mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-18 23:35:25 +00:00
Estimated hours taken: 20 These changes make `var' and `term' polymorphic. This allows us to make variables and terms representing types of a different type to those representing program terms and those representing insts. These changes do not *fix* any existing problems (for instance there was a messy conflation of program variables and inst variables, and where necessary I've just called varset__init(InstVarSet) with an XXX comment). NEWS: Mention the changes to the standard library. library/term.m: Make term, var and var_supply polymorphic. Add new predicates: term__generic_term/1 term__coerce/2 term__coerce_var/2 term__coerce_var_supply/2 library/varset.m: Make varset polymorphic. Add the new predicate: varset__coerce/2 compiler/prog_data.m: Introduce type equivalences for the different kinds of vars, terms, and varsets that we use (tvar and tvarset were already there but have been changed to use the polymorphic var and term). Also change the various kinds of items to use the appropriate kinds of var/varset. compiler/*.m: Thousands of boring changes to make the compiler type correct with the different types for type, program and inst vars and varsets.
953 lines
37 KiB
Mathematica
953 lines
37 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 1994-1998 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% file: code_util.m.
|
|
%
|
|
% various utilities routines for code generation and recognition
|
|
% of builtins.
|
|
%
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- module code_util.
|
|
|
|
:- interface.
|
|
|
|
:- import_module hlds_module, hlds_pred, hlds_goal, hlds_data, prog_data, llds.
|
|
:- import_module list, assoc_list, set, std_util.
|
|
|
|
% Create a code address which holds the address of the specified
|
|
% procedure.
|
|
% The fourth argument should be `no' if the the caller wants the
|
|
% returned address to be valid from everywhere in the program.
|
|
% If being valid from within the current procedure is enough,
|
|
% this argument should be `yes' wrapped around the value of the
|
|
% --procs-per-c-function option and the current procedure id.
|
|
% Using an address that is only valid from within the current
|
|
% procedure may make jumps more efficient.
|
|
|
|
:- pred code_util__make_entry_label(module_info, pred_id, proc_id,
|
|
maybe(pair(int, pred_proc_id)), code_addr).
|
|
:- mode code_util__make_entry_label(in, in, in, in, out) is det.
|
|
|
|
% Create a label which holds the address of the specified procedure,
|
|
% which must be defined in the current module (procedures that are
|
|
% imported from other modules have representations only as code_addrs,
|
|
% not as labels, since their address is not known at C compilation
|
|
% time).
|
|
% The fourth argument has the same meaning as for
|
|
% code_util__make_entry_label.
|
|
|
|
:- pred code_util__make_local_entry_label(module_info, pred_id, proc_id,
|
|
maybe(pair(int, pred_proc_id)), label).
|
|
:- mode code_util__make_local_entry_label(in, in, in, in, out) is det.
|
|
|
|
% Create a label internal to a Mercury procedure.
|
|
:- pred code_util__make_internal_label(module_info, pred_id, proc_id, int,
|
|
label).
|
|
:- mode code_util__make_internal_label(in, in, in, in, out) is det.
|
|
|
|
:- pred code_util__make_proc_label(module_info, pred_id, proc_id, proc_label).
|
|
:- mode code_util__make_proc_label(in, in, in, out) is det.
|
|
|
|
:- pred code_util__make_uni_label(module_info, type_id, proc_id, proc_label).
|
|
:- mode code_util__make_uni_label(in, in, in, out) is det.
|
|
|
|
:- pred code_util__arg_loc_to_register(arg_loc, lval).
|
|
:- mode code_util__arg_loc_to_register(in, out) is det.
|
|
|
|
% Determine whether a goal might allocate some heap space,
|
|
% i.e. whether it contains any construction unifications
|
|
% or predicate calls. BEWARE that this predicate is only
|
|
% an approximation, used to decide whether or not to try to
|
|
% reclaim the heap space; currently it fails even for some
|
|
% goals which do allocate heap space, such as construction
|
|
% of boxed constants.
|
|
|
|
:- pred code_util__goal_may_allocate_heap(hlds_goal).
|
|
:- mode code_util__goal_may_allocate_heap(in) is semidet.
|
|
|
|
:- pred code_util__goal_list_may_allocate_heap(list(hlds_goal)).
|
|
:- mode code_util__goal_list_may_allocate_heap(in) is semidet.
|
|
|
|
% Negate a condition.
|
|
% This is used mostly just to make the generated code more readable.
|
|
|
|
:- pred code_util__neg_rval(rval, rval).
|
|
:- mode code_util__neg_rval(in, out) is det.
|
|
|
|
:- pred code_util__negate_the_test(list(instruction), list(instruction)).
|
|
:- mode code_util__negate_the_test(in, out) is det.
|
|
|
|
:- pred code_util__compiler_generated(pred_info).
|
|
:- mode code_util__compiler_generated(in) is semidet.
|
|
|
|
:- pred code_util__predinfo_is_builtin(pred_info).
|
|
:- mode code_util__predinfo_is_builtin(in) is semidet.
|
|
|
|
:- pred code_util__builtin_state(module_info, pred_id, proc_id, builtin_state).
|
|
:- mode code_util__builtin_state(in, in, in, out) is det.
|
|
|
|
% Given a module name, a predicate name, a proc_id and a list of
|
|
% variables as the arguments, find out if that procedure of that
|
|
% predicate is an inline builtin. If yes, the last two arguments
|
|
% return two things:
|
|
%
|
|
% - an rval to execute as a test if the builtin is semidet; and
|
|
%
|
|
% - an rval to assign to a variable if the builtin calls for this.
|
|
%
|
|
% At least one of these will be present.
|
|
%
|
|
% Each test rval returned is guaranteed to be either a unop or a binop,
|
|
% applied to arguments that are either variables (from the argument
|
|
% list) or constants.
|
|
%
|
|
% Each to be assigned rval is guaranteed to be either in a form
|
|
% acceptable for a test rval, or in the form of a variable.
|
|
|
|
:- pred code_util__translate_builtin(module_name, string, proc_id,
|
|
list(prog_var), maybe(rval), maybe(pair(prog_var, rval))).
|
|
:- mode code_util__translate_builtin(in, in, in, in, out, out) is semidet.
|
|
|
|
% Find out how a function symbol (constructor) is represented
|
|
% in the given type.
|
|
|
|
:- pred code_util__cons_id_to_tag(cons_id, type, module_info, cons_tag).
|
|
:- mode code_util__cons_id_to_tag(in, in, in, out) is det.
|
|
|
|
% Succeed if the given goal cannot encounter a context
|
|
% that causes any variable to be flushed to its stack slot.
|
|
% If such a goal needs a resume point, and that resume point cannot
|
|
% be backtracked to once control leaves the goal, then the only entry
|
|
% point we need for the resume point is the one with the resume
|
|
% variables in their original locations.
|
|
|
|
:- pred code_util__cannot_stack_flush(hlds_goal).
|
|
:- mode code_util__cannot_stack_flush(in) is semidet.
|
|
|
|
% Succeed if the given goal cannot fail before encountering a context
|
|
% that forces all variables to be flushed to their stack slots.
|
|
% If such a goal needs a resume point, the only entry point we need
|
|
% is the stack entry point.
|
|
|
|
:- pred code_util__cannot_fail_before_stack_flush(hlds_goal).
|
|
:- mode code_util__cannot_fail_before_stack_flush(in) is semidet.
|
|
|
|
% code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max)
|
|
% Given that we are in predicate PredId and procedure ProcId,
|
|
% return the minimum and maximum number of recursive calls that
|
|
% an execution of Goal may encounter.
|
|
|
|
:- pred code_util__count_recursive_calls(hlds_goal, pred_id, proc_id,
|
|
int, int).
|
|
:- mode code_util__count_recursive_calls(in, in, in, out, out) is det.
|
|
|
|
% Return the set of locations occupied by output arguments.
|
|
|
|
:- pred code_util__output_args(assoc_list(prog_var, arg_info), set(lval)).
|
|
:- mode code_util__output_args(in, out) is det.
|
|
|
|
% These predicates return the set of lvals referenced in an rval
|
|
% and an lval respectively. Lvals referenced indirectly through
|
|
% lvals of the form var(_) are not counted.
|
|
|
|
:- pred code_util__lvals_in_rval(rval, list(lval)).
|
|
:- mode code_util__lvals_in_rval(in, out) is det.
|
|
|
|
:- pred code_util__lvals_in_lval(lval, list(lval)).
|
|
:- mode code_util__lvals_in_lval(in, out) is det.
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
:- import_module prog_data, type_util, term, varset, special_pred.
|
|
:- import_module bool, char, int, string, set, map.
|
|
:- import_module require, std_util, assoc_list.
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
code_util__make_entry_label(ModuleInfo, PredId, ProcId, Immed, PredAddress) :-
|
|
module_info_preds(ModuleInfo, Preds),
|
|
map__lookup(Preds, PredId, PredInfo),
|
|
(
|
|
(
|
|
pred_info_is_imported(PredInfo)
|
|
;
|
|
pred_info_is_pseudo_imported(PredInfo),
|
|
% only the (in, in) mode of unification is imported
|
|
hlds_pred__in_in_unification_proc_id(ProcId)
|
|
)
|
|
->
|
|
code_util__make_proc_label(ModuleInfo, PredId, ProcId,
|
|
ProcLabel),
|
|
PredAddress = imported(ProcLabel)
|
|
;
|
|
code_util__make_local_entry_label(ModuleInfo, PredId, ProcId,
|
|
Immed, Label),
|
|
PredAddress = label(Label)
|
|
).
|
|
|
|
code_util__make_local_entry_label(ModuleInfo, PredId, ProcId, Immed, Label) :-
|
|
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel),
|
|
module_info_preds(ModuleInfo, Preds),
|
|
map__lookup(Preds, PredId, PredInfo),
|
|
(
|
|
procedure_is_exported(PredInfo, ProcId)
|
|
->
|
|
(
|
|
Immed = no,
|
|
Label = exported(ProcLabel)
|
|
;
|
|
Immed = yes(ProcsPerFunc - proc(CurPredId, CurProcId)),
|
|
choose_local_label_type(ProcsPerFunc, CurPredId,
|
|
CurProcId, PredId, ProcId, ProcLabel, Label)
|
|
)
|
|
;
|
|
(
|
|
% If we want to define the label or use it to put it
|
|
% into a data structure, a label that is usable only
|
|
% within the current C module won't do.
|
|
Immed = no,
|
|
Label = local(ProcLabel)
|
|
;
|
|
Immed = yes(ProcsPerFunc - proc(CurPredId, CurProcId)),
|
|
choose_local_label_type(ProcsPerFunc, CurPredId,
|
|
CurProcId, PredId, ProcId, ProcLabel, Label)
|
|
)
|
|
).
|
|
|
|
|
|
:- pred choose_local_label_type(int, pred_id, proc_id,
|
|
pred_id, proc_id, proc_label, label).
|
|
:- mode choose_local_label_type(in, in, in, in, in, in, out) is det.
|
|
|
|
choose_local_label_type(ProcsPerFunc, CurPredId, CurProcId,
|
|
PredId, ProcId, ProcLabel, Label) :-
|
|
(
|
|
% If we want to branch to the label now,
|
|
% we prefer a form that are usable only within
|
|
% the current C module, since it is likely
|
|
% to be faster.
|
|
(
|
|
ProcsPerFunc = 0
|
|
;
|
|
PredId = CurPredId,
|
|
ProcId = CurProcId
|
|
)
|
|
->
|
|
Label = c_local(ProcLabel)
|
|
;
|
|
Label = local(ProcLabel)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
code_util__make_internal_label(ModuleInfo, PredId, ProcId, LabelNum, Label) :-
|
|
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel),
|
|
Label = local(ProcLabel, LabelNum).
|
|
|
|
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel) :-
|
|
module_info_pred_info(ModuleInfo, PredId, PredInfo),
|
|
pred_info_module(PredInfo, PredModule),
|
|
pred_info_name(PredInfo, PredName),
|
|
module_info_name(ModuleInfo, ThisModule),
|
|
(
|
|
code_util__compiler_generated(PredInfo)
|
|
->
|
|
pred_info_arg_types(PredInfo, ArgTypes),
|
|
(
|
|
special_pred_get_type(PredName, ArgTypes, Type),
|
|
type_to_type_id(Type, TypeId, _),
|
|
% All type_ids here should be module qualified,
|
|
% since builtin types are handled separately in
|
|
% polymorphism.m.
|
|
TypeId = qualified(TypeModule, TypeName) - Arity
|
|
->
|
|
(
|
|
ThisModule \= TypeModule,
|
|
PredName = "__Unify__",
|
|
\+ hlds_pred__in_in_unification_proc_id(ProcId)
|
|
->
|
|
DefiningModule = ThisModule
|
|
;
|
|
DefiningModule = TypeModule
|
|
),
|
|
ProcLabel = special_proc(DefiningModule, PredName,
|
|
TypeModule, TypeName, Arity, ProcId)
|
|
;
|
|
string__append_list(["code_util__make_proc_label:\n",
|
|
"cannot make label for special pred `",
|
|
PredName, "'"], ErrorMessage),
|
|
error(ErrorMessage)
|
|
)
|
|
;
|
|
(
|
|
% Work out which module supplies the code for
|
|
% the predicate.
|
|
ThisModule \= PredModule,
|
|
\+ pred_info_is_imported(PredInfo)
|
|
->
|
|
% This predicate is a specialized version of
|
|
% a pred from a `.opt' file.
|
|
DefiningModule = ThisModule
|
|
;
|
|
DefiningModule = PredModule
|
|
),
|
|
pred_info_get_is_pred_or_func(PredInfo, PredOrFunc),
|
|
pred_info_arity(PredInfo, Arity),
|
|
ProcLabel = proc(DefiningModule, PredOrFunc,
|
|
PredModule, PredName, Arity, ProcId)
|
|
).
|
|
|
|
code_util__make_uni_label(ModuleInfo, TypeId, UniModeNum, ProcLabel) :-
|
|
module_info_name(ModuleInfo, ModuleName),
|
|
( TypeId = qualified(TypeModule, TypeName) - Arity ->
|
|
( hlds_pred__in_in_unification_proc_id(UniModeNum) ->
|
|
Module = TypeModule
|
|
;
|
|
Module = ModuleName
|
|
),
|
|
ProcLabel = special_proc(Module, "__Unify__", TypeModule,
|
|
TypeName, Arity, UniModeNum)
|
|
;
|
|
error("code_util__make_uni_label: unqualified type_id")
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
code_util__arg_loc_to_register(ArgLoc, reg(r, ArgLoc)).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
code_util__predinfo_is_builtin(PredInfo) :-
|
|
pred_info_module(PredInfo, ModuleName),
|
|
pred_info_name(PredInfo, PredName),
|
|
% code_util__translate_builtin(ModuleName, PredName, _, _, _, _).
|
|
pred_info_arity(PredInfo, Arity),
|
|
ProcId = 0,
|
|
code_util__inline_builtin(ModuleName, PredName, ProcId, Arity).
|
|
|
|
code_util__builtin_state(ModuleInfo, PredId0, ProcId, BuiltinState) :-
|
|
predicate_module(ModuleInfo, PredId0, ModuleName),
|
|
predicate_name(ModuleInfo, PredId0, PredName),
|
|
predicate_arity(ModuleInfo, PredId0, Arity),
|
|
proc_id_to_int(ProcId, ProcInt),
|
|
( code_util__inline_builtin(ModuleName, PredName, ProcInt, Arity) ->
|
|
BuiltinState = inline_builtin
|
|
;
|
|
BuiltinState = not_builtin
|
|
).
|
|
|
|
:- pred code_util__inline_builtin(module_name, string, int, int).
|
|
:- mode code_util__inline_builtin(in, in, in, in) is semidet.
|
|
|
|
code_util__inline_builtin(FullyQualifiedModule, PredName, ProcId, Arity) :-
|
|
Arity =< 3,
|
|
varset__init(VarSet),
|
|
varset__new_vars(VarSet, Arity, Args, _),
|
|
% --- not yet:
|
|
% FullyQualifiedModule = qualified(unqualified("std"), ModuleName),
|
|
FullyQualifiedModule = unqualified(ModuleName),
|
|
code_util__translate_builtin_2(ModuleName, PredName, ProcId, Args,
|
|
_, _).
|
|
|
|
code_util__translate_builtin(FullyQualifiedModule, PredName, ProcId, Args,
|
|
BinOp, AsgOp) :-
|
|
proc_id_to_int(ProcId, ProcInt),
|
|
% -- not yet:
|
|
% FullyQualifiedModule = qualified(unqualified("std"), ModuleName),
|
|
FullyQualifiedModule = unqualified(ModuleName),
|
|
code_util__translate_builtin_2(ModuleName, PredName, ProcInt, Args,
|
|
BinOp, AsgOp).
|
|
|
|
:- pred code_util__translate_builtin_2(string, string, int, list(prog_var),
|
|
maybe(rval), maybe(pair(prog_var, rval))).
|
|
:- mode code_util__translate_builtin_2(in, in, in, in, out, out) is semidet.
|
|
|
|
code_util__translate_builtin_2("private_builtin", "unsafe_type_cast", 0,
|
|
[X, Y], no, yes(Y - var(X))).
|
|
code_util__translate_builtin_2("builtin", "unsafe_promise_unique", 0,
|
|
[X, Y], no, yes(Y - var(X))).
|
|
|
|
code_util__translate_builtin_2("private_builtin", "builtin_int_gt", 0, [X, Y],
|
|
yes(binop((>), var(X), var(Y))), no).
|
|
code_util__translate_builtin_2("private_builtin", "builtin_int_lt", 0, [X, Y],
|
|
yes(binop((<), var(X), var(Y))), no).
|
|
|
|
code_util__translate_builtin_2("int", "builtin_plus", 0, [X, Y, Z],
|
|
no, yes(Z - binop((+), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "builtin_plus", 1, [X, Y, Z],
|
|
no, yes(X - binop((-), var(Z), var(Y)))).
|
|
code_util__translate_builtin_2("int", "builtin_plus", 2, [X, Y, Z],
|
|
no, yes(Y - binop((-), var(Z), var(X)))).
|
|
code_util__translate_builtin_2("int", "+", 0, [X, Y, Z],
|
|
no, yes(Z - binop((+), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "+", 1, [X, Y, Z],
|
|
no, yes(X - binop((-), var(Z), var(Y)))).
|
|
code_util__translate_builtin_2("int", "+", 2, [X, Y, Z],
|
|
no, yes(Y - binop((-), var(Z), var(X)))).
|
|
code_util__translate_builtin_2("int", "builtin_minus", 0, [X, Y, Z],
|
|
no, yes(Z - binop((-), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "builtin_minus", 1, [X, Y, Z],
|
|
no, yes(X - binop((+), var(Y), var(Z)))).
|
|
code_util__translate_builtin_2("int", "builtin_minus", 2, [X, Y, Z],
|
|
no, yes(Y - binop((-), var(X), var(Z)))).
|
|
code_util__translate_builtin_2("int", "-", 0, [X, Y, Z],
|
|
no, yes(Z - binop((-), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "-", 1, [X, Y, Z],
|
|
no, yes(X - binop((+), var(Y), var(Z)))).
|
|
code_util__translate_builtin_2("int", "-", 2, [X, Y, Z],
|
|
no, yes(Y - binop((-), var(X), var(Z)))).
|
|
code_util__translate_builtin_2("int", "builtin_times", 0, [X, Y, Z],
|
|
no, yes(Z - binop((*), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "builtin_times", 1, [X, Y, Z],
|
|
no, yes(X - binop((/), var(Z), var(Y)))).
|
|
code_util__translate_builtin_2("int", "builtin_times", 2, [X, Y, Z],
|
|
no, yes(Y - binop((/), var(Z), var(X)))).
|
|
code_util__translate_builtin_2("int", "*", 0, [X, Y, Z],
|
|
no, yes(Z - binop((*), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "*", 1, [X, Y, Z],
|
|
no, yes(X - binop((/), var(Z), var(Y)))).
|
|
code_util__translate_builtin_2("int", "*", 2, [X, Y, Z],
|
|
no, yes(Y - binop((/), var(Z), var(X)))).
|
|
code_util__translate_builtin_2("int", "builtin_div", 0, [X, Y, Z],
|
|
no, yes(Z - binop((/), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "builtin_div", 1, [X, Y, Z],
|
|
no, yes(X - binop((*), var(Y), var(Z)))).
|
|
code_util__translate_builtin_2("int", "builtin_div", 2, [X, Y, Z],
|
|
no, yes(Y - binop((/), var(X), var(Z)))).
|
|
code_util__translate_builtin_2("int", "//", 0, [X, Y, Z],
|
|
no, yes(Z - binop((/), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "//", 1, [X, Y, Z],
|
|
no, yes(X - binop((*), var(Y), var(Z)))).
|
|
code_util__translate_builtin_2("int", "//", 2, [X, Y, Z],
|
|
no, yes(Y - binop((/), var(X), var(Z)))).
|
|
code_util__translate_builtin_2("int", "builtin_mod", 0, [X, Y, Z],
|
|
no, yes(Z - binop((mod), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "rem", 0, [X, Y, Z],
|
|
no, yes(Z - binop((mod), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "builtin_left_shift", 0, [X, Y, Z],
|
|
no, yes(Z - binop((<<), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "<<", 0, [X, Y, Z],
|
|
no, yes(Z - binop((<<), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "builtin_right_shift", 0, [X, Y, Z],
|
|
no, yes(Z - binop((>>), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", ">>", 0, [X, Y, Z],
|
|
no, yes(Z - binop((>>), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "builtin_bit_and", 0, [X, Y, Z],
|
|
no, yes(Z - binop((&), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "/\\", 0, [X, Y, Z],
|
|
no, yes(Z - binop((&), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "builtin_bit_or", 0, [X, Y, Z],
|
|
no, yes(Z - binop(('|'), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "\\/", 0, [X, Y, Z],
|
|
no, yes(Z - binop(('|'), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "builtin_bit_xor", 0, [X, Y, Z],
|
|
no, yes(Z - binop((^), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "^", 0, [X, Y, Z],
|
|
no, yes(Z - binop((^), var(X), var(Y)))).
|
|
code_util__translate_builtin_2("int", "builtin_unary_plus", 0, [X, Y],
|
|
no, yes(Y - var(X))).
|
|
code_util__translate_builtin_2("int", "+", 0, [X, Y],
|
|
no, yes(Y - var(X))).
|
|
code_util__translate_builtin_2("int", "builtin_unary_minus", 0, [X, Y],
|
|
no, yes(Y - binop((-), const(int_const(0)), var(X)))).
|
|
code_util__translate_builtin_2("int", "-", 0, [X, Y],
|
|
no, yes(Y - binop((-), const(int_const(0)), var(X)))).
|
|
code_util__translate_builtin_2("int", "builtin_bit_neg", 0, [X, Y],
|
|
no, yes(Y - unop(bitwise_complement, var(X)))).
|
|
code_util__translate_builtin_2("int", "\\", 0, [X, Y],
|
|
no, yes(Y - unop(bitwise_complement, var(X)))).
|
|
code_util__translate_builtin_2("int", ">", 0, [X, Y],
|
|
yes(binop((>), var(X), var(Y))), no).
|
|
code_util__translate_builtin_2("int", "<", 0, [X, Y],
|
|
yes(binop((<), var(X), var(Y))), no).
|
|
code_util__translate_builtin_2("int", ">=", 0, [X, Y],
|
|
yes(binop((>=), var(X), var(Y))), no).
|
|
code_util__translate_builtin_2("int", "=<", 0, [X, Y],
|
|
yes(binop((<=), var(X), var(Y))), no).
|
|
|
|
code_util__translate_builtin_2("float", "builtin_float_plus", 0, [X, Y, Z],
|
|
no, yes(Z - binop(float_plus, var(X), var(Y)))).
|
|
code_util__translate_builtin_2("float", "builtin_float_plus", 1, [X, Y, Z],
|
|
no, yes(X - binop(float_minus, var(Z), var(Y)))).
|
|
code_util__translate_builtin_2("float", "builtin_float_plus", 2, [X, Y, Z],
|
|
no, yes(Y - binop(float_minus, var(Z), var(X)))).
|
|
code_util__translate_builtin_2("float", "+", 0, [X, Y, Z],
|
|
no, yes(Z - binop(float_plus, var(X), var(Y)))).
|
|
code_util__translate_builtin_2("float", "+", 1, [X, Y, Z],
|
|
no, yes(X - binop(float_minus, var(Z), var(Y)))).
|
|
code_util__translate_builtin_2("float", "+", 2, [X, Y, Z],
|
|
no, yes(Y - binop(float_minus, var(Z), var(X)))).
|
|
code_util__translate_builtin_2("float", "builtin_float_minus", 0, [X, Y, Z],
|
|
no, yes(Z - binop(float_minus, var(X), var(Y)))).
|
|
code_util__translate_builtin_2("float", "builtin_float_minus", 1, [X, Y, Z],
|
|
no, yes(X - binop(float_plus, var(Y), var(Z)))).
|
|
code_util__translate_builtin_2("float", "builtin_float_minus", 2, [X, Y, Z],
|
|
no, yes(Y - binop(float_minus, var(X), var(Z)))).
|
|
code_util__translate_builtin_2("float", "-", 0, [X, Y, Z],
|
|
no, yes(Z - binop(float_minus, var(X), var(Y)))).
|
|
code_util__translate_builtin_2("float", "-", 1, [X, Y, Z],
|
|
no, yes(X - binop(float_plus, var(Y), var(Z)))).
|
|
code_util__translate_builtin_2("float", "-", 2, [X, Y, Z],
|
|
no, yes(Y - binop(float_minus, var(X), var(Z)))).
|
|
code_util__translate_builtin_2("float", "builtin_float_times", 0, [X, Y, Z],
|
|
no, yes(Z - binop(float_times, var(X), var(Y)))).
|
|
code_util__translate_builtin_2("float", "builtin_float_times", 1, [X, Y, Z],
|
|
no, yes(X - binop(float_divide, var(Z), var(Y)))).
|
|
code_util__translate_builtin_2("float", "builtin_float_times", 2, [X, Y, Z],
|
|
no, yes(Y - binop(float_divide, var(Z), var(X)))).
|
|
code_util__translate_builtin_2("float", "*", 0, [X, Y, Z],
|
|
no, yes(Z - binop(float_times, var(X), var(Y)))).
|
|
code_util__translate_builtin_2("float", "*", 1, [X, Y, Z],
|
|
no, yes(X - binop(float_divide, var(Z), var(Y)))).
|
|
code_util__translate_builtin_2("float", "*", 2, [X, Y, Z],
|
|
no, yes(Y - binop(float_divide, var(Z), var(X)))).
|
|
code_util__translate_builtin_2("float", "builtin_float_divide", 0, [X, Y, Z],
|
|
no, yes(Z - binop(float_divide, var(X), var(Y)))).
|
|
code_util__translate_builtin_2("float", "builtin_float_divide", 1, [X, Y, Z],
|
|
no, yes(X - binop(float_times, var(Y), var(Z)))).
|
|
code_util__translate_builtin_2("float", "builtin_float_divide", 2, [X, Y, Z],
|
|
no, yes(Y - binop(float_divide, var(X), var(Z)))).
|
|
code_util__translate_builtin_2("float", "/", 0, [X, Y, Z],
|
|
no, yes(Z - binop(float_divide, var(X), var(Y)))).
|
|
code_util__translate_builtin_2("float", "/", 1, [X, Y, Z],
|
|
no, yes(X - binop(float_times, var(Y), var(Z)))).
|
|
code_util__translate_builtin_2("float", "/", 2, [X, Y, Z],
|
|
no, yes(Y - binop(float_divide, var(X), var(Z)))).
|
|
code_util__translate_builtin_2("float", "+", 0, [X, Y],
|
|
no, yes(Y - var(X))).
|
|
code_util__translate_builtin_2("float", "-", 0, [X, Y],
|
|
no, yes(Y - binop(float_minus, const(float_const(0.0)), var(X)))).
|
|
code_util__translate_builtin_2("float", "builtin_float_gt", 0, [X, Y],
|
|
yes(binop(float_gt, var(X), var(Y))), no).
|
|
code_util__translate_builtin_2("float", ">", 0, [X, Y],
|
|
yes(binop(float_gt, var(X), var(Y))), no).
|
|
code_util__translate_builtin_2("float", "builtin_float_lt", 0, [X, Y],
|
|
yes(binop(float_lt, var(X), var(Y))), no).
|
|
code_util__translate_builtin_2("float", "<", 0, [X, Y],
|
|
yes(binop(float_lt, var(X), var(Y))), no).
|
|
code_util__translate_builtin_2("float", "builtin_float_ge", 0, [X, Y],
|
|
yes(binop(float_ge, var(X), var(Y))), no).
|
|
code_util__translate_builtin_2("float", ">=", 0, [X, Y],
|
|
yes(binop(float_ge, var(X), var(Y))), no).
|
|
code_util__translate_builtin_2("float", "builtin_float_le", 0, [X, Y],
|
|
yes(binop(float_le, var(X), var(Y))), no).
|
|
code_util__translate_builtin_2("float", "=<", 0, [X, Y],
|
|
yes(binop(float_le, var(X), var(Y))), no).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% code_util__compiler_generated(PredInfo) should succeed iff
|
|
% the PredInfo is for a compiler generated predicate.
|
|
|
|
code_util__compiler_generated(PredInfo) :-
|
|
pred_info_name(PredInfo, PredName),
|
|
pred_info_arity(PredInfo, PredArity),
|
|
special_pred_name_arity(_, _, PredName, PredArity).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% This code may _look_ nondeterministic, but it's really semidet,
|
|
% and Mercury is smart enough to know this.
|
|
|
|
code_util__goal_may_allocate_heap(Goal - _GoalInfo) :-
|
|
code_util__goal_may_allocate_heap_2(Goal).
|
|
|
|
:- pred code_util__goal_may_allocate_heap_2(hlds_goal_expr).
|
|
:- mode code_util__goal_may_allocate_heap_2(in) is semidet.
|
|
|
|
code_util__goal_may_allocate_heap_2(higher_order_call(_, _, _, _, _, _)).
|
|
code_util__goal_may_allocate_heap_2(call(_, _, _, Builtin, _, _)) :-
|
|
Builtin \= inline_builtin.
|
|
code_util__goal_may_allocate_heap_2(unify(_, _, _, construct(_,_,Args,_), _)) :-
|
|
Args = [_|_].
|
|
code_util__goal_may_allocate_heap_2(some(_Vars, Goal)) :-
|
|
code_util__goal_may_allocate_heap(Goal).
|
|
code_util__goal_may_allocate_heap_2(not(Goal)) :-
|
|
code_util__goal_may_allocate_heap(Goal).
|
|
code_util__goal_may_allocate_heap_2(conj(Goals)) :-
|
|
code_util__goal_list_may_allocate_heap(Goals).
|
|
code_util__goal_may_allocate_heap_2(disj(Goals, _)) :-
|
|
code_util__goal_list_may_allocate_heap(Goals).
|
|
code_util__goal_may_allocate_heap_2(switch(_Var, _Det, Cases, _)) :-
|
|
code_util__cases_may_allocate_heap(Cases).
|
|
code_util__goal_may_allocate_heap_2(if_then_else(_Vars, A, B, C, _)) :-
|
|
(
|
|
code_util__goal_may_allocate_heap(A)
|
|
;
|
|
code_util__goal_may_allocate_heap(B)
|
|
;
|
|
code_util__goal_may_allocate_heap(C)
|
|
).
|
|
|
|
:- pred code_util__cases_may_allocate_heap(list(case)).
|
|
:- mode code_util__cases_may_allocate_heap(in) is semidet.
|
|
|
|
code_util__cases_may_allocate_heap([case(_, Goal) | _]) :-
|
|
code_util__goal_may_allocate_heap(Goal).
|
|
code_util__cases_may_allocate_heap([_ | Cases]) :-
|
|
code_util__cases_may_allocate_heap(Cases).
|
|
|
|
code_util__goal_list_may_allocate_heap([Goal | _]) :-
|
|
code_util__goal_may_allocate_heap(Goal).
|
|
code_util__goal_list_may_allocate_heap([_ | Goals]) :-
|
|
code_util__goal_list_may_allocate_heap(Goals).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Negate a condition.
|
|
% This is used mostly just to make the generated code more readable.
|
|
|
|
code_util__neg_rval(Rval, NegRval) :-
|
|
( code_util__neg_rval_2(Rval, NegRval0) ->
|
|
NegRval = NegRval0
|
|
;
|
|
NegRval = unop(not, Rval)
|
|
).
|
|
|
|
:- pred code_util__neg_rval_2(rval, rval).
|
|
:- mode code_util__neg_rval_2(in, out) is semidet.
|
|
|
|
code_util__neg_rval_2(const(Const), const(NegConst)) :-
|
|
(
|
|
Const = true, NegConst = false
|
|
;
|
|
Const = false, NegConst = true
|
|
).
|
|
code_util__neg_rval_2(unop(not, Rval), Rval).
|
|
code_util__neg_rval_2(binop(Op, X, Y), binop(NegOp, X, Y)) :-
|
|
code_util__neg_op(Op, NegOp).
|
|
|
|
:- pred code_util__neg_op(binary_op, binary_op).
|
|
:- mode code_util__neg_op(in, out) is semidet.
|
|
|
|
code_util__neg_op(eq, ne).
|
|
code_util__neg_op(ne, eq).
|
|
code_util__neg_op(<, >=).
|
|
code_util__neg_op(<=, >).
|
|
code_util__neg_op(>, <=).
|
|
code_util__neg_op(>=, <).
|
|
code_util__neg_op(str_eq, str_ne).
|
|
code_util__neg_op(str_ne, str_eq).
|
|
code_util__neg_op(str_lt, str_ge).
|
|
code_util__neg_op(str_le, str_gt).
|
|
code_util__neg_op(str_gt, str_le).
|
|
code_util__neg_op(str_ge, str_lt).
|
|
code_util__neg_op(float_eq, float_ne).
|
|
code_util__neg_op(float_ne, float_eq).
|
|
code_util__neg_op(float_lt, float_ge).
|
|
code_util__neg_op(float_le, float_gt).
|
|
code_util__neg_op(float_gt, float_le).
|
|
code_util__neg_op(float_ge, float_lt).
|
|
|
|
code_util__negate_the_test([], _) :-
|
|
error("code_util__negate_the_test on empty list").
|
|
code_util__negate_the_test([Instr0 | Instrs0], Instrs) :-
|
|
( Instr0 = if_val(Test, Target) - Comment ->
|
|
code_util__neg_rval(Test, NewTest),
|
|
Instrs = [if_val(NewTest, Target) - Comment]
|
|
;
|
|
code_util__negate_the_test(Instrs0, Instrs1),
|
|
Instrs = [Instr0 | Instrs1]
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
code_util__cons_id_to_tag(int_const(X), _, _, int_constant(X)).
|
|
code_util__cons_id_to_tag(float_const(X), _, _, float_constant(X)).
|
|
code_util__cons_id_to_tag(string_const(X), _, _, string_constant(X)).
|
|
code_util__cons_id_to_tag(code_addr_const(P,M), _, _, code_addr_constant(P,M)).
|
|
code_util__cons_id_to_tag(pred_const(P,M), _, _, pred_closure_tag(P,M)).
|
|
code_util__cons_id_to_tag(base_type_info_const(M,T,A), _, _,
|
|
base_type_info_constant(M,T,A)).
|
|
code_util__cons_id_to_tag(base_typeclass_info_const(M,C,_,N), _, _,
|
|
base_typeclass_info_constant(M,C,N)).
|
|
code_util__cons_id_to_tag(cons(Name, Arity), Type, ModuleInfo, Tag) :-
|
|
(
|
|
% handle the `character' type specially
|
|
Type = term__functor(term__atom("character"), [], _),
|
|
Name = unqualified(ConsName),
|
|
string__char_to_string(Char, ConsName)
|
|
->
|
|
char__to_int(Char, CharCode),
|
|
Tag = int_constant(CharCode)
|
|
;
|
|
% Use the type to determine the type_id
|
|
( type_to_type_id(Type, TypeId0, _) ->
|
|
TypeId = TypeId0
|
|
;
|
|
% the type-checker should ensure that this never happens
|
|
error("code_util__cons_id_to_tag: invalid type")
|
|
),
|
|
|
|
% Given the type_id, lookup up the constructor tag
|
|
% table for that type
|
|
module_info_types(ModuleInfo, TypeTable),
|
|
map__lookup(TypeTable, TypeId, TypeDefn),
|
|
hlds_data__get_type_defn_body(TypeDefn, TypeBody),
|
|
(
|
|
TypeBody = du_type(_, ConsTable0, _, _)
|
|
->
|
|
ConsTable = ConsTable0
|
|
;
|
|
% this should never happen
|
|
error(
|
|
"code_util__cons_id_to_tag: type is not d.u. type?"
|
|
)
|
|
),
|
|
% Finally look up the cons_id in the table
|
|
map__lookup(ConsTable, cons(Name, Arity), Tag)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
code_util__cannot_stack_flush(GoalExpr - _) :-
|
|
code_util__cannot_stack_flush_2(GoalExpr).
|
|
|
|
:- pred code_util__cannot_stack_flush_2(hlds_goal_expr).
|
|
:- mode code_util__cannot_stack_flush_2(in) is semidet.
|
|
|
|
code_util__cannot_stack_flush_2(unify(_, _, _, Unify, _)) :-
|
|
Unify \= complicated_unify(_, _).
|
|
code_util__cannot_stack_flush_2(call(_, _, _, BuiltinState, _, _)) :-
|
|
BuiltinState = inline_builtin.
|
|
code_util__cannot_stack_flush_2(conj(Goals)) :-
|
|
code_util__cannot_stack_flush_goals(Goals).
|
|
code_util__cannot_stack_flush_2(switch(_, _, Cases, _)) :-
|
|
code_util__cannot_stack_flush_cases(Cases).
|
|
|
|
:- pred code_util__cannot_stack_flush_goals(list(hlds_goal)).
|
|
:- mode code_util__cannot_stack_flush_goals(in) is semidet.
|
|
|
|
code_util__cannot_stack_flush_goals([]).
|
|
code_util__cannot_stack_flush_goals([Goal | Goals]) :-
|
|
code_util__cannot_stack_flush(Goal),
|
|
code_util__cannot_stack_flush_goals(Goals).
|
|
|
|
:- pred code_util__cannot_stack_flush_cases(list(case)).
|
|
:- mode code_util__cannot_stack_flush_cases(in) is semidet.
|
|
|
|
code_util__cannot_stack_flush_cases([]).
|
|
code_util__cannot_stack_flush_cases([case(_, Goal) | Cases]) :-
|
|
code_util__cannot_stack_flush(Goal),
|
|
code_util__cannot_stack_flush_cases(Cases).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
code_util__cannot_fail_before_stack_flush(GoalExpr - GoalInfo) :-
|
|
goal_info_get_determinism(GoalInfo, Detism),
|
|
determinism_components(Detism, CanFail, _),
|
|
( CanFail = cannot_fail ->
|
|
true
|
|
;
|
|
code_util__cannot_fail_before_stack_flush_2(GoalExpr)
|
|
).
|
|
|
|
:- pred code_util__cannot_fail_before_stack_flush_2(hlds_goal_expr).
|
|
:- mode code_util__cannot_fail_before_stack_flush_2(in) is semidet.
|
|
|
|
code_util__cannot_fail_before_stack_flush_2(conj(Goals)) :-
|
|
code_util__cannot_fail_before_stack_flush_conj(Goals).
|
|
|
|
:- pred code_util__cannot_fail_before_stack_flush_conj(list(hlds_goal)).
|
|
:- mode code_util__cannot_fail_before_stack_flush_conj(in) is semidet.
|
|
|
|
code_util__cannot_fail_before_stack_flush_conj([]).
|
|
code_util__cannot_fail_before_stack_flush_conj([Goal | Goals]) :-
|
|
Goal = GoalExpr - GoalInfo,
|
|
(
|
|
(
|
|
GoalExpr = call(_, _, _, BuiltinState, _, _),
|
|
BuiltinState \= inline_builtin
|
|
;
|
|
GoalExpr = higher_order_call(_, _, _, _, _, _)
|
|
)
|
|
->
|
|
true
|
|
;
|
|
goal_info_get_determinism(GoalInfo, Detism),
|
|
determinism_components(Detism, cannot_fail, _)
|
|
->
|
|
code_util__cannot_fail_before_stack_flush_conj(Goals)
|
|
;
|
|
fail
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
code_util__count_recursive_calls(Goal - _, PredId, ProcId, Min, Max) :-
|
|
code_util__count_recursive_calls_2(Goal, PredId, ProcId, Min, Max).
|
|
|
|
:- pred code_util__count_recursive_calls_2(hlds_goal_expr, pred_id, proc_id,
|
|
int, int).
|
|
:- mode code_util__count_recursive_calls_2(in, in, in, out, out) is det.
|
|
|
|
code_util__count_recursive_calls_2(not(Goal), PredId, ProcId, Min, Max) :-
|
|
code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max).
|
|
code_util__count_recursive_calls_2(some(_, Goal), PredId, ProcId, Min, Max) :-
|
|
code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max).
|
|
code_util__count_recursive_calls_2(unify(_, _, _, _, _), _, _, 0, 0).
|
|
code_util__count_recursive_calls_2(higher_order_call(_, _,_, _, _, _), _, _,
|
|
0, 0).
|
|
code_util__count_recursive_calls_2(class_method_call(_, _,_, _, _, _), _, _,
|
|
0, 0).
|
|
code_util__count_recursive_calls_2(pragma_c_code(_,_,_, _, _, _, _), _, _,
|
|
0, 0).
|
|
code_util__count_recursive_calls_2(call(CallPredId, CallProcId, _, _, _, _),
|
|
PredId, ProcId, Count, Count) :-
|
|
(
|
|
PredId = CallPredId,
|
|
ProcId = CallProcId
|
|
->
|
|
Count = 1
|
|
;
|
|
Count = 0
|
|
).
|
|
code_util__count_recursive_calls_2(conj(Goals), PredId, ProcId, Min, Max) :-
|
|
code_util__count_recursive_calls_conj(Goals, PredId, ProcId, 0, 0,
|
|
Min, Max).
|
|
code_util__count_recursive_calls_2(par_conj(Goals, _), PredId, ProcId, Min, Max) :-
|
|
code_util__count_recursive_calls_conj(Goals, PredId, ProcId, 0, 0, Min, Max).
|
|
code_util__count_recursive_calls_2(disj(Goals, _), PredId, ProcId, Min, Max) :-
|
|
code_util__count_recursive_calls_disj(Goals, PredId, ProcId, Min, Max).
|
|
code_util__count_recursive_calls_2(switch(_, _, Cases, _), PredId, ProcId,
|
|
Min, Max) :-
|
|
code_util__count_recursive_calls_cases(Cases, PredId, ProcId, Min, Max).
|
|
code_util__count_recursive_calls_2(if_then_else(_, Cond, Then, Else, _),
|
|
PredId, ProcId, Min, Max) :-
|
|
code_util__count_recursive_calls(Cond, PredId, ProcId, CMin, CMax),
|
|
code_util__count_recursive_calls(Then, PredId, ProcId, TMin, TMax),
|
|
code_util__count_recursive_calls(Else, PredId, ProcId, EMin, EMax),
|
|
CTMin is CMin + TMin,
|
|
CTMax is CMax + TMax,
|
|
int__min(CTMin, EMin, Min),
|
|
int__max(CTMax, EMax, Max).
|
|
|
|
:- pred code_util__count_recursive_calls_conj(list(hlds_goal),
|
|
pred_id, proc_id, int, int, int, int).
|
|
:- mode code_util__count_recursive_calls_conj(in, in, in, in, in, out, out)
|
|
is det.
|
|
|
|
code_util__count_recursive_calls_conj([], _, _, Min, Max, Min, Max).
|
|
code_util__count_recursive_calls_conj([Goal | Goals], PredId, ProcId,
|
|
Min0, Max0, Min, Max) :-
|
|
code_util__count_recursive_calls(Goal, PredId, ProcId, Min1, Max1),
|
|
Min2 is Min0 + Min1,
|
|
Max2 is Max0 + Max1,
|
|
code_util__count_recursive_calls_conj(Goals, PredId, ProcId,
|
|
Min2, Max2, Min, Max).
|
|
|
|
:- pred code_util__count_recursive_calls_disj(list(hlds_goal),
|
|
pred_id, proc_id, int, int).
|
|
:- mode code_util__count_recursive_calls_disj(in, in, in, out, out) is det.
|
|
|
|
code_util__count_recursive_calls_disj([], _, _, 0, 0).
|
|
code_util__count_recursive_calls_disj([Goal | Goals], PredId, ProcId,
|
|
Min, Max) :-
|
|
( Goals = [] ->
|
|
code_util__count_recursive_calls(Goal, PredId, ProcId,
|
|
Min, Max)
|
|
;
|
|
code_util__count_recursive_calls(Goal, PredId, ProcId,
|
|
Min0, Max0),
|
|
code_util__count_recursive_calls_disj(Goals, PredId, ProcId,
|
|
Min1, Max1),
|
|
int__min(Min0, Min1, Min),
|
|
int__max(Max0, Max1, Max)
|
|
).
|
|
|
|
:- pred code_util__count_recursive_calls_cases(list(case),
|
|
pred_id, proc_id, int, int).
|
|
:- mode code_util__count_recursive_calls_cases(in, in, in, out, out) is det.
|
|
|
|
code_util__count_recursive_calls_cases([], _, _, _, _) :-
|
|
error("empty cases in code_util__count_recursive_calls_cases").
|
|
code_util__count_recursive_calls_cases([case(_, Goal) | Cases], PredId, ProcId,
|
|
Min, Max) :-
|
|
( Cases = [] ->
|
|
code_util__count_recursive_calls(Goal, PredId, ProcId,
|
|
Min, Max)
|
|
;
|
|
code_util__count_recursive_calls(Goal, PredId, ProcId,
|
|
Min0, Max0),
|
|
code_util__count_recursive_calls_cases(Cases, PredId, ProcId,
|
|
Min1, Max1),
|
|
int__min(Min0, Min1, Min),
|
|
int__max(Max0, Max1, Max)
|
|
).
|
|
|
|
code_util__output_args([], LiveVals) :-
|
|
set__init(LiveVals).
|
|
code_util__output_args([_V - arg_info(Loc, Mode) | Args], Vs) :-
|
|
code_util__output_args(Args, Vs0),
|
|
(
|
|
Mode = top_out
|
|
->
|
|
code_util__arg_loc_to_register(Loc, Reg),
|
|
set__insert(Vs0, Reg, Vs)
|
|
;
|
|
Vs = Vs0
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
code_util__lvals_in_rval(lval(Lval), [Lval | Lvals]) :-
|
|
code_util__lvals_in_lval(Lval, Lvals).
|
|
code_util__lvals_in_rval(var(_), []).
|
|
code_util__lvals_in_rval(create(_, _, _, _, _), []).
|
|
code_util__lvals_in_rval(mkword(_, Rval), Lvals) :-
|
|
code_util__lvals_in_rval(Rval, Lvals).
|
|
code_util__lvals_in_rval(const(_), []).
|
|
code_util__lvals_in_rval(unop(_, Rval), Lvals) :-
|
|
code_util__lvals_in_rval(Rval, Lvals).
|
|
code_util__lvals_in_rval(binop(_, Rval1, Rval2), Lvals) :-
|
|
code_util__lvals_in_rval(Rval1, Lvals1),
|
|
code_util__lvals_in_rval(Rval2, Lvals2),
|
|
list__append(Lvals1, Lvals2, Lvals).
|
|
code_util__lvals_in_rval(mem_addr(MemRef), Lvals) :-
|
|
code_util__lvals_in_mem_ref(MemRef, Lvals).
|
|
|
|
code_util__lvals_in_lval(reg(_, _), []).
|
|
code_util__lvals_in_lval(stackvar(_), []).
|
|
code_util__lvals_in_lval(framevar(_), []).
|
|
code_util__lvals_in_lval(succip, []).
|
|
code_util__lvals_in_lval(maxfr, []).
|
|
code_util__lvals_in_lval(curfr, []).
|
|
code_util__lvals_in_lval(succip(Rval), Lvals) :-
|
|
code_util__lvals_in_rval(Rval, Lvals).
|
|
code_util__lvals_in_lval(redofr(Rval), Lvals) :-
|
|
code_util__lvals_in_rval(Rval, Lvals).
|
|
code_util__lvals_in_lval(redoip(Rval), Lvals) :-
|
|
code_util__lvals_in_rval(Rval, Lvals).
|
|
code_util__lvals_in_lval(succfr(Rval), Lvals) :-
|
|
code_util__lvals_in_rval(Rval, Lvals).
|
|
code_util__lvals_in_lval(prevfr(Rval), Lvals) :-
|
|
code_util__lvals_in_rval(Rval, Lvals).
|
|
code_util__lvals_in_lval(hp, []).
|
|
code_util__lvals_in_lval(sp, []).
|
|
code_util__lvals_in_lval(field(_, Rval1, Rval2), Lvals) :-
|
|
code_util__lvals_in_rval(Rval1, Lvals1),
|
|
code_util__lvals_in_rval(Rval2, Lvals2),
|
|
list__append(Lvals1, Lvals2, Lvals).
|
|
code_util__lvals_in_lval(lvar(_), []).
|
|
code_util__lvals_in_lval(temp(_, _), []).
|
|
code_util__lvals_in_lval(mem_ref(Rval), Lvals) :-
|
|
code_util__lvals_in_rval(Rval, Lvals).
|
|
|
|
:- pred code_util__lvals_in_mem_ref(mem_ref, list(lval)).
|
|
:- mode code_util__lvals_in_mem_ref(in, out) is det.
|
|
|
|
code_util__lvals_in_mem_ref(stackvar_ref(_), []).
|
|
code_util__lvals_in_mem_ref(framevar_ref(_), []).
|
|
code_util__lvals_in_mem_ref(heap_ref(Rval, _, _), Lvals) :-
|
|
code_util__lvals_in_rval(Rval, Lvals).
|
|
|
|
%-----------------------------------------------------------------------------%
|