized version of
|
|
% a pred from a `.opt' file.
|
|
DefiningModule = ThisModule
|
|
;
|
|
DefiningModule = PredModule
|
|
),
|
|
pred_info_get_is_pred_or_func(PredInfo, PredOrFunc),
|
|
pred_info_arity(PredInfo, Arity),
|
|
ProcLabel = proc(DefiningModule, PredOrFunc,
|
|
PredModule, PredName, Arity, ProcId)
|
|
).
|
|
|
|
code_util__make_uni_label(ModuleInfo, TypeId, UniModeNum, ProcLabel) :-
|
|
module_info_name(ModuleInfo, ModuleName),
|
|
( TypeId = qualified(TypeModule, TypeName) - Arity ->
|
|
( hlds_pred__in_in_unification_proc_id(UniModeNum) ->
|
|
Module = TypeModule
|
|
;
|
|
Module = ModuleName
|
|
),
|
|
ProcLabel = special_proc(Module, "__Unify__", TypeModule,
|
|
TypeName, Arity, UniModeNum)
|
|
;
|
|
error("code_util__make_uni_label: unqualified type_id")
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
code_util__arg_loc_to_register(ArgLoc, reg(r, ArgLoc)).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
code_util__predinfo_is_builtin(PredInfo) :-
|
|
pred_info_module(PredInfo, ModuleName),
|
|
pred_info_name(PredInfo, PredName),
|
|
% code_util__translate_builtin(ModuleName, PredName, _, _, _, _).
|
|
pred_info_arity(PredInfo, Arity),
|
|
( code_util__inline_builtin(ModuleName, PredName, 0, Arity)
|
|
; code_util__inline_builtin(ModuleName, PredName, 10000, Arity)
|
|
).
|
|
|
|
code_util__builtin_state(ModuleInfo, PredId0, ProcId, BuiltinState) :-
|
|
predicate_module(ModuleInfo, PredId0, ModuleName),
|
|
predicate_name(ModuleInfo, PredId0, PredName),
|
|
predicate_arity(ModuleInfo, PredId0, Arity),
|
|
proc_id_to_int(ProcId, ProcInt),
|
|
( code_util__inline_builtin(ModuleName, PredName, ProcInt, Arity) ->
|
|
BuiltinState = inline_builtin
|
|
;
|
|
BuiltinState = not_builtin
|
|
).
|
|
|
|
:- pred code_util__inline_builtin(string, string, int, int).
|
|
:- mode code_util__inline_builtin(in, in, in, in) is semidet.
|
|
|
|
code_util__inline_builtin(ModuleName, PredName, ProcId, Arity) :-
|
|
Arity =< 3,
|
|
varset__init(VarSet),
|
|
varset__new_vars(VarSet, Arity, Args, _),
|
|
code_util__translate_builtin_2(ModuleName, PredName, ProcId, Args, _, _).
|
|
|
|
code_util__translate_builtin(Module, PredName, ProcId, Args, BinOp, AsgOp) :-
|
|
proc_id_to_int(ProcId, ProcInt),
|
|
code_util__translate_builtin_2(Module, PredName, ProcInt, Args,
|
|
BinOp, AsgOp).
|
|
|
|
:- pred code_util__translate_builtin_2(string, string, int, list(var),
|
|
maybe(rval), maybe(pair(var, rval))).
|
|
:- mode code_util__translate_builtin_2(in, in, in, in, out, out) is semidet.
|
|
|
|
code_util__translate_builtin_2("mercury_builtin", "builtin_int_gt", 0, [X, Y],
|
|
yes(binop((>), var(X), var(Y))), no).
|
|
code_util__translate_builtin_2("mercury_builtin", "builtin_int_lt", 0, [X, Y],
|
|
yes(binop((<), var(X), var(Y))), no).
|
|
|
|
code_util__translate_builtin_2("int", "builtin_plus", 10000, [X, Y, Z],
|
|
no, yes(Z - binop((+), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "builtin_plus", 10001, [X, Y, Z],
|
|
no, yes(X - binop((-), var(Z), var(Y)))).
|
|
code_util__translate_builtin_2("int", "builtin_plus", 10002, [X, Y, Z],
|
|
no, yes(Y - binop((-), var(Z), var(X)))).
|
|
code_util__translate_builtin_2("int", "+", 10000, [X, Y, Z],
|
|
no, yes(Z - binop((+), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "+", 10001, [X, Y, Z],
|
|
no, yes(X - binop((-), var(Z), var(Y)))).
|
|
code_util__translate_builtin_2("int", "+", 10002, [X, Y, Z],
|
|
no, yes(Y - binop((-), var(Z), var(X)))).
|
|
code_util__translate_builtin_2("int", "builtin_minus", 10000, [X, Y, Z],
|
|
no, yes(Z - binop((-), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "builtin_minus", 10001, [X, Y, Z],
|
|
no, yes(X - binop((+), var(Y), var(Z)))).
|
|
code_util__translate_builtin_2("int", "builtin_minus", 10002, [X, Y, Z],
|
|
no, yes(Y - binop((-), var(X), var(Z)))).
|
|
code_util__translate_builtin_2("int", "-", 10000, [X, Y, Z],
|
|
no, yes(Z - binop((-), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "-", 10001, [X, Y, Z],
|
|
no, yes(X - binop((+), var(Y), var(Z)))).
|
|
code_util__translate_builtin_2("int", "-", 10002, [X, Y, Z],
|
|
no, yes(Y - binop((-), var(X), var(Z)))).
|
|
code_util__translate_builtin_2("int", "builtin_times", 10000, [X, Y, Z],
|
|
no, yes(Z - binop((*), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "builtin_times", 10001, [X, Y, Z],
|
|
no, yes(X - binop((/), var(Z), var(Y)))).
|
|
code_util__translate_builtin_2("int", "builtin_times", 10002, [X, Y, Z],
|
|
no, yes(Y - binop((/), var(Z), var(X)))).
|
|
code_util__translate_builtin_2("int", "*", 10000, [X, Y, Z],
|
|
no, yes(Z - binop((*), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "*", 10001, [X, Y, Z],
|
|
no, yes(X - binop((/), var(Z), var(Y)))).
|
|
code_util__translate_builtin_2("int", "*", 10002, [X, Y, Z],
|
|
no, yes(Y - binop((/), var(Z), var(X)))).
|
|
code_util__translate_builtin_2("int", "builtin_div", 10000, [X, Y, Z],
|
|
no, yes(Z - binop((/), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "builtin_div", 10001, [X, Y, Z],
|
|
no, yes(X - binop((*), var(Y), var(Z)))).
|
|
code_util__translate_builtin_2("int", "builtin_div", 10002, [X, Y, Z],
|
|
no, yes(Y - binop((/), var(X), var(Z)))).
|
|
code_util__translate_builtin_2("int", "//", 10000, [X, Y, Z],
|
|
no, yes(Z - binop((/), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "//", 10001, [X, Y, Z],
|
|
no, yes(X - binop((*), var(Y), var(Z)))).
|
|
code_util__translate_builtin_2("int", "//", 10002, [X, Y, Z],
|
|
no, yes(Y - binop((/), var(X), var(Z)))).
|
|
code_util__translate_builtin_2("int", "builtin_mod", 10000, [X, Y, Z],
|
|
no, yes(Z - binop((mod), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "rem", 10000, [X, Y, Z],
|
|
no, yes(Z - binop((mod), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "builtin_left_shift", 10000, [X, Y, Z],
|
|
no, yes(Z - binop((<<), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "<<", 10000, [X, Y, Z],
|
|
no, yes(Z - binop((<<), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "builtin_right_shift", 10000, [X, Y, Z],
|
|
no, yes(Z - binop((>>), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", ">>", 10000, [X, Y, Z],
|
|
no, yes(Z - binop((>>), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "builtin_bit_and", 10000, [X, Y, Z],
|
|
no, yes(Z - binop((&), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "/\\", 10000, [X, Y, Z],
|
|
no, yes(Z - binop((&), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "builtin_bit_or", 10000, [X, Y, Z],
|
|
no, yes(Z - binop(('|'), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "\\/", 10000, [X, Y, Z],
|
|
no, yes(Z - binop(('|'), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "builtin_bit_xor", 10000, [X, Y, Z],
|
|
no, yes(Z - binop((^), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "^", 10000, [X, Y, Z],
|
|
no, yes(Z - binop((^), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "builtin_unary_plus", 10000, [X, Y],
|
|
no, yes(Y - var(X))).
|
|
code_util__translate_builtin_2("int", "+", 10000, [X, Y],
|
|
no, yes(Y - var(X))).
|
|
code_util__translate_builtin_2("int", "builtin_unary_minus", 10000, [X, Y],
|
|
no, yes(Y - binop((-), const(int_const(0)), var(X)))).
|
|
code_util__translate_builtin_2("int", "-", 10000, [X, Y],
|
|
no, yes(Y - binop((-), const(int_const(0)), var(X)))).
|
|
code_util__translate_builtin_2("int", "builtin_bit_neg", 10000, [X, Y],
|
|
no, yes(Y - unop(bitwise_complement, var(X)))).
|
|
code_util__translate_builtin_2("int", "\\", 10000, [X, Y],
|
|
no, yes(Y - unop(bitwise_complement, var(X)))).
|
|
code_util__translate_builtin_2("int", ">", 0, [X, Y],
|
|
yes(binop((>), var(X), var(Y))), no).
|
|
code_util__translate_builtin_2("int", "<", 0, [X, Y],
|
|
yes(binop((<), var(X), var(Y))), no).
|
|
code_util__translate_builtin_2("int", ">=", 0, [X, Y],
|
|
yes(binop((>=), var(X), var(Y))), no).
|
|
code_util__translate_builtin_2("int", "=<", 0, [X, Y],
|
|
yes(binop((<=), var(X), var(Y))), no).
|
|
|
|
code_util__translate_builtin_2("float", "builtin_float_plus", 10000, [X, Y, Z],
|
|
no, yes(Z - binop(float_plus, var(X), var(Y)))).
|
|
code_util__translate_builtin_2("float", "builtin_float_plus", 10001, [X, Y, Z],
|
|
no, yes(X - binop(float_minus, var(Z), var(Y)))).
|
|
code_util__translate_builtin_2("float", "builtin_float_plus", 10002, [X, Y, Z],
|
|
no, yes(Y - binop(float_minus, var(Z), var(X)))).
|
|
code_util__translate_builtin_2("float", "+", 10000, [X, Y, Z],
|
|
no, yes(Z - binop(float_plus, var(X), var(Y)))).
|
|
code_util__translate_builtin_2("float", "+", 10001, [X, Y, Z],
|
|
no, yes(X - binop(float_minus, var(Z), var(Y)))).
|
|
code_util__translate_builtin_2("float", "+", 10002, [X, Y, Z],
|
|
no, yes(Y - binop(float_minus, var(Z), var(X)))).
|
|
code_util__translate_builtin_2("float", "builtin_float_minus", 10000, [X, Y, Z],
|
|
no, yes(Z - binop(float_minus, var(X), var(Y)))).
|
|
code_util__translate_builtin_2("float", "builtin_float_minus", 10001, [X, Y, Z],
|
|
no, yes(X - binop(float_plus, var(Y), var(Z)))).
|
|
code_util__translate_builtin_2("float", "builtin_float_minus", 10002, [X, Y, Z],
|
|
no, yes(Y - binop(float_minus, var(X), var(Z)))).
|
|
code_util__translate_builtin_2("float", "-", 10000, [X, Y, Z],
|
|
no, yes(Z - binop(float_minus, var(X), var(Y)))).
|
|
code_util__translate_builtin_2("float", "-", 10001, [X, Y, Z],
|
|
no, yes(X - binop(float_plus, var(Y), var(Z)))).
|
|
code_util__translate_builtin_2("float", "-", 10002, [X, Y, Z],
|
|
no, yes(Y - binop(float_minus, var(X), var(Z)))).
|
|
code_util__translate_builtin_2("float", "builtin_float_times", 10000, [X, Y, Z],
|
|
no, yes(Z - binop(float_times, var(X), var(Y)))).
|
|
code_util__translate_builtin_2("float", "builtin_float_times", 10001, [X, Y, Z],
|
|
no, yes(X - binop(float_divide, var(Z), var(Y)))).
|
|
code_util__translate_builtin_2("float", "builtin_float_times", 10002, [X, Y, Z],
|
|
no, yes(Y - binop(float_divide, var(Z), var(X)))).
|
|
code_util__translate_builtin_2("float", "*", 10000, [X, Y, Z],
|
|
no, yes(Z - binop(float_times, var(X), var(Y)))).
|
|
code_util__translate_builtin_2("float", "*", 10001, [X, Y, Z],
|
|
no, yes(X - binop(float_divide, var(Z), var(Y)))).
|
|
code_util__translate_builtin_2("float", "*", 10002, [X, Y, Z],
|
|
no, yes(Y - binop(float_divide, var(Z), var(X)))).
|
|
code_util__translate_builtin_2("float", "builtin_float_divide", 10000, [X, Y, Z],
|
|
no, yes(Z - binop(float_divide, var(X), var(Y)))).
|
|
code_util__translate_builtin_2("float", "builtin_float_divide", 10001, [X, Y, Z],
|
|
no, yes(X - binop(float_times, var(Y), var(Z)))).
|
|
code_util__translate_builtin_2("float", "builtin_float_divide", 10002, [X, Y, Z],
|
|
no, yes(Y - binop(float_divide, var(X), var(Z)))).
|
|
code_util__translate_builtin_2("float", "/", 10000, [X, Y, Z],
|
|
no, yes(Z - binop(float_divide, var(X), var(Y)))).
|
|
code_util__translate_builtin_2("float", "/", 10001, [X, Y, Z],
|
|
no, yes(X - binop(float_times, var(Y), var(Z)))).
|
|
code_util__translate_builtin_2("float", "/", 10002, [X, Y, Z],
|
|
no, yes(Y - binop(float_divide, var(X), var(Z)))).
|
|
code_util__translate_builtin_2("float", "+", 10000, [X, Y],
|
|
no, yes(Y - var(X))).
|
|
code_util__translate_builtin_2("float", "-", 10000, [X, Y],
|
|
no, yes(Y - binop(float_minus, const(float_const(0.0)), var(X)))).
|
|
code_util__translate_builtin_2("float", "builtin_float_gt", 0, [X, Y],
|
|
yes(binop(float_gt, var(X), var(Y))), no).
|
|
code_util__translate_builtin_2("float", ">", 0, [X, Y],
|
|
yes(binop(float_gt, var(X), var(Y))), no).
|
|
code_util__translate_builtin_2("float", "builtin_float_lt", 0, [X, Y],
|
|
yes(binop(float_lt, var(X), var(Y))), no).
|
|
code_util__translate_builtin_2("float", "<", 0, [X, Y],
|
|
yes(binop(float_lt, var(X), var(Y))), no).
|
|
code_util__translate_builtin_2("float", "builtin_float_ge", 0, [X, Y],
|
|
yes(binop(float_ge, var(X), var(Y))), no).
|
|
code_util__translate_builtin_2("float", ">=", 0, [X, Y],
|
|
yes(binop(float_ge, var(X), var(Y))), no).
|
|
code_util__translate_builtin_2("float", "builtin_float_le", 0, [X, Y],
|
|
yes(binop(float_le, var(X), var(Y))), no).
|
|
code_util__translate_builtin_2("float", "=<", 0, [X, Y],
|
|
yes(binop(float_le, var(X), var(Y))), no).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% code_util__compiler_generated(PredInfo) should succeed iff
|
|
% the PredInfo is for a compiler generated predicate.
|
|
|
|
code_util__compiler_generated(PredInfo) :-
|
|
pred_info_name(PredInfo, PredName),
|
|
pred_info_arity(PredInfo, PredArity),
|
|
( PredName = "__Unify__", PredArity = 2
|
|
; PredName = "__Compare__", PredArity = 3
|
|
; PredName = "__Index__", PredArity = 2
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% This code may _look_ nondeterministic, but it's really semidet,
|
|
% and Mercury is smart enough to know this.
|
|
|
|
code_util__goal_may_allocate_heap(Goal - _GoalInfo) :-
|
|
code_util__goal_may_allocate_heap_2(Goal).
|
|
|
|
:- pred code_util__goal_may_allocate_heap_2(hlds_goal_expr).
|
|
:- mode code_util__goal_may_allocate_heap_2(in) is semidet.
|
|
|
|
code_util__goal_may_allocate_heap_2(higher_order_call(_, _, _, _, _)).
|
|
code_util__goal_may_allocate_heap_2(call(_, _, _, Builtin, _, _)) :-
|
|
Builtin \= inline_builtin.
|
|
code_util__goal_may_allocate_heap_2(unify(_, _, _, construct(_,_,Args,_), _)) :-
|
|
Args = [_|_].
|
|
code_util__goal_may_allocate_heap_2(some(_Vars, Goal)) :-
|
|
code_util__goal_may_allocate_heap(Goal).
|
|
code_util__goal_may_allocate_heap_2(not(Goal)) :-
|
|
code_util__goal_may_allocate_heap(Goal).
|
|
code_util__goal_may_allocate_heap_2(conj(Goals)) :-
|
|
code_util__goal_list_may_allocate_heap(Goals).
|
|
code_util__goal_may_allocate_heap_2(disj(Goals, _)) :-
|
|
code_util__goal_list_may_allocate_heap(Goals).
|
|
code_util__goal_may_allocate_heap_2(switch(_Var, _Det, Cases, _)) :-
|
|
code_util__cases_may_allocate_heap(Cases).
|
|
code_util__goal_may_allocate_heap_2(if_then_else(_Vars, A, B, C, _)) :-
|
|
(
|
|
code_util__goal_may_allocate_heap(A)
|
|
;
|
|
code_util__goal_may_allocate_heap(B)
|
|
;
|
|
code_util__goal_may_allocate_heap(C)
|
|
).
|
|
|
|
:- pred code_util__cases_may_allocate_heap(list(case)).
|
|
:- mode code_util__cases_may_allocate_heap(in) is semidet.
|
|
|
|
code_util__cases_may_allocate_heap([case(_, Goal) | _]) :-
|
|
code_util__goal_may_allocate_heap(Goal).
|
|
code_util__cases_may_allocate_heap([_ | Cases]) :-
|
|
code_util__cases_may_allocate_heap(Cases).
|
|
|
|
code_util__goal_list_may_allocate_heap([Goal | _]) :-
|
|
code_util__goal_may_allocate_heap(Goal).
|
|
code_util__goal_list_may_allocate_heap([_ | Goals]) :-
|
|
code_util__goal_list_may_allocate_heap(Goals).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Negate a condition.
|
|
% This is used mostly just to make the generated code more readable.
|
|
|
|
code_util__neg_rval(Rval, NegRval) :-
|
|
( code_util__neg_rval_2(Rval, NegRval0) ->
|
|
NegRval = NegRval0
|
|
;
|
|
NegRval = unop(not, Rval)
|
|
).
|
|
|
|
:- pred code_util__neg_rval_2(rval, rval).
|
|
:- mode code_util__neg_rval_2(in, out) is semidet.
|
|
|
|
code_util__neg_rval_2(const(Const), const(NegConst)) :-
|
|
(
|
|
Const = true, NegConst = false
|
|
;
|
|
Const = false, NegConst = true
|
|
).
|
|
code_util__neg_rval_2(unop(not, Rval), Rval).
|
|
code_util__neg_rval_2(binop(Op, X, Y), binop(NegOp, X, Y)) :-
|
|
code_util__neg_op(Op, NegOp).
|
|
|
|
:- pred code_util__neg_op(binary_op, binary_op).
|
|
:- mode code_util__neg_op(in, out) is semidet.
|
|
|
|
code_util__neg_op(eq, ne).
|
|
code_util__neg_op(ne, eq).
|
|
code_util__neg_op(<, >=).
|
|
code_util__neg_op(<=, >).
|
|
code_util__neg_op(>, <=).
|
|
code_util__neg_op(>=, <).
|
|
code_util__neg_op(str_eq, str_ne).
|
|
code_util__neg_op(str_ne, str_eq).
|
|
code_util__neg_op(str_lt, str_ge).
|
|
code_util__neg_op(str_le, str_gt).
|
|
code_util__neg_op(str_gt, str_le).
|
|
code_util__neg_op(str_ge, str_lt).
|
|
code_util__neg_op(float_eq, float_ne).
|
|
code_util__neg_op(float_ne, float_eq).
|
|
code_util__neg_op(float_lt, float_ge).
|
|
code_util__neg_op(float_le, float_gt).
|
|
code_util__neg_op(float_gt, float_le).
|
|
code_util__neg_op(float_ge, float_lt).
|
|
|
|
code_util__negate_the_test([], _) :-
|
|
error("code_util__negate_the_test on empty list").
|
|
code_util__negate_the_test([Instr0 | Instrs0], Instrs) :-
|
|
( Instr0 = if_val(Test, Target) - Comment ->
|
|
code_util__neg_rval(Test, NewTest),
|
|
Instrs = [if_val(NewTest, Target) - Comment]
|
|
;
|
|
code_util__negate_the_test(Instrs0, Instrs1),
|
|
Instrs = [Instr0 | Instrs1]
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
code_util__cons_id_to_tag(int_const(X), _, _, int_constant(X)).
|
|
code_util__cons_id_to_tag(float_const(X), _, _, float_constant(X)).
|
|
code_util__cons_id_to_tag(string_const(X), _, _, string_constant(X)).
|
|
code_util__cons_id_to_tag(code_addr_const(P,M), _, _, code_addr_constant(P,M)).
|
|
code_util__cons_id_to_tag(pred_const(P,M), _, _, pred_closure_tag(P,M)).
|
|
code_util__cons_id_to_tag(base_type_info_const(M,T,A), _, _,
|
|
base_type_info_constant(M,T,A)).
|
|
code_util__cons_id_to_tag(cons(Name, Arity), Type, ModuleInfo, Tag) :-
|
|
(
|
|
% handle the `character' type specially
|
|
Type = term__functor(term__atom("character"), [], _),
|
|
Name = unqualified(ConsName),
|
|
string__char_to_string(Char, ConsName)
|
|
->
|
|
char__to_int(Char, CharCode),
|
|
Tag = int_constant(CharCode)
|
|
;
|
|
% Use the type to determine the type_id
|
|
( type_to_type_id(Type, TypeId0, _) ->
|
|
TypeId = TypeId0
|
|
;
|
|
% the type-checker should ensure that this never happens
|
|
error("code_util__cons_id_to_tag: invalid type")
|
|
),
|
|
|
|
% Given the type_id, lookup up the constructor tag
|
|
% table for that type
|
|
module_info_types(ModuleInfo, TypeTable),
|
|
map__lookup(TypeTable, TypeId, TypeDefn),
|
|
hlds_data__get_type_defn_body(TypeDefn, TypeBody),
|
|
(
|
|
TypeBody = du_type(_, ConsTable0, _)
|
|
->
|
|
ConsTable = ConsTable0
|
|
;
|
|
% this should never happen
|
|
error(
|
|
"code_util__cons_id_to_tag: type is not d.u. type?"
|
|
)
|
|
),
|
|
% Finally look up the cons_id in the table
|
|
map__lookup(ConsTable, cons(Name, Arity), Tag)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
code_util__cannot_stack_flush(GoalExpr - _) :-
|
|
code_util__cannot_stack_flush_2(GoalExpr).
|
|
|
|
:- pred code_util__cannot_stack_flush_2(hlds_goal_expr).
|
|
:- mode code_util__cannot_stack_flush_2(in) is semidet.
|
|
|
|
code_util__cannot_stack_flush_2(unify(_, _, _, Unify, _)) :-
|
|
Unify \= complicated_unify(_, _).
|
|
code_util__cannot_stack_flush_2(call(_, _, _, BuiltinState, _, _)) :-
|
|
BuiltinState = inline_builtin.
|
|
code_util__cannot_stack_flush_2(conj(Goals)) :-
|
|
code_util__cannot_stack_flush_goals(Goals).
|
|
code_util__cannot_stack_flush_2(switch(_, _, Cases, _)) :-
|
|
code_util__cannot_stack_flush_cases(Cases).
|
|
|
|
:- pred code_util__cannot_stack_flush_goals(list(hlds_goal)).
|
|
:- mode code_util__cannot_stack_flush_goals(in) is semidet.
|
|
|
|
code_util__cannot_stack_flush_goals([]).
|
|
code_util__cannot_stack_flush_goals([Goal | Goals]) :-
|
|
code_util__cannot_stack_flush(Goal),
|
|
code_util__cannot_stack_flush_goals(Goals).
|
|
|
|
:- pred code_util__cannot_stack_flush_cases(list(case)).
|
|
:- mode code_util__cannot_stack_flush_cases(in) is semidet.
|
|
|
|
code_util__cannot_stack_flush_cases([]).
|
|
code_util__cannot_stack_flush_cases([case(_, Goal) | Cases]) :-
|
|
code_util__cannot_stack_flush(Goal),
|
|
code_util__cannot_stack_flush_cases(Cases).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
code_util__cannot_fail_before_stack_flush(GoalExpr - GoalInfo) :-
|
|
goal_info_get_determinism(GoalInfo, Detism),
|
|
determinism_components(Detism, CanFail, _),
|
|
( CanFail = cannot_fail ->
|
|
true
|
|
;
|
|
code_util__cannot_fail_before_stack_flush_2(GoalExpr)
|
|
).
|
|
|
|
:- pred code_util__cannot_fail_before_stack_flush_2(hlds_goal_expr).
|
|
:- mode code_util__cannot_fail_before_stack_flush_2(in) is semidet.
|
|
|
|
code_util__cannot_fail_before_stack_flush_2(conj(Goals)) :-
|
|
code_util__cannot_fail_before_stack_flush_conj(Goals).
|
|
|
|
:- pred code_util__cannot_fail_before_stack_flush_conj(list(hlds_goal)).
|
|
:- mode code_util__cannot_fail_before_stack_flush_conj(in) is semidet.
|
|
|
|
code_util__cannot_fail_before_stack_flush_conj([]).
|
|
code_util__cannot_fail_before_stack_flush_conj([Goal | Goals]) :-
|
|
Goal = GoalExpr - GoalInfo,
|
|
(
|
|
(
|
|
GoalExpr = call(_, _, _, BuiltinState, _, _),
|
|
BuiltinState \= inline_builtin
|
|
;
|
|
GoalExpr = higher_order_call(_, _, _, _, _)
|
|
)
|
|
->
|
|
true
|
|
;
|
|
goal_info_get_determinism(GoalInfo, Detism),
|
|
determinism_components(Detism, cannot_fail, _)
|
|
->
|
|
code_util__cannot_fail_before_stack_flush_conj(Goals)
|
|
;
|
|
fail
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
code_util__count_recursive_calls(Goal - _, PredId, ProcId, Min, Max) :-
|
|
code_util__count_recursive_calls_2(Goal, PredId, ProcId, Min, Max).
|
|
|
|
:- pred code_util__count_recursive_calls_2(hlds_goal_expr, pred_id, proc_id,
|
|
int, int).
|
|
:- mode code_util__count_recursive_calls_2(in, in, in, out, out) is det.
|
|
|
|
code_util__count_recursive_calls_2(not(Goal), PredId, ProcId, Min, Max) :-
|
|
code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max).
|
|
code_util__count_recursive_calls_2(some(_, Goal), PredId, ProcId, Min, Max) :-
|
|
code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max).
|
|
code_util__count_recursive_calls_2(unify(_, _, _, _, _), _, _, 0, 0).
|
|
code_util__count_recursive_calls_2(higher_order_call(_,_, _, _, _), _, _, 0, 0).
|
|
code_util__count_recursive_calls_2(pragma_c_code(_,_,_,_, _, _, _, _), _, _,
|
|
0, 0).
|
|
code_util__count_recursive_calls_2(call(CallPredId, CallProcId, _, _, _, _),
|
|
PredId, ProcId, Count, Count) :-
|
|
(
|
|
PredId = CallPredId,
|
|
ProcId = CallProcId
|
|
->
|
|
Count = 1
|
|
;
|
|
Count = 0
|
|
).
|
|
code_util__count_recursive_calls_2(conj(Goals), PredId, ProcId, Min, Max) :-
|
|
code_util__count_recursive_calls_conj(Goals, PredId, ProcId, 0, 0,
|
|
Min, Max).
|
|
code_util__count_recursive_calls_2(disj(Goals, _), PredId, ProcId, Min, Max) :-
|
|
code_util__count_recursive_calls_disj(Goals, PredId, ProcId, Min, Max).
|
|
code_util__count_recursive_calls_2(switch(_, _, Cases, _), PredId, ProcId,
|
|
Min, Max) :-
|
|
code_util__count_recursive_calls_cases(Cases, PredId, ProcId, Min, Max).
|
|
code_util__count_recursive_calls_2(if_then_else(_, Cond, Then, Else, _),
|
|
PredId, ProcId, Min, Max) :-
|
|
code_util__count_recursive_calls(Cond, PredId, ProcId, CMin, CMax),
|
|
code_util__count_recursive_calls(Then, PredId, ProcId, TMin, TMax),
|
|
code_util__count_recursive_calls(Else, PredId, ProcId, EMin, EMax),
|
|
CTMin is CMin + TMin,
|
|
CTMax is CMax + TMax,
|
|
int__min(CTMin, EMin, Min),
|
|
int__max(CTMax, EMax, Max).
|
|
|
|
:- pred code_util__count_recursive_calls_conj(list(hlds_goal),
|
|
pred_id, proc_id, int, int, int, int).
|
|
:- mode code_util__count_recursive_calls_conj(in, in, in, in, in, out, out)
|
|
is det.
|
|
|
|
code_util__count_recursive_calls_conj([], _, _, Min, Max, Min, Max).
|
|
code_util__count_recursive_calls_conj([Goal | Goals], PredId, ProcId,
|
|
Min0, Max0, Min, Max) :-
|
|
code_util__count_recursive_calls(Goal, PredId, ProcId, Min1, Max1),
|
|
Min2 is Min0 + Min1,
|
|
Max2 is Max0 + Max1,
|
|
code_util__count_recursive_calls_conj(Goals, PredId, ProcId,
|
|
Min2, Max2, Min, Max).
|
|
|
|
:- pred code_util__count_recursive_calls_disj(list(hlds_goal),
|
|
pred_id, proc_id, int, int).
|
|
:- mode code_util__count_recursive_calls_disj(in, in, in, out, out) is det.
|
|
|
|
code_util__count_recursive_calls_disj([], _, _, 0, 0).
|
|
code_util__count_recursive_calls_disj([Goal | Goals], PredId, ProcId,
|
|
Min, Max) :-
|
|
( Goals = [] ->
|
|
code_util__count_recursive_calls(Goal, PredId, ProcId,
|
|
Min, Max)
|
|
;
|
|
code_util__count_recursive_calls(Goal, PredId, ProcId,
|
|
Min0, Max0),
|
|
code_util__count_recursive_calls_disj(Goals, PredId, ProcId,
|
|
Min1, Max1),
|
|
int__min(Min0, Min1, Min),
|
|
int__max(Max0, Max1, Max)
|
|
).
|
|
|
|
:- pred code_util__count_recursive_calls_cases(list(case),
|
|
pred_id, proc_id, int, int).
|
|
:- mode code_util__count_recursive_calls_cases(in, in, in, out, out) is det.
|
|
|
|
code_util__count_recursive_calls_cases([], _, _, _, _) :-
|
|
error("empty cases in code_util__count_recursive_calls_cases").
|
|
code_util__count_recursive_calls_cases([case(_, Goal) | Cases], PredId, ProcId,
|
|
Min, Max) :-
|
|
( Cases = [] ->
|
|
code_util__count_recursive_calls(Goal, PredId, ProcId,
|
|
Min, Max)
|
|
;
|
|
code_util__count_recursive_calls(Goal, PredId, ProcId,
|
|
Min0, Max0),
|
|
code_util__count_recursive_calls_cases(Cases, PredId, ProcId,
|
|
Min1, Max1),
|
|
int__min(Min0, Min1, Min),
|
|
int__max(Max0, Max1, Max)
|
|
).
|