Files
mercury/compiler/code_util.m
Fergus Henderson c202e2c7fc Restructure the RTTI implementation to eliminate dependencies on the LLDS,
Estimated hours taken: 7

Restructure the RTTI implementation to eliminate dependencies on the LLDS,
so that it can be used for the MLDS back-end as well as the LLDS back-end.
(Note that I have not yet modified the MLDS back-end to actually make
use of it; that will be a separate change.)

compiler/rtti.m:
	Eliminate the dependency on LLDS, by replacing code_addr with a new
	type `rtti_proc_label'.  Add a procedure `rtti__make_proc_label' for
	constructing these.

compiler/type_ctor_info.m:
	Eliminate the dependency on LLDS, by calling rtti__make_proc_label
	rather than code_util__make_entry_label.

compiler/ml_code_util.m:
	Add a new procedure `ml_gen_pred_label_from_rtti',
	for (eventual) use by ml_base_type_info.m.
	Restructure the implementation of ml_gen_pred_label so that it
	works by first calling rtti__make_proc_label and then calling
	ml_gen_pred_label_from_rtti.

compiler/code_util.m:
	Add new procedure `make_entry_label_from_rtti', for use by rtti_out.m.
	Restructure the implementation of the predicates make_entry_label,
	make_local_entry_label, and make_proc_label so that they work by first
	calling rtti__make_proc_label.  Change make_user_proc_label to take
	a boolean rather than an import_status.
	Also update the documentation for code_util__compiler_generated,
	adding an XXX comment saying that the name is misleading.

compiler/rtti_out.m:
	Call code_util__make_entry_label_from_rtti to
	convert the rtti_proc_labels in the RTTI into code_addrs.

compiler/rl.m:
	Update to reflect the changed interface to
	code_util__make_user_proc_label.
2000-04-17 10:32:10 +00:00

824 lines
29 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1994-2000 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
%
% file: code_util.m.
%
% various utilities routines for code generation and recognition
% of builtins.
%
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- module code_util.
:- interface.
:- import_module prog_data, hlds_module, hlds_pred, hlds_goal, hlds_data.
:- import_module rtti, llds.
:- import_module bool, list, assoc_list, set, std_util.
% Create a code address which holds the address of the specified
% procedure.
% The `immed' argument should be `no' if the the caller wants the
% returned address to be valid from everywhere in the program.
% If being valid from within the current procedure is enough,
% this argument should be `yes' wrapped around the value of the
% --procs-per-c-function option and the current procedure id.
% Using an address that is only valid from within the current
% procedure may make jumps more efficient.
:- type immed == maybe(pair(int, pred_proc_id)).
:- pred code_util__make_entry_label(module_info, pred_id, proc_id,
immed, code_addr).
:- mode code_util__make_entry_label(in, in, in, in, out) is det.
:- pred code_util__make_entry_label_from_rtti(rtti_proc_label, immed,
code_addr).
:- mode code_util__make_entry_label_from_rtti(in, in, out) is det.
% Create a label which holds the address of the specified procedure,
% which must be defined in the current module (procedures that are
% imported from other modules have representations only as code_addrs,
% not as labels, since their address is not known at C compilation
% time).
% The fourth argument has the same meaning as for
% code_util__make_entry_label.
:- pred code_util__make_local_entry_label(module_info, pred_id, proc_id,
immed, label).
:- mode code_util__make_local_entry_label(in, in, in, in, out) is det.
% Create a label internal to a Mercury procedure.
:- pred code_util__make_internal_label(module_info, pred_id, proc_id, int,
label).
:- mode code_util__make_internal_label(in, in, in, in, out) is det.
:- pred code_util__make_proc_label(module_info, pred_id, proc_id, proc_label).
:- mode code_util__make_proc_label(in, in, in, out) is det.
% code_util__make_user_proc_label(ModuleName, PredIsImported,
% PredOrFunc, ModuleName, PredName, Arity, ProcId, Label):
% Make a proc_label for a user-defined procedure.
%
% The PredIsImported argument should be the result of
% calling pred_info_is_imported.
:- pred code_util__make_user_proc_label(module_name, bool,
pred_or_func, module_name, string, arity, proc_id, proc_label).
:- mode code_util__make_user_proc_label(in, in,
in, in, in, in, in, out) is det.
:- pred code_util__make_uni_label(module_info, type_id, proc_id, proc_label).
:- mode code_util__make_uni_label(in, in, in, out) is det.
:- pred code_util__extract_proc_label_from_code_addr(code_addr, proc_label).
:- mode code_util__extract_proc_label_from_code_addr(in, out) is det.
:- pred code_util__extract_proc_label_from_label(label, proc_label).
:- mode code_util__extract_proc_label_from_label(in, out) is det.
:- pred code_util__arg_loc_to_register(arg_loc, lval).
:- mode code_util__arg_loc_to_register(in, out) is det.
% Determine whether a goal might allocate some heap space,
% i.e. whether it contains any construction unifications
% or predicate calls. BEWARE that this predicate is only
% an approximation, used to decide whether or not to try to
% reclaim the heap space; currently it fails even for some
% goals which do allocate heap space, such as construction
% of boxed constants.
:- pred code_util__goal_may_allocate_heap(hlds_goal).
:- mode code_util__goal_may_allocate_heap(in) is semidet.
:- pred code_util__goal_list_may_allocate_heap(list(hlds_goal)).
:- mode code_util__goal_list_may_allocate_heap(in) is semidet.
% Negate a condition.
% This is used mostly just to make the generated code more readable.
:- pred code_util__neg_rval(rval, rval).
:- mode code_util__neg_rval(in, out) is det.
:- pred code_util__negate_the_test(list(instruction), list(instruction)).
:- mode code_util__negate_the_test(in, out) is det.
% code_util__compiler_generated(PredInfo) succeeds iff
% the PredInfo is for a compiler generated instance of a
% type-specific special_pred (i.e. one of the __Unify__,
% __Index__, or __Compare__ predicates generated as a
% type-specific instance of unify/2, index/2, or compare/3).
%
% XXX The name of this predicate is misleading, because there
% are other kinds of compiler-generated predicates, e.g. those
% for lambda expressions, those generated by higher-order
% specialization, ordinary type specialization, deforestation,
% etc., for which this predicate does not succeed.
:- pred code_util__compiler_generated(pred_info).
:- mode code_util__compiler_generated(in) is semidet.
:- pred code_util__predinfo_is_builtin(pred_info).
:- mode code_util__predinfo_is_builtin(in) is semidet.
:- pred code_util__builtin_state(module_info, pred_id, proc_id, builtin_state).
:- mode code_util__builtin_state(in, in, in, out) is det.
% Find out how a function symbol (constructor) is represented
% in the given type.
:- pred code_util__cons_id_to_tag(cons_id, type, module_info, cons_tag).
:- mode code_util__cons_id_to_tag(in, in, in, out) is det.
% Succeed if the given goal cannot encounter a context
% that causes any variable to be flushed to its stack slot.
% If such a goal needs a resume point, and that resume point cannot
% be backtracked to once control leaves the goal, then the only entry
% point we need for the resume point is the one with the resume
% variables in their original locations.
:- pred code_util__cannot_stack_flush(hlds_goal).
:- mode code_util__cannot_stack_flush(in) is semidet.
% Succeed if the given goal cannot fail before encountering a context
% that forces all variables to be flushed to their stack slots.
% If such a goal needs a resume point, the only entry point we need
% is the stack entry point.
:- pred code_util__cannot_fail_before_stack_flush(hlds_goal).
:- mode code_util__cannot_fail_before_stack_flush(in) is semidet.
% code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max)
% Given that we are in predicate PredId and procedure ProcId,
% return the minimum and maximum number of recursive calls that
% an execution of Goal may encounter.
:- pred code_util__count_recursive_calls(hlds_goal, pred_id, proc_id,
int, int).
:- mode code_util__count_recursive_calls(in, in, in, out, out) is det.
% Return the set of locations occupied by output arguments.
:- pred code_util__output_args(assoc_list(prog_var, arg_info), set(lval)).
:- mode code_util__output_args(in, out) is det.
% These predicates return the set of lvals referenced in an rval
% and an lval respectively. Lvals referenced indirectly through
% lvals of the form var(_) are not counted.
:- pred code_util__lvals_in_rval(rval, list(lval)).
:- mode code_util__lvals_in_rval(in, out) is det.
:- pred code_util__lvals_in_lval(lval, list(lval)).
:- mode code_util__lvals_in_lval(in, out) is det.
%---------------------------------------------------------------------------%
:- implementation.
:- import_module builtin_ops, type_util, special_pred.
:- import_module char, int, string, set, map, term, varset.
:- import_module require, std_util, assoc_list.
%---------------------------------------------------------------------------%
code_util__make_entry_label(ModuleInfo, PredId, ProcId, Immed, ProcAddr) :-
RttiProcLabel = rtti__make_proc_label(ModuleInfo, PredId, ProcId),
code_util__make_entry_label_from_rtti(RttiProcLabel, Immed, ProcAddr).
code_util__make_entry_label_from_rtti(RttiProcLabel, Immed, ProcAddr) :-
(
(
RttiProcLabel^is_imported = yes
;
RttiProcLabel^is_pseudo_imported = yes,
% only the (in, in) mode of unification is imported
hlds_pred__in_in_unification_proc_id(
RttiProcLabel^proc_id)
)
->
code_util__make_proc_label_from_rtti(RttiProcLabel, ProcLabel),
ProcAddr = imported(ProcLabel)
;
code_util__make_local_entry_label_from_rtti(RttiProcLabel,
Immed, Label),
ProcAddr = label(Label)
).
code_util__make_local_entry_label(ModuleInfo, PredId, ProcId, Immed, Label) :-
RttiProcLabel = rtti__make_proc_label(ModuleInfo, PredId, ProcId),
code_util__make_local_entry_label_from_rtti(RttiProcLabel,
Immed, Label).
:- pred code_util__make_local_entry_label_from_rtti(rtti_proc_label, immed,
label).
:- mode code_util__make_local_entry_label_from_rtti(in, in, out) is det.
code_util__make_local_entry_label_from_rtti(RttiProcLabel, Immed, Label) :-
code_util__make_proc_label_from_rtti(RttiProcLabel, ProcLabel),
(
Immed = no,
% If we want to define the label or use it to put it
% into a data structure, a label that is usable only
% within the current C module won't do.
( RttiProcLabel^is_exported = yes ->
Label = exported(ProcLabel)
;
Label = local(ProcLabel)
)
;
Immed = yes(ProcsPerFunc - proc(CurPredId, CurProcId)),
choose_local_label_type(ProcsPerFunc, CurPredId, CurProcId,
RttiProcLabel^pred_id, RttiProcLabel^proc_id,
ProcLabel, Label)
).
:- pred choose_local_label_type(int, pred_id, proc_id,
pred_id, proc_id, proc_label, label).
:- mode choose_local_label_type(in, in, in, in, in, in, out) is det.
choose_local_label_type(ProcsPerFunc, CurPredId, CurProcId,
PredId, ProcId, ProcLabel, Label) :-
(
% If we want to branch to the label now,
% we prefer a form that are usable only within
% the current C module, since it is likely
% to be faster.
(
ProcsPerFunc = 0
;
PredId = CurPredId,
ProcId = CurProcId
)
->
Label = c_local(ProcLabel)
;
Label = local(ProcLabel)
).
%-----------------------------------------------------------------------------%
code_util__make_internal_label(ModuleInfo, PredId, ProcId, LabelNum, Label) :-
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel),
Label = local(ProcLabel, LabelNum).
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel) :-
RttiProcLabel = rtti__make_proc_label(ModuleInfo, PredId, ProcId),
code_util__make_proc_label_from_rtti(RttiProcLabel, ProcLabel).
:- pred code_util__make_proc_label_from_rtti(rtti_proc_label, proc_label).
:- mode code_util__make_proc_label_from_rtti(in, out) is det.
code_util__make_proc_label_from_rtti(RttiProcLabel, ProcLabel) :-
RttiProcLabel = rtti_proc_label(PredOrFunc, ThisModule,
PredModule, PredName, PredArity, ArgTypes, _PredId, ProcId,
IsImported, _IsPseudoImported, _IsExported,
IsSpecialPredInstance),
(
IsSpecialPredInstance = yes
->
(
special_pred_get_type(PredName, ArgTypes, Type),
type_to_type_id(Type, TypeId, _),
% All type_ids here should be module qualified,
% since builtin types are handled separately in
% polymorphism.m.
TypeId = qualified(TypeModule, TypeName) - TypeArity
->
(
ThisModule \= TypeModule,
PredName = "__Unify__",
\+ hlds_pred__in_in_unification_proc_id(ProcId)
->
DefiningModule = ThisModule
;
DefiningModule = TypeModule
),
ProcLabel = special_proc(DefiningModule, PredName,
TypeModule, TypeName, TypeArity, ProcId)
;
string__append_list(["code_util__make_proc_label:\n",
"cannot make label for special pred `",
PredName, "'"], ErrorMessage),
error(ErrorMessage)
)
;
code_util__make_user_proc_label(ThisModule, IsImported,
PredOrFunc, PredModule, PredName, PredArity,
ProcId, ProcLabel)
).
code_util__make_user_proc_label(ThisModule, PredIsImported,
PredOrFunc, PredModule, PredName, PredArity,
ProcId, ProcLabel) :-
(
% Work out which module supplies the code for
% the predicate.
ThisModule \= PredModule,
PredIsImported = no
->
% This predicate is a specialized version of
% a pred from a `.opt' file.
DefiningModule = ThisModule
;
DefiningModule = PredModule
),
ProcLabel = proc(DefiningModule, PredOrFunc,
PredModule, PredName, PredArity, ProcId).
code_util__make_uni_label(ModuleInfo, TypeId, UniModeNum, ProcLabel) :-
module_info_name(ModuleInfo, ModuleName),
( TypeId = qualified(TypeModule, TypeName) - Arity ->
( hlds_pred__in_in_unification_proc_id(UniModeNum) ->
Module = TypeModule
;
Module = ModuleName
),
ProcLabel = special_proc(Module, "__Unify__", TypeModule,
TypeName, Arity, UniModeNum)
;
error("code_util__make_uni_label: unqualified type_id")
).
code_util__extract_proc_label_from_code_addr(CodeAddr, ProcLabel) :-
( code_util__proc_label_from_code_addr(CodeAddr, ProcLabelPrime) ->
ProcLabel = ProcLabelPrime
;
error("code_util__extract_label_from_code_addr failed")
).
:- pred code_util__proc_label_from_code_addr(code_addr::in,
proc_label::out) is semidet.
code_util__proc_label_from_code_addr(CodeAddr, ProcLabel) :-
(
CodeAddr = label(Label),
code_util__extract_proc_label_from_label(Label, ProcLabel)
;
CodeAddr = imported(ProcLabel)
).
code_util__extract_proc_label_from_label(local(ProcLabel, _), ProcLabel).
code_util__extract_proc_label_from_label(c_local(ProcLabel), ProcLabel).
code_util__extract_proc_label_from_label(local(ProcLabel), ProcLabel).
code_util__extract_proc_label_from_label(exported(ProcLabel), ProcLabel).
%-----------------------------------------------------------------------------%
code_util__arg_loc_to_register(ArgLoc, reg(r, ArgLoc)).
%-----------------------------------------------------------------------------%
code_util__predinfo_is_builtin(PredInfo) :-
pred_info_module(PredInfo, ModuleName),
pred_info_name(PredInfo, PredName),
pred_info_arity(PredInfo, Arity),
hlds_pred__initial_proc_id(ProcId),
code_util__is_inline_builtin(ModuleName, PredName, ProcId, Arity).
code_util__builtin_state(ModuleInfo, PredId, ProcId, BuiltinState) :-
module_info_pred_info(ModuleInfo, PredId, PredInfo),
pred_info_module(PredInfo, ModuleName),
pred_info_name(PredInfo, PredName),
pred_info_arity(PredInfo, Arity),
( code_util__is_inline_builtin(ModuleName, PredName, ProcId, Arity) ->
BuiltinState = inline_builtin
;
BuiltinState = not_builtin
).
:- pred code_util__is_inline_builtin(module_name, string, proc_id, arity).
:- mode code_util__is_inline_builtin(in, in, in, in) is semidet.
code_util__is_inline_builtin(ModuleName, PredName, ProcId, Arity) :-
Arity =< 3,
prog_varset_init(VarSet),
varset__new_vars(VarSet, Arity, Args, _),
builtin_ops__translate_builtin(ModuleName, PredName, ProcId, Args, _).
:- pred prog_varset_init(prog_varset::out) is det.
prog_varset_init(VarSet) :- varset__init(VarSet).
%-----------------------------------------------------------------------------%
% XXX The name of this predicate is misleading -- see the comment
% in the declaration.
code_util__compiler_generated(PredInfo) :-
pred_info_name(PredInfo, PredName),
pred_info_arity(PredInfo, PredArity),
special_pred_name_arity(_, _, PredName, PredArity).
%-----------------------------------------------------------------------------%
% This code may _look_ nondeterministic, but it's really semidet,
% and Mercury is smart enough to know this.
code_util__goal_may_allocate_heap(Goal - _GoalInfo) :-
code_util__goal_may_allocate_heap_2(Goal).
:- pred code_util__goal_may_allocate_heap_2(hlds_goal_expr).
:- mode code_util__goal_may_allocate_heap_2(in) is semidet.
code_util__goal_may_allocate_heap_2(generic_call(_, _, _, _)).
code_util__goal_may_allocate_heap_2(call(_, _, _, Builtin, _, _)) :-
Builtin \= inline_builtin.
code_util__goal_may_allocate_heap_2(
unify(_, _, _, construct(_,_,Args,_,_,_,_), _)) :-
Args = [_|_].
code_util__goal_may_allocate_heap_2(some(_Vars, _, Goal)) :-
code_util__goal_may_allocate_heap(Goal).
code_util__goal_may_allocate_heap_2(not(Goal)) :-
code_util__goal_may_allocate_heap(Goal).
code_util__goal_may_allocate_heap_2(conj(Goals)) :-
code_util__goal_list_may_allocate_heap(Goals).
code_util__goal_may_allocate_heap_2(disj(Goals, _)) :-
code_util__goal_list_may_allocate_heap(Goals).
code_util__goal_may_allocate_heap_2(switch(_Var, _Det, Cases, _)) :-
code_util__cases_may_allocate_heap(Cases).
code_util__goal_may_allocate_heap_2(if_then_else(_Vars, A, B, C, _)) :-
(
code_util__goal_may_allocate_heap(A)
;
code_util__goal_may_allocate_heap(B)
;
code_util__goal_may_allocate_heap(C)
).
:- pred code_util__cases_may_allocate_heap(list(case)).
:- mode code_util__cases_may_allocate_heap(in) is semidet.
code_util__cases_may_allocate_heap([case(_, Goal) | _]) :-
code_util__goal_may_allocate_heap(Goal).
code_util__cases_may_allocate_heap([_ | Cases]) :-
code_util__cases_may_allocate_heap(Cases).
code_util__goal_list_may_allocate_heap([Goal | _]) :-
code_util__goal_may_allocate_heap(Goal).
code_util__goal_list_may_allocate_heap([_ | Goals]) :-
code_util__goal_list_may_allocate_heap(Goals).
%-----------------------------------------------------------------------------%
% Negate a condition.
% This is used mostly just to make the generated code more readable.
code_util__neg_rval(Rval, NegRval) :-
( code_util__neg_rval_2(Rval, NegRval0) ->
NegRval = NegRval0
;
NegRval = unop(not, Rval)
).
:- pred code_util__neg_rval_2(rval, rval).
:- mode code_util__neg_rval_2(in, out) is semidet.
code_util__neg_rval_2(const(Const), const(NegConst)) :-
(
Const = true, NegConst = false
;
Const = false, NegConst = true
).
code_util__neg_rval_2(unop(not, Rval), Rval).
code_util__neg_rval_2(binop(Op, X, Y), binop(NegOp, X, Y)) :-
code_util__neg_op(Op, NegOp).
:- pred code_util__neg_op(binary_op, binary_op).
:- mode code_util__neg_op(in, out) is semidet.
code_util__neg_op(eq, ne).
code_util__neg_op(ne, eq).
code_util__neg_op(<, >=).
code_util__neg_op(<=, >).
code_util__neg_op(>, <=).
code_util__neg_op(>=, <).
code_util__neg_op(str_eq, str_ne).
code_util__neg_op(str_ne, str_eq).
code_util__neg_op(str_lt, str_ge).
code_util__neg_op(str_le, str_gt).
code_util__neg_op(str_gt, str_le).
code_util__neg_op(str_ge, str_lt).
code_util__neg_op(float_eq, float_ne).
code_util__neg_op(float_ne, float_eq).
code_util__neg_op(float_lt, float_ge).
code_util__neg_op(float_le, float_gt).
code_util__neg_op(float_gt, float_le).
code_util__neg_op(float_ge, float_lt).
code_util__negate_the_test([], _) :-
error("code_util__negate_the_test on empty list").
code_util__negate_the_test([Instr0 | Instrs0], Instrs) :-
( Instr0 = if_val(Test, Target) - Comment ->
code_util__neg_rval(Test, NewTest),
Instrs = [if_val(NewTest, Target) - Comment]
;
code_util__negate_the_test(Instrs0, Instrs1),
Instrs = [Instr0 | Instrs1]
).
%-----------------------------------------------------------------------------%
code_util__cons_id_to_tag(int_const(X), _, _, int_constant(X)).
code_util__cons_id_to_tag(float_const(X), _, _, float_constant(X)).
code_util__cons_id_to_tag(string_const(X), _, _, string_constant(X)).
code_util__cons_id_to_tag(code_addr_const(P,M), _, _, code_addr_constant(P,M)).
code_util__cons_id_to_tag(pred_const(P,M,E), _, _, pred_closure_tag(P,M,E)).
code_util__cons_id_to_tag(type_ctor_info_const(M,T,A), _, _,
type_ctor_info_constant(M,T,A)).
code_util__cons_id_to_tag(base_typeclass_info_const(M,C,_,N), _, _,
base_typeclass_info_constant(M,C,N)).
code_util__cons_id_to_tag(tabling_pointer_const(PredId,ProcId), _, _,
tabling_pointer_constant(PredId,ProcId)).
code_util__cons_id_to_tag(cons(Name, Arity), Type, ModuleInfo, Tag) :-
(
% handle the `character' type specially
Type = term__functor(term__atom("character"), [], _),
Name = unqualified(ConsName),
string__char_to_string(Char, ConsName)
->
char__to_int(Char, CharCode),
Tag = int_constant(CharCode)
;
% Use the type to determine the type_id
( type_to_type_id(Type, TypeId0, _) ->
TypeId = TypeId0
;
% the type-checker should ensure that this never happens
error("code_util__cons_id_to_tag: invalid type")
),
% Given the type_id, lookup up the constructor tag
% table for that type
module_info_types(ModuleInfo, TypeTable),
map__lookup(TypeTable, TypeId, TypeDefn),
hlds_data__get_type_defn_body(TypeDefn, TypeBody),
(
TypeBody = du_type(_, ConsTable0, _, _)
->
ConsTable = ConsTable0
;
% this should never happen
error(
"code_util__cons_id_to_tag: type is not d.u. type?"
)
),
% Finally look up the cons_id in the table
map__lookup(ConsTable, cons(Name, Arity), Tag)
).
%-----------------------------------------------------------------------------%
code_util__cannot_stack_flush(GoalExpr - _) :-
code_util__cannot_stack_flush_2(GoalExpr).
:- pred code_util__cannot_stack_flush_2(hlds_goal_expr).
:- mode code_util__cannot_stack_flush_2(in) is semidet.
code_util__cannot_stack_flush_2(unify(_, _, _, Unify, _)) :-
Unify \= complicated_unify(_, _, _).
code_util__cannot_stack_flush_2(call(_, _, _, BuiltinState, _, _)) :-
BuiltinState = inline_builtin.
code_util__cannot_stack_flush_2(conj(Goals)) :-
code_util__cannot_stack_flush_goals(Goals).
code_util__cannot_stack_flush_2(switch(_, _, Cases, _)) :-
code_util__cannot_stack_flush_cases(Cases).
:- pred code_util__cannot_stack_flush_goals(list(hlds_goal)).
:- mode code_util__cannot_stack_flush_goals(in) is semidet.
code_util__cannot_stack_flush_goals([]).
code_util__cannot_stack_flush_goals([Goal | Goals]) :-
code_util__cannot_stack_flush(Goal),
code_util__cannot_stack_flush_goals(Goals).
:- pred code_util__cannot_stack_flush_cases(list(case)).
:- mode code_util__cannot_stack_flush_cases(in) is semidet.
code_util__cannot_stack_flush_cases([]).
code_util__cannot_stack_flush_cases([case(_, Goal) | Cases]) :-
code_util__cannot_stack_flush(Goal),
code_util__cannot_stack_flush_cases(Cases).
%-----------------------------------------------------------------------------%
code_util__cannot_fail_before_stack_flush(GoalExpr - GoalInfo) :-
goal_info_get_determinism(GoalInfo, Detism),
determinism_components(Detism, CanFail, _),
( CanFail = cannot_fail ->
true
;
code_util__cannot_fail_before_stack_flush_2(GoalExpr)
).
:- pred code_util__cannot_fail_before_stack_flush_2(hlds_goal_expr).
:- mode code_util__cannot_fail_before_stack_flush_2(in) is semidet.
code_util__cannot_fail_before_stack_flush_2(conj(Goals)) :-
code_util__cannot_fail_before_stack_flush_conj(Goals).
:- pred code_util__cannot_fail_before_stack_flush_conj(list(hlds_goal)).
:- mode code_util__cannot_fail_before_stack_flush_conj(in) is semidet.
code_util__cannot_fail_before_stack_flush_conj([]).
code_util__cannot_fail_before_stack_flush_conj([Goal | Goals]) :-
Goal = GoalExpr - GoalInfo,
(
(
GoalExpr = call(_, _, _, BuiltinState, _, _),
BuiltinState \= inline_builtin
;
GoalExpr = generic_call(_, _, _, _)
)
->
true
;
goal_info_get_determinism(GoalInfo, Detism),
determinism_components(Detism, cannot_fail, _)
->
code_util__cannot_fail_before_stack_flush_conj(Goals)
;
fail
).
%-----------------------------------------------------------------------------%
code_util__count_recursive_calls(Goal - _, PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_2(Goal, PredId, ProcId, Min, Max).
:- pred code_util__count_recursive_calls_2(hlds_goal_expr, pred_id, proc_id,
int, int).
:- mode code_util__count_recursive_calls_2(in, in, in, out, out) is det.
code_util__count_recursive_calls_2(not(Goal), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(some(_, _, Goal),
PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(unify(_, _, _, _, _), _, _, 0, 0).
code_util__count_recursive_calls_2(generic_call(_, _, _, _), _, _,
0, 0).
code_util__count_recursive_calls_2(pragma_c_code(_,_,_, _, _, _, _), _, _,
0, 0).
code_util__count_recursive_calls_2(call(CallPredId, CallProcId, _, _, _, _),
PredId, ProcId, Count, Count) :-
(
PredId = CallPredId,
ProcId = CallProcId
->
Count = 1
;
Count = 0
).
code_util__count_recursive_calls_2(conj(Goals), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_conj(Goals, PredId, ProcId, 0, 0,
Min, Max).
code_util__count_recursive_calls_2(par_conj(Goals, _), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_conj(Goals, PredId, ProcId, 0, 0, Min, Max).
code_util__count_recursive_calls_2(disj(Goals, _), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_disj(Goals, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(switch(_, _, Cases, _), PredId, ProcId,
Min, Max) :-
code_util__count_recursive_calls_cases(Cases, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(if_then_else(_, Cond, Then, Else, _),
PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls(Cond, PredId, ProcId, CMin, CMax),
code_util__count_recursive_calls(Then, PredId, ProcId, TMin, TMax),
code_util__count_recursive_calls(Else, PredId, ProcId, EMin, EMax),
CTMin is CMin + TMin,
CTMax is CMax + TMax,
int__min(CTMin, EMin, Min),
int__max(CTMax, EMax, Max).
code_util__count_recursive_calls_2(bi_implication(_, _),
_, _, _, _) :-
% these should have been expanded out by now
error("code_util__count_recursive_calls_2: unexpected bi_implication").
:- pred code_util__count_recursive_calls_conj(list(hlds_goal),
pred_id, proc_id, int, int, int, int).
:- mode code_util__count_recursive_calls_conj(in, in, in, in, in, out, out)
is det.
code_util__count_recursive_calls_conj([], _, _, Min, Max, Min, Max).
code_util__count_recursive_calls_conj([Goal | Goals], PredId, ProcId,
Min0, Max0, Min, Max) :-
code_util__count_recursive_calls(Goal, PredId, ProcId, Min1, Max1),
Min2 is Min0 + Min1,
Max2 is Max0 + Max1,
code_util__count_recursive_calls_conj(Goals, PredId, ProcId,
Min2, Max2, Min, Max).
:- pred code_util__count_recursive_calls_disj(list(hlds_goal),
pred_id, proc_id, int, int).
:- mode code_util__count_recursive_calls_disj(in, in, in, out, out) is det.
code_util__count_recursive_calls_disj([], _, _, 0, 0).
code_util__count_recursive_calls_disj([Goal | Goals], PredId, ProcId,
Min, Max) :-
( Goals = [] ->
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min, Max)
;
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min0, Max0),
code_util__count_recursive_calls_disj(Goals, PredId, ProcId,
Min1, Max1),
int__min(Min0, Min1, Min),
int__max(Max0, Max1, Max)
).
:- pred code_util__count_recursive_calls_cases(list(case),
pred_id, proc_id, int, int).
:- mode code_util__count_recursive_calls_cases(in, in, in, out, out) is det.
code_util__count_recursive_calls_cases([], _, _, _, _) :-
error("empty cases in code_util__count_recursive_calls_cases").
code_util__count_recursive_calls_cases([case(_, Goal) | Cases], PredId, ProcId,
Min, Max) :-
( Cases = [] ->
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min, Max)
;
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min0, Max0),
code_util__count_recursive_calls_cases(Cases, PredId, ProcId,
Min1, Max1),
int__min(Min0, Min1, Min),
int__max(Max0, Max1, Max)
).
code_util__output_args([], LiveVals) :-
set__init(LiveVals).
code_util__output_args([_V - arg_info(Loc, Mode) | Args], Vs) :-
code_util__output_args(Args, Vs0),
(
Mode = top_out
->
code_util__arg_loc_to_register(Loc, Reg),
set__insert(Vs0, Reg, Vs)
;
Vs = Vs0
).
%-----------------------------------------------------------------------------%
code_util__lvals_in_rval(lval(Lval), [Lval | Lvals]) :-
code_util__lvals_in_lval(Lval, Lvals).
code_util__lvals_in_rval(var(_), []).
code_util__lvals_in_rval(create(_, _, _, _, _, _, _), []).
code_util__lvals_in_rval(mkword(_, Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_rval(const(_), []).
code_util__lvals_in_rval(unop(_, Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_rval(binop(_, Rval1, Rval2), Lvals) :-
code_util__lvals_in_rval(Rval1, Lvals1),
code_util__lvals_in_rval(Rval2, Lvals2),
list__append(Lvals1, Lvals2, Lvals).
code_util__lvals_in_rval(mem_addr(MemRef), Lvals) :-
code_util__lvals_in_mem_ref(MemRef, Lvals).
code_util__lvals_in_lval(reg(_, _), []).
code_util__lvals_in_lval(stackvar(_), []).
code_util__lvals_in_lval(framevar(_), []).
code_util__lvals_in_lval(succip, []).
code_util__lvals_in_lval(maxfr, []).
code_util__lvals_in_lval(curfr, []).
code_util__lvals_in_lval(succip(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(redofr(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(redoip(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(succfr(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(prevfr(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(hp, []).
code_util__lvals_in_lval(sp, []).
code_util__lvals_in_lval(field(_, Rval1, Rval2), Lvals) :-
code_util__lvals_in_rval(Rval1, Lvals1),
code_util__lvals_in_rval(Rval2, Lvals2),
list__append(Lvals1, Lvals2, Lvals).
code_util__lvals_in_lval(lvar(_), []).
code_util__lvals_in_lval(temp(_, _), []).
code_util__lvals_in_lval(mem_ref(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
:- pred code_util__lvals_in_mem_ref(mem_ref, list(lval)).
:- mode code_util__lvals_in_mem_ref(in, out) is det.
code_util__lvals_in_mem_ref(stackvar_ref(_), []).
code_util__lvals_in_mem_ref(framevar_ref(_), []).
code_util__lvals_in_mem_ref(heap_ref(Rval, _, _), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
%-----------------------------------------------------------------------------%