mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-18 23:35:25 +00:00
95218186504aa427a16c456de5cc70bc92898e59
95 Commits
| Author | SHA1 | Message | Date | |
|---|---|---|---|---|
|
|
9521818650 |
Get the purity check pass to not issue warnings about unnecessary purity
Estimated hours taken: 16 Branches: main Get the purity check pass to not issue warnings about unnecessary purity annotations on compiler-generated predicates. The problem I am addressing is that when an optimization such as type specialization creates a clone of a predicate, that predicate gets all the original predicate's annotations. During the creation of a .opt file, purity checking sees the clauses of the original predicate and knows that the annotation is not redundant, but doesn't know that about the copy, since it has no definition at all (it doesn't need one). The fix is to put into each pred_info an indication of where the predicate came from, and to never warn about unnecessary purity annotations of predicates that the programmer didn't write. This diff also uses the origin indication to record human-usable names of compiler-generated or compiler-transformed predicates in RTTI for use by the debugger. compiler/hlds_pred.m: Replace two fields in pred_infos, that say (a) whether the predicate is a special (unify/compare/index/init) predicate and (b) whether it is a type class method implementation, with an origin field saying where the predicate came from. This field has several alternatives, special preds and type class method implementation being only two. Make the predicates that create pred_infos take an argument specifing where the predicate comes from. Replace a copy of one of the old fields in rtti_proc_labels with the new one. Make the name of the existing function more descriptive. compiler/purity.m: Use the origin field to suppress unnecessary annotation warnings for compiler-generated predicates. compiler/layout_out.m: Use the origin field to generate more human-friendly names for predicates, instead of the existing linker-friendly names. The debugger doesn't insist on predicate names being unique, even within a module. compiler/*.m: Conform to the changed interface of hlds_pred.m. The most significant changes were for recording the origin of new predicates. In one case (dnf.m) it also involved passing the required information down to the place where the new predicates were created through the dnf_info tuple instead of separate arguments, and switching to state variable notation. tests/debugger/*.exp*: tests/debugger/declarative/*.exp*: tests/hard_coded/*.exp*: Update the expected outputs to expect human-friendly predicate names. |
||
|
|
a3352a6e5d |
Do not include :- import_module' and :- use_module' declarations
Estimated hours taken: 22 Branches: main Do not include `:- import_module' and `:- use_module' declarations in the implementation section of .int and .int2 files unless the types that they export are required by the definition of an equivalence type. This should help prevent unnecessary recompilations when new imports are made in the implementation of modules. Break up check_hlds.type_util so that predicates that do not require access to the HLDS are placed in a new module, parse_tree.prog_type. The above change requires some of these predicates. This also removes one of the dependencies between the parse_tree package on modules of the check_hlds package. Remove the remaining such dependency by moving inst_constrains_unconstrained_var/1 from check_hlds.inst_util to parse_tree.prog_mode. None of the modules in parse_tree now depend upon modules in check_hlds. Modify the parser so that import_module declarations that specify more than one module are replaced by multiple import_module declarations, with one module per declaration. This makes the above change easier to implement and is in any case required by the upcoming diff for canonicalizing module interfaces. We also do the same for use_module and include_module declarations. compiler/modules.m: Don't import modules in the implementation section of interface files unless they are required by the definition of equivalence types. compiler/prog_type.m: New module. Move procedures from type_util that do not depend on the HLDS to here so that we can use them when generating interface files. XXX There are probably others that could be moved as well - I only moved those that were immediately useful. compiler/type_util.m: Delete the procedures that have been moved to the new prog_type module. compiler/prog_io.m: Remove the dependency on check_hlds.inst_util. compiler/prog_io_typeclass.m: compiler/equiv_type.m: Remove dependencies on check_hlds.type_util. compiler/prog_util.m: Add a predicate sym_name_get_module_name/2 that is similar to sym_name_get_module_name/3 except that it fails if the input is an unqualified sym_name. compiler/inst_util.m: Delete inst_contains_unconstrained_var/1 from this module and copy it to prog_mode.m. compiler/parse_tree.m: Include the new module. Do not import the check_hlds package as all dependencies on this package have been removed. compiler/*.m: Minor changes to conform to the above. compiler/notes/compiler_design.html: Mention the new module. |
||
|
|
59d2d4a573 |
This adds a module mdbcomp__trace_counts that reads in the
Estimated hours taken: 17 Branches: main This adds a module mdbcomp__trace_counts that reads in the .mercury_trace_counts files produced by the compiler's trace mechanism. The format of said files was slightly changed. As the new module is to be used by the compiler and the debugger, it is placed in the mdbcomp module. This required bringing some types from the compiler into a new module within mdbcomp. browser/trace_counts.m: New module for reading execution trace summaries. browser/prim_data.m: New module holding types and predicates moved in from the compiler. Types: pred_or_func, sym_name, module_name, proc_label, special_pred_id, trace_port Predicates: string_to_sym_name, insert_module_qualifier The mode field of proc_label is now an int instead of a proc_id to avoid pulling proc_id into mdbcomp. browser/mdbcomp.m: Add trace_counts and prim_data to the mdbcomp module. browser/declarative_execution.m: Renamed mdb's definition of module_name to flat_module_name to avoid conflicts with the definition in mdbcomp__prim_data. runtime/mercury_trace_base.c: In the format of .mercury_trace_counts, write module and predicate names now use quoted atom syntax so that names with spaces and non-printable characters can be machine-parsed. browser/: compiler/: Many changes to account for movement of types, and the change to proc_label. |
||
|
|
f76c4823e5 |
Fix a problem reported by Ian: the debugger ignored information about the head
Estimated hours taken: 2
Branches: main
Fix a problem reported by Ian: the debugger ignored information about the head
variables of the predicates generated by the compiler from lambda expressions
because they didn't have names.
compiler/hlds_pred.m:
Add a predicate to ensure that all headvars have names.
compiler/lambda.m:
Call that predicate to give names to the predicates created from lambda
expressions.
compiler/code_gen.m:
Call that predicate to give names to the predicates created from lambda
expressions, in case other transformations also create predicates
with unnamed head variables.
doc/user_guide.texi:
Add a new mdb command, var_details, and a new method of invocation of
an existing mdb command, flag. I used them to track down this bug.
trace/mercury_trace_internal.c:
Implement the var_details mdb command, and the new method of invocation
of the flag command.
trace/mercury_trace_vars.[ch]:
Add a function to print variable details.
tests/debugger/mdb_command_test.inp:
Test the documentation of the new command.
tests/debugger/completion.exp:
Expect the new command.
tests/debugger/lambda_expr.{m,inp,exp}:
Add the new test case to test for the bug.
tests/debugger/Mmakefile:
Enable the new test case.
|
||
|
|
8c54b1175f |
Put the fields of the proc_info structure into a meaningful order.
Estimated hours taken: 3 Branches: main compiler/hlds_pred.m: Put the fields of the proc_info structure into a meaningful order. Put the less frequently used fields into a separate substructure, to reduce the amount of memory required for updates to the other fields. This improved the runtime of the compiler by 6%, significantly more than I expected. Put the declarations and definitions of the get and set predicates for those fields and the arguments of the predicates for creating proc_infos structures into the same order. compiler/higher_order.m: Bring this module up to date with our current code style guidelines. Add field names to type declarations, and use field access notation state variable syntax as appropriate. compiler/*.m: Conform to the new argument orders in hlds_pred.m. |
||
|
|
885fd4a387 |
Remove almost all dependencies by the modules of parse_tree.m on the modules
Estimated hours taken: 12 Branches: main Remove almost all dependencies by the modules of parse_tree.m on the modules of hlds.m. The only such dependencies remaining now are on type_util.m. compiler/hlds_data.m: compiler/prog_data.m: Move the cons_id type from hlds_data to prog_data, since several parts of the parse tree data structure depend on it (particularly insts). Remove the need to import HLDS modules in prog_data.m by making the cons_ids that refer to procedure ids refer to them via a new type that contains shrouded pred_ids and proc_ids. Since pred_ids and proc_ids are abstract types in hlds_data, add predicates to hlds_data to shroud and unshroud them. Also move some other types, e.g. mode_id and class_id, from hlds_data to prog_data. compiler/hlds_data.m: compiler/prog_util.m: Move predicates for manipulating cons_ids from hlds_data to prog_util. compiler/inst.m: compiler/prog_data.m: Move the contents of inst.m to prog_data.m, since that is where it belongs, and since doing so eliminates a circular dependency. The separation doesn't serve any purpose any more, since we don't need to import hlds_data.m anymore to get access to the cons_id type. compiler/mode_util.m: compiler/prog_mode.m: compiler/parse_tree.m: Move the predicates in mode_util that don't depend on the HLDS to a new module prog_mode, which is part of parse_tree.m. compiler/notes/compiler_design.m: Mention prog_mode.m, and delete the mention of inst.m. compiler/mercury_to_mercury.m: compiler/hlds_out.m: Move the predicates that depend on HLDS out of mercury_to_mercury.m to hlds_out.m. Export from mercury_to_mercury.m the predicates needed by the moved predicates. compiler/hlds_out.m: compiler/prog_out.m: Move predicates for printing parts of the parse tree out of hlds_out.m to prog_out.m, since mercury_to_mercury.m needs to use them. compiler/purity.m: compiler/prog_out.m: Move predicates for printing purities from purity.m, which is part of check_hlds.m, to prog_out.m, since mercury_to_mercury.m needs to use them. compiler/passes_aux.m: compiler/prog_out.m: Move some utility predicates (e.g. for printing progress messages) from passes_aux.m to prog_out.m, since some predicates in submodules of parse_tree.m need to use them. compiler/foreign.m: compiler/prog_data.m: Move some types from foreign.m to prog_data.m to allow the elimination of some dependencies on foreign.m from submodules of parse_tree.m. compiler/*.m: Conform to the changes above, mostly by updating lists of imported modules and module qualifications. In some cases, also do some local cleanups such as converting predicate declarations to predmode syntax and fixing white space. |
||
|
|
7bf0cd03af |
Reduce the overhead of all forms of tabling by eliminating in many cases
Estimated hours taken: 32
Branches: main
Reduce the overhead of all forms of tabling by eliminating in many cases
the overhead of transferring data across the C/Mercury boundary. These
involve lots of control transfers as well as assignments to and from
Mercury abstract machine registers, which are not real machine registers
on x86 machines. Benchmarking in Uppsala revealed this overhead to be
a real problem.
The way we do that is by changing the tabling transformation so that instead
of generating sequences of calls to predicates from library/table_builtin.m,
we generate sequences of calls to C macros from runtime/mercury_tabling_pred.h,
and emit the resulting code string as the body of a foreign_proc goal.
(The old transformation is still available via a new option,
--no-tabling-via-extra-args.)
Since the number of inputs and outputs of the resulting C code sequences
are not always fixed (they can depend on the number of input or output
arguments of predicate being transformed), implementing this required
adding to foreign_procs a new field that allows the specification of extra
arguments to be passed to and from the given foreign code fragment. For now,
this mechanism is implemented only by the C backends, since it is needed
only by the C backends. (We don't support yet tabling on other backends.)
To simplify the new implementation of the field on foreign_procs, consolidate
three existing fields into one. Each of these fields was a list with one
element per argument, so turning them into a single list with a combined record
per argument should also improve reliability, since it reduces the likelyhood
of updates leaving the data structure inconsistent.
The goal paths of components of a tabled predicate depend on whether
-no-tabling-via-extra-args was specified. To enable the expected outputs
of the debugger test cases testing tabling, we add a new mdb command,
goal_paths, that controls whether goal paths are printed by the debugger
at events, and turn off the printing of events in the relevant test cases.
Also, prepare for a future change to optimize the trie structure for
user-defined types by handling type_infos (and once we support them,
typeclass_infos) specially.
compiler/table_gen.m:
Change the tabling transformation along the lines described above.
To allow us to factor out as much of the new code as possible,
we change the meaning of the call_table_tip variable for minimal
model subgoals: instead of the trie node at the end of the answer
table, it is not now the subgoal reachable from it. This change
has no effect as yet, because we use call_table_tip variables
only to perform resets across retries in the debugger, and we
don't do retries across calls to minimal model tabled predicates.
Put predicates into logical groups.
library/table_builtin.m:
runtime/mercury_tabling_preds.h:
When the new transformations in table_gen.m generate foreign_procs
with variable numbers of arguments, the interfaces of those
foreign_procs often do not match the interfaces of the existing
library predicates at their core: they frequently have one more
or one fewer argument. To prevent any possible confusion, in such
cases we add a new variant of the predicate. These predicates
have the suffix _shortcut in their name. Their implementations
are dummy macros that do nothing; they serve merely as placeholders
before or after which the macros that actually do the work are
inserted.
Move the definitions of the lookup, save and restore predicates
into mercury_tabling_preds.h. Make the naming scheme of their
arguments more regular.
runtime/mercury_minimal_model.c:
runtime/mercury_tabling_preds.h:
Move the definition of a predicate from mercury_minimal_model.c
to mercury_tabling_preds.h, since the compiler now needs to be
able to generate an inlined version of it.
compiler/hlds_goal.m:
Replace the three existing fields describing the arguments of
foreign_procs with one, and add a new field describing the extra
arguments that may be inserted by table_gen.m.
Add utility predicates for processing the arguments of foreign_procs.
Change the order of some existing groups of declarations make it
more logical.
compiler/hlds_pred.m:
runtime/mercury_stack_layout.h:
Extend the data structures recording the structure of tabling tries
to allow the representation of trie steps for type_infos and
typeclass_infos.
runtime/mercury_tabling_macros.c:
Fix a bug regarding the tabling of typeclass_infos, which is now
required for a clean compile.
compiler/pragma_c_gen.m:
compiler/ml_code_gen.m:
Modify the generation of code for foreign_procs to handle extra
arguments, and to conform to the new data structures for foreign_proc
arguments.
compiler/llds.m:
The tabling transformations can now generate significantly sized
foreign_procs bodies, which the LLDS code generator translates to
pragma_c instructions. Duplicating these by jump optimization
may lose more by worsening locality than it gains in avoiding jumps,
so we add an extra field to pragma_c instructions that tells jumpopt
not to duplicate code sequences containing such pragma_cs.
compiler/jumpopt.m:
Respect the new flag on pragma_cs.
compiler/goal_util.m:
Add a predicate to create foreign_procs with specified contents,
modelled on the existing predicate to create calls.
Change the order of the arguments of that existing predicate
to make it more logical.
compiler/polymorphism.m:
Conform to the new definition of foreign_procs. Try to simplify
the mechanism for generating the type_info and typeclass_info
arguments of foreign_proc goals, but it is not clear that this
code is even ever executed.
compiler/aditi_builtin_ops.m:
compiler/assertion.m:
compiler/bytecode_gen.m:
compiler/clause_to_proc.m:
compiler/code_gen.m:
compiler/code_info.m:
compiler/code_util.m:
compiler/constraint.m:
compiler/deep_profiling.m:
compiler/deforest.m:
compiler/delay_construct.m:
compiler/dependency_graph.m:
compiler/det_analysis.m:
compiler/det_report.m:
compiler/dnf.m:
compiler/dupelim.m:
compiler/equiv_type_hlds.m:
compiler/exprn_aux.m:
compiler/follow_code.m:
compiler/follow_vars.m:
compiler/frameopt.m:
compiler/goal_form.m:
compiler/goal_path.m:
compiler/higher_order.m:
compiler/higher_order.m:
compiler/hlds_module.m:
compiler/hlds_out.m:
compiler/inlining.m:
compiler/ite_gen.m:
compiler/layout_out.m:
compiler/livemap.m:
compiler/liveness.m:
compiler/llds_out.m:
compiler/loop_inv.m:
compiler/magic.m:
compiler/make_hlds.m:
compiler/mark_static_terms.m:
compiler/middle_rec.m:
compiler/modes.m:
compiler/modules.m:
compiler/opt_debug.m:
compiler/pd_cost.m:
compiler/prog_rep.m:
compiler/purity.m:
compiler/quantification.m:
compiler/reassign.m:
compiler/rl_exprn.m:
compiler/saved_vars.m:
compiler/simplify.m:
compiler/size_prof.m:
compiler/store_alloc.m:
compiler/stratify.m:
compiler/switch_detection.m:
compiler/term_pass1.m:
compiler/term_traversal.m:
compiler/termination.m:
compiler/trace.m:
compiler/typecheck.m:
compiler/unify_proc.m:
compiler/unique_modes.m:
compiler/unneeed_code.m:
compiler/unused_args.m:
compiler/use_local_vars.m:
Conform to the new definition of foreign_procs, pragma_cs and/or
table trie steps, or to changed argument orders.
compiler/add_heap_ops.m:
compiler/add_trail_ops.m:
compiler/cse_detection.m:
compiler/dead_proc_elim.m:
compiler/equiv_type.m:
compiler/intermod.m:
compiler/lambda.m:
compiler/lco.m:
compiler/module_util.m:
compiler/opt_util.m:
compiler/stack_opt.m:
compiler/trans_opt.m:
Conform to the new definition of foreign_procs.
Bring these modules up to date with our current code style guidelines,
using predmode declarations, state variable syntax and unification
expressions as appropriate.
compiler/mercury_compile.m:
Conform to the changed argument order of a predicate in trans_opt.m.
compiler/options.m:
Add the --no-tabling-via-extra-args option, but leave the
documentation commented out since the option is for developers only.
doc/user_guide.texi:
Document --no-tabling-via-extra-args option, though leave the
documentation commented out since the option is for developers only.
doc/user_guide.texi:
doc/mdb_categories:
Document the new goal_paths mdb command.
trace/mercury_trace_internals.c:
Implement the new goal_paths mdb command.
tests/debugger/completion.exp:
Conform to the presence of the goal_paths mdb command.
tests/debugger/mdb_command_test.inp:
Test the existence of documentation for the goal_paths mdb command.
tests/debugger/print_table.{inp,exp*}:
tests/debugger/retry.{inp,exp*}:
Use the goal_paths command to avoid having the expected output
depend on the presence or absence of --tabling-via-extra-args.
tests/tabling/table_foreign_output.{m,exp}:
Add a new test case to test the save/restore of arguments of foreign
types.
tests/tabling/Mmakefile:
Enable the new test case.
tests/tabling/test_tabling:
Make this script more robust.
Add an option for testing only the standard model forms of tabling.
|
||
|
|
c7ff2bd6ef |
Cleanup of parts of hlds_pred.m and hlds_out.m.
Estimated hours taken: 2 Branches: main Cleanup of parts of hlds_pred.m and hlds_out.m. compiler/hlds_pred.m.m: Simplify the part of this file dealing with pred_infos. Order the arguments of pred_info in a meaningful manner, put the declarations and definitions of get/set predicates in the corresponding order, and put the arguments of the predicates that create pred_infos in the corresponding order. Delete the cond field, since it won't be used in its current form. compiler/hlds_out.m: Redefine write_cons_id in terms of cons_id_to_string, since having both definitions is a double maintenance problem. This also eliminates the unnecessary differences between the two old definitions. Fix an old FIXME: when printing clauses, don't print the goal annotations that do not make sense in clauses. Print clause numbers next to each clause to make confusion between clauses and procedures even less likely. compiler/prog_out.m: Add function versions of some utility predicates for use by the new version of cons_id_to_string. compiler/*.m: Conform to the changes in hlds_pred.m. In some cases, clean up nearby code. tests/invalid/purity/purity_nonsense.m: Conform to the fact that write_cons_id doesn't now do unnecessary quoting of a predicate name. |
||
|
|
5d6fd3bd6f |
Reduce the dependence of earlier parts of the compiler on the later ones.
Estimated hours taken: 4 Branches: main Reduce the dependence of earlier parts of the compiler on the later ones. Unnecessary import_module declarations in top level modules such as hlds.m cause unnecessary recompilations when adding new types in later modules, such as submodules of ll_backend.m. This change reduces the number of such unnecessary imports. There are no changes in algorithms, only functionality being moved around. compiler/code_model.m: Change this module from being a submodule of backend_libs.m to being a submodule of hlds.m, since nothing in it is dependent on any backend. compiler/arg_info.m: compiler/code_util.m: Change arg_info.m from being a submodule of ll_backend.m to being a submodule of hlds.m, since most of it is applicable to all current and foreseeable backends. Move the one exported predicate that is ll_backend dependent, and its support predicates, to code_util.m. compiler/backend_libs.m: compiler/ll_backend.m: compiler/hlds.m: Update include_module declarations in accordance with the above. compiler/prog_data.m: compiler/term_util.m: Instead of defining two separate types for holding argument size and termination information, one including HLDS-specific information (in term_util.m) and one not (in prog_data.m), use a polymorphic type defined in prog_data.m and two monomorphic instances. compiler/termination.m: compiler/mercury_to_mercury.m: Change the predicates for writing out argument size and termination information to handle the polymorphic type (we don't need special handling of the monomorphic versions), and move them from termination.m to mercury_to_mercury.m, since this allows us to avoid some undesirable dependencies. compiler/base_typeclass_info.m: compiler/hlds_code_util.m: Move the predicate make_instance_string from base_typeclass_info.m to hlds_code_util.m, again because it allows us to remove some undesirable dependencies. compiler/top_level.m: compiler/backend_libs.m: compiler/check_hlds.m: compiler/hlds.m: compiler/ll_backend.m: compiler/parse_tree.m: compiler/transform_hlds.m: Delete some import_module declarations of other top level modules in these top level modules. Some imports were totally unnecessary. Some imports were useful in only a small minority of submodules; those submodules now import the necessary top level modules directly. Move remaining import_module declarations to the implementation section where this is feasible. Where we still need to import modules we ideally shouldn't, note why. compiler/*.m: Update imports of code_util and arg_info. In some cases, import top level modules no longer imported by the parent module. In some cases, delete unnecessary imports. |
||
|
|
fa9ca36d03 |
This diff makes several files easier to read and to maintain (as well as
Estimated hours taken: 5 Branches: main This diff makes several files easier to read and to maintain (as well as more than 400 lines shorter), but contains no changes in algorithms whatsoever. compiler/deep_profiling.m: compiler/foreign.m: compiler/hlds_module.m: compiler/hlds_data.m: compiler/make_hlds.m: compiler/post_typecheck.m: compiler/prog_data.m: compiler/purity.m: compiler/type_util.m: Bring these modules into line with our current coding standards. Use predmode declarations and state variable syntax when appropriate. Reorder arguments of predicates where necessary for the use of state variable syntax, and where this improves readability. Replace predicates with functions where appropriate. Standardize indentation. compiler/*.m: Conform to the changes above. |
||
|
|
b39a3d855f |
This diff makes hlds_module.m and many callers of its predicates easier to read
Estimated hours taken: 6 Branches: main This diff makes hlds_module.m and many callers of its predicates easier to read and to maintain, but contains no changes in algorithms whatsoever. compiler/hlds_module.m: Bring (most of) this module into line with our current coding standards. Use predmode declarations, functions, and state variable syntax when appropriate. (The 'most of' is because I left the part of the module dealing with predicate tables alone, not wishing to cause a conflict for Pete.) Reorder arguments of predicates where necessary for the use of state variable syntax, and where this improves readability. Replace old-style lambdas with new-style lambdas or with partially applied named procedures. compiler/*.m: Conform to the changes in hlds_module.m. This mostly means using the new argument orders of predicates exported by hlds_module.m, and switching to state variable notation. Replace old-style lambdas with new-style lambdas or with partially applied named procedures in updated code. Replace unnecessary occurrences of four-space indentation with standard indentation in updated code. library/list.m: library/map.m: library/tree234.m: Add list__foldl4 and map__foldl3, since in some compiler modules, state variable notation is more convenient (and the code more efficient) if we don't have to bundle up several data structures into a tuple just to iterate over them. Change the fold predicates to use state variable notation. NEWS: Mention the new library functions. |
||
|
|
8693e293a2 |
This diff makes hlds_pred.m and many callers of its predicates easier to read
Estimated hours taken: 4 Branches: main This diff makes hlds_pred.m and many callers of its predicates easier to read and to maintain, but contains no changes in algorithms whatsoever. compiler/hlds_pred.m: Bring this module into line with our current coding standards. Use predmode declarations, functions, and state variable syntax when appropriate. Reorder arguments of predicates where necessary for the use of state variable syntax, and where this improves readability. Replace old-style lambdas with new-style lambdas or with partially applied named procedures. Standardize indentation. compiler/*.m: Conform to the changes in hlds_pred.m. This mostly means using the new argument orders of predicates exported by hlds_pred.m. Where this is now conveniently possible, change predicates to use state variable notation. In some modules, using state variable notation required changing the orders of arguments in the module's top predicate. compiler/passes_aux.m: Change the order of arguments in the calls this module makes to allow the callees to use state variable notation. Convert this module to state variable notation too. |
||
|
|
f007b45df8 |
Implement the infrastructure for term size profiling.
Estimated hours taken: 400
Branches: main
Implement the infrastructure for term size profiling. This means adding two
new grade components, tsw and tsc, and implementing them in the LLDS code
generator. In grades including tsw (term size words), each term is augmented
with an extra word giving the number of heap words it contains; in grades
including tsc (term size cells), each term is augmented with an extra word
giving the number of heap cells it contains. The extra word is at the start,
at offset -1, to leave almost all of the machinery for accessing the heap
unchanged.
For now, the only way to access term sizes is with a new mdb command,
"term_size <varspec>". Later, we will use term sizes in conjunction with
deep profiling to do experimental complexity analysis, but that requires
a lot more research. This diff is a necessary first step.
The implementation of term size profiling consists of three main parts:
- a source-to-source transform that computes the size of each heap cell
when it is constructed (and increments it in the rare cases when a free
argument of an existing heap cell is bound),
- a relatively small change to the code generator that reserves the extra
slot in new heap cells, and
- extensions to the facilities for creating cells from C code to record
the extra information we now need.
The diff overhauls polymorphism.m to make the source-to-source transform
possible. This overhaul includes separating type_ctor_infos and type_infos
as strictly as possible from each other, converting type_ctor_infos into
type_infos only as necessary. It also includes separating type_ctor_infos,
type_infos, base_typeclass_infos and typeclass_infos (as well as voids,
for clarity) from plain user-defined type constructors in type categorizations.
This change needs this separation because values of those four types do not
have size slots, but they ought to be treated specially in other situations
as well (e.g. by tabling).
The diff adds a new mdb command, term_size. It also replaces the proc_body
mdb command with new ways of using the existing print and browse commands
("print proc_body" and "browse proc_body") in order to make looking at
procedure bodies more controllable. This was useful in debugging the effect
of term size profiling on some test case outputs. It is not strictly tied
to term size profiling, but turns out to be difficult to disentangle.
compiler/size_prof.m:
A new module implementing the source-to-source transform.
compiler/notes/compiler_design.html:
Mention the new module.
compiler/transform_hlds.m:
Include size_prof as a submodule of transform_hlds.
compiler/mercury_compile.m:
If term size profiling is enabled, invoke its source-to-source
transform.
compiler/hlds_goal.m:
Extend construction unifications with an optional slot for recording
the size of the term if the size is a constant, or the identity of the
variable holding the size, if the size is not constant. This is
needed by the source-to-source transform.
compiler/quantification.m:
Treat the variable reference that may be in this slot as a nonlocal
variable of construction unifications, since the code generator needs
this.
compiler/compile_target_code.m:
Handle the new grade components.
compiler/options.m:
Implement the options that control term size profiling.
doc/user_guide.texi:
Document the options and grade components that control term size
profiling, and the term_size mdb command. The documentation is
commented out for now.
Modify the wording of the 'u' HLDS dump flag to include other details
of unifications (e.g. term size info) rather than just unification
categories.
Document the new alternatives of the print and browse commands. Since
they are for developers only, the documentation is commented out.
compiler/handle_options.m:
Handle the implications of term size profiling grades.
Add a -D flag value to print HLDS components relevant to HLDS
transformations.
compiler/modules.m:
Import the new builtin library module that implements the operations
needed by term size profiling automatically in term size profiling
grades.
Switch the predicate involved to use state var syntax.
compiler/prog_util.m:
Add predicates and functions that return the sym_names of the modules
needed by term size profiling.
compiler/code_info.m:
compiler/unify_gen.m:
compiler/var_locn.m:
Reserve an extra slot in heap cells and fill them in in unifications
marked by size_prof.
compiler/builtin_ops.m:
Add term_size_prof_builtin.term_size_plus as a builtin, with the same
implementation as int.+.
compiler/make_hlds.m:
Disable warnings about clauses for builtins while the change to
builtin_ops is bootstrapped.
compiler/polymorphism.m:
Export predicates that generate goals to create type_infos and
type_ctor_infos to add_to_construct.m. Rewrite their documentation
to make it more detailed.
Make orders of arguments amenable to the use of state variable syntax.
Consolidate knowledge of which type categories have builtin unify and
compare predicates in one place.
Add code to leave the types of type_ctor_infos alone: instead of
changing their types to type_info when used as arguments of other
type_infos, create a new variable of type type_info instead, and
use an unsafe_cast. This would make the HLDS closer to being type
correct, but this new code is currently commented out, for two
reasons. First, common.m is currently not smart enough to figure out
that if X and Y are equal, then similar unsafe_casts of X and Y
are also equal, and this causes the compiler do not detect some
duplicate calls it used to detect. Second, the code generators
are also not smart enough to know that if Z is an unsafe_cast of X,
then X and Z do not need separate stack slots, but can use the same
slot.
compiler/type_util.m:
Add utility predicates for returning the types of type_infos and
type_ctor_infos, for use by new code in polymorphism.m.
Move some utility predicates here from other modules, since they
are now used by more than one module.
Rename the type `builtin_type' as `type_category', to better reflect
what it does. Extend it to put the type_info, type_ctor_info,
typeclass_info, base_typeclass_info and void types into categories
of their own: treating these types as if they were a user-defined
type (which is how they used to be classified) is not always correct.
Rename the functor polymorphic_type to variable_type, since types
such as list(T) are polymorphic, but they fall into the user-defined
category. Rename user_type as user_ctor_type, since list(int) is not
wholly user-defined but falls into this category. Rename pred_type
as higher_order_type, since it also encompasses functions.
Replace code that used to check for a few of the alternatives
of this type with code that does a full switch on the type,
to ensure that they are updated if the type definition ever
changes again.
compiler/pseudo_type_info.m:
Delete a predicate whose updated implementation is now in type_util.m.
compiler/mlds_to_c.m:
compiler/mlds_to_gcc.m:
compiler/mlds_to_il.m:
compiler/mlds_to_java.m:
Still treat type_infos, type_ctor_infos, typeclass_infos and
base_typeclass_infos as user-defined types, but prepare for when
they won't be.
compiler/hlds_pred.m:
Require interface typeinfo liveness when term size profiling is
enabled.
Add term_size_profiling_builtin.increase_size as a
no_type_info_builtin.
compiler/hlds_out.m:
Print the size annotations on unifications if HLDS dump flags call
for unification details. (The flag test is in the caller of the
modified predicate.)
compiler/llds.m:
Extend incr_hp instructions and data_addr_consts with optional fields
that allow the code generator to refer to N words past the start of
a static or dynamic cell. Term size profiling uses this with N=1.
compiler/llds_out.m:
When allocating memory on the heap, use the macro variants that
specify an optional offset, and specify the offset when required.
compiler/bytecode_gen.m:
compiler/dense_switch.m:
compiler/dupelim.m:
compiler/exprn_aux.m:
compiler/goal_form.m:
compiler/goal_util.m:
compiler/higher_order.m:
compiler/inst_match.m:
compiler/intermod.m:
compiler/jumpopt.m:
compiler/lambda.m:
compiler/livemap.m:
compiler/ll_pseudo_type_info.m:
compiler/lookup_switch.m:
compiler/magic_util.m:
compiler/middle_rec.m:
compiler/ml_code_util.m:
compiler/ml_switch_gen.m:
compiler/ml_unify_gen.m:
compiler/mlds.m:
compiler/mlds_to_c.m:
compiler/mlds_to_gcc.m:
compiler/mlds_to_il.m:
compiler/mlds_to_java.m:
compiler/modecheck_unify.m:
compiler/opt_debug.m:
compiler/opt_util.m:
compiler/par_conj_gen.m:
compiler/post_typecheck.m:
compiler/reassign.m:
compiler/rl.m:
compiler/rl_key.m:
compiler/special_pred.m:
compiler/stack_layout.m:
compiler/static_term.m:
compiler/string_switch.m:
compiler/switch_gen.m:
compiler/switch_util.m:
compiler/table_gen.m:
compiler/term_util.m:
compiler/type_ctor_info.m:
compiler/unused_args.m:
compiler/use_local_vars.m:
Minor updates to conform to the changes above.
library/term_size_prof_builtin.m:
New module containing helper predicates for term size profiling.
size_prof.m generates call to these predicates.
library/library.m:
Include the new module in the library.
doc/Mmakefile:
Do not include the term_size_prof_builtin module in the library
documentation.
library/array.m:
library/benchmarking.m:
library/construct.m:
library/deconstruct.m:
library/io.m:
library/sparse_bitset.m:
library/store.m:
library/string.m:
Replace all uses of MR_incr_hp with MR_offset_incr_hp, to ensure
that we haven't overlooked any places where offsets may need to be
specified.
Fix formatting of foreign_procs.
Use new macros defined by the runtime system when constructing
terms (which all happen to be lists) in C code. These new macros
specify the types of the cell arguments, allowing the implementation
to figure out the size of the new cell based on the sizes of its
fields.
library/private_builtin.m:
Define some constant type_info structures for use by these macros.
They cannot be defined in the runtime, since they refer to types
defined in the library (list.list and std_util.univ).
util/mkinit.c:
Make the addresses of these type_info structures available to the
runtime.
runtime/mercury_init.h:
Declare these type_info structures, for use in mkinit-generated
*_init.c files.
runtime/mercury_wrapper.[ch]:
Declare and define the variables that hold these addresses, for use
in the new macros for constructing typed lists.
Since term size profiling can refer to a memory cell by a pointer
that is offset by one word, register the extra offsets with the Boehm
collector if is being used.
Document the incompatibility of MR_HIGHTAGS and the Boehm collector.
runtime/mercury_tags.h:
Define new macros for constructing typed lists.
Provide macros for preserving the old interface presented by this file
to the extent possible. Uses of the old MR_list_cons macro will
continue to work in grades without term size profiling. In term
size profiling grades, their use will get a C compiler error.
Fix a bug caused by a missing backslash.
runtime/mercury_heap.h:
Change the basic macros for allocating new heap cells to take
an optional offset argument. If this is nonzero, the macros
increment the returned address by the given number of words.
Term size profiling specifies offset=1, reserving the extra
word at the start (which is ignored by all components of the
system except term size profiling) for holding the size of the term.
Provide macros for preserving the old interface presented by this file
to the extent possible. Since the old MR_create[123] and MR_list_cons
macros did not specify type information, they had to be changed
to take additional arguments. This affects only hand-written C code.
Call new diagnostic macros that can help debug heap allocations.
Document why the macros in this files must expand to expressions
instead of statements, evn though the latter would be preferable
(e.g. by allowing them to declare and use local variables without
depending on gcc extensions).
runtime/mercury_debug.[ch]:
Add diagnostic macros to debug heap allocations, and the functions
behind them if MR_DEBUG_HEAP_ALLOC is defined.
Update the debugging routines for hand-allocated cells to print the
values of the term size slot as well as the other slots in the relevant
grades.
runtime/mercury_string.h:
Provide some needed variants of the macro for copying strings.
runtime/mercury_deconstruct_macros.h:
runtime/mercury_type_info.c:
Supply type information when constructing terms.
runtime/mercury_deep_copy_body.h:
Preserve the term size slot when copying terms.
runtime/mercury_deep_copy_body.h:
runtime/mercury_ho_call.c:
runtime/mercury_ml_expand_body.h:
Use MR_offset_incr_hp instead of MR_incr_hp to ensure that all places
that allocate cells also allocate space for the term size slot if
necessary.
Reduce code duplication by using a now standard macro for copying
strings.
runtime/mercury_grade.h:
Handle the two new grade components.
runtime/mercury_conf_param.h:
Document the C macros used to control the two new grade components,
as well as MR_DEBUG_HEAP_ALLOC.
Detect incompatibilities between high level code and profiling.
runtime/mercury_term_size.[ch]:
A new module to house a function to find and return term sizes
stored in heap cells.
runtime/mercury_proc_id.h:
runtime/mercury_univ.h:
New header files. mercury_proc_id.h contains the (unchanged)
definition of MR_Proc_Id, while mercury_univ.h contains the
definitions of the macros for manipulating univs that used to be
in mercury_type_info.h, updated to use the new macros for allocating
memory.
In the absence of these header files, the following circularity
would ensue:
mercury_deep_profiling.h includes mercury_stack_layout.h
- needs definition of MR_Proc_Id
mercury_stack_layout.h needs mercury_type_info.h
- needs definition of MR_PseudoTypeInfo
mercury_type_info.h needs mercury_heap.h
- needs heap allocation macros for MR_new_univ_on_hp
mercury_heap.h includes mercury_deep_profiling.h
- needs MR_current_call_site_dynamic for recording allocations
Breaking the circular dependency in two places, not just one, is to
minimize similar problems in the future.
runtime/mercury_stack_layout.h:
Delete the definition of MR_Proc_Id, which is now in mercury_proc_id.h.
runtime/mercury_type_info.h:
Delete the macros for manipulating univs, which are now in
mercury_univ.h.
runtime/Mmakefile:
Mention the new files.
runtime/mercury_imp.h:
runtime/mercury.h:
runtime/mercury_construct.c:
runtime/mercury_deep_profiling.h:
Include the new files at appropriate points.
runtime/mercury.c:
Change the names of the functions that create heap cells for
hand-written code, since the interface to hand-written code has
changed to include type information.
runtime/mercury_tabling.h:
Delete some unused macros.
runtime/mercury_trace_base.c:
runtime/mercury_type_info.c:
Use the new macros supplying type information when constructing lists.
scripts/canonical_grade_options.sh-subr:
Fix an undefined sh variable bug that could cause error messages
to come out without identifying the program they were from.
scripts/init_grade_options.sh-subr:
scripts/parse_grade_options.sh-subr:
scripts/canonical_grade_options.sh-subr:
scripts/mgnuc.in:
Handle the new grade components and the options controlling them.
trace/mercury_trace_internal.c:
Implement the mdb command "term_size <varspec>", which is like
"print <varspec>", but prints the size of a term instead of its value.
In non-term-size-profiling grades, it prints an error message.
Replace the "proc_body" command with optional arguments to the "print"
and "browse" commands.
doc/user_guide.tex:
Add documentation of the term_size mdb command. Since the command is
for implementors only, and works only in grades that are not yet ready
for public consumption, the documentation is commented out.
Add documentation of the new arguments of the print and browse mdb
commands. Since they are for implementors only, the documentation
is commented out.
trace/mercury_trace_vars.[ch]:
Add the functions needed to implement the term_size command, and
factor out the code common to the "size" and "print"/"browse" commands.
Decide whether to print the name of a variable before invoking the
supplied print or browse predicate on it based on a flag design for
this purpose, instead of overloading the meaning of the output FILE *
variable. This arrangement is much clearer.
trace/mercury_trace_browse.c:
trace/mercury_trace_external.c:
trace/mercury_trace_help.c:
Supply type information when constructing terms.
browser/program_representation.m:
Since the new library module term_size_prof_builtin never generates
any events, mark it as such, so that the declarative debugger doesn't
expect it to generate any.
Do the same for the deep profiling builtin module.
tests/debugger/term_size_words.{m,inp,exp}:
tests/debugger/term_size_cells.{m,inp,exp}:
Two new test cases, each testing one of the new grades.
tests/debugger/Mmakefile:
Enable the two new test cases in their grades.
Disable the tests sensitive to stack frame sizes in term size profiling
grades.
tests/debugger/completion.exp:
Add the new "term_size" mdb command to the list of command completions,
and delete "proc_body".
tests/debugger/declarative/dependency.{inp,exp}:
Use "print proc_body" instead of "proc_body".
tests/hard_coded/nondet_c.m:
tests/hard_coded/pragma_inline.m:
Use MR_offset_incr_hp instead of MR_incr_hp to ensure that all places
that allocate cells also allocate space for the term size slot if
necessary.
tests/valid/Mmakefile:
Disable the IL tests in term size profiling grades, since the term size
profiling primitives haven't been (and probably won't be) implemented
for the MLDS backends, and handle_options causes a compiler abort
for grades that combine term size profiling and any one of IL, Java
and high level C.
|
||
|
|
5fa9a4b111 |
Remove the unimplemented aditi_filter and aditi_modify
Estimated hours taken: 0.5 Branches: main compiler/*.m: Remove the unimplemented aditi_filter and aditi_modify goals -- they will never be implemented. Remove the `aditi_top_down' lambda_eval_method, which was only used for those update goals. Even if those update goals were to be implemented, a special type of lambda expression shouldn't actually be needed. Use clearer names for the updates in the constructors of the aditi_builtin type. |
||
|
|
6aca3f322b |
Delete unneeded parentheses.
Estimated hours taken: 0.1 Branches: main compiler/lambda.m: Delete unneeded parentheses. |
||
|
|
9551640f55 |
Import only one compiler module per line. Sort the blocks of imports.
Estimated hours taken: 2 Branches: main compiler/*.m: Import only one compiler module per line. Sort the blocks of imports. This makes it easier to merge in changes. In a couple of places, remove unnecessary imports. |
||
|
|
ef7ed9c2f5 |
Support impurity declarations for higher-order code.
Estimated hours taken: 24 Branches: main Support impurity declarations for higher-order code. In particular, allow `impure' and `semipure' annotations on higher-order types, higher-order calls, and lambda expresions. NEWS: doc/reference_manual.texi: Document the new language feature. compiler/hlds_goal.m: compiler/hlds_pred.m: Add `purity' field to - the `higher_order' alternative of the hlds_goal.generic_call type - the `higher_order' alternative of the hlds_pred.generic_call_id type - the `lambda_goal' alternative of the hlds_goal.unify_rhs type compiler/type_util.m: Add a new `purity' argument to the procedures dealing with higher-order types. Add code for parsing impure/semipure higher-order types. compiler/lambda.m: compiler/make_hlds.m: compiler/typecheck.m: compiler/post_typecheck.m: compiler/purity.m: compiler/polymorphism.m: Various minor changes to support impure/semipure higher-order lambda expressions. compiler/polymorphism.m: compiler/pseudo_type_info.m: XXX ought to change these to include purity in the RTTI for higher-order function types. compiler/simplify.m: Don't try to optimize semipure/impure higher-order calls. compiler/assertion.m: compiler/bytecode_gen.m: compiler/call_gen.m: compiler/continuation_info.m: compiler/cse_detection.m: compiler/dead_proc_elim.m: compiler/deep_profiling.m: compiler/det_analysis.m: compiler/det_util.m: compiler/equiv_type.m: compiler/goal_util.m: compiler/higher_order.m: compiler/hlds_out.m: compiler/intermod.m: compiler/magic.m: compiler/magic_util.m: compiler/ml_call_gen.m: compiler/ml_closure_gen.m: compiler/mode_util.m: compiler/modecheck_call.m: compiler/modecheck_unify.m: compiler/modes.m: compiler/module_qual.m: compiler/pd_util.m: compiler/prog_rep.m: compiler/pseudo_type_info.m: compiler/quantification.m: compiler/recompilation.usage.m: compiler/rl_gen.m: compiler/stratify.m: compiler/switch_detection.m: compiler/term_traversal.m: compiler/term_util.m: compiler/unify_gen.m: compiler/unique_modes.m: Trivial changes to handle the new purity fields and/or arguments. tests/hard_coded/purity/Mmakefile: tests/hard_coded/purity/impure_func_t5_fixed2.m: tests/hard_coded/purity/impure_func_t5_fixed2.exp: tests/hard_coded/purity/impure_func_t5_fixed2.exp2: tests/hard_coded/purity/impure_pred_t1_fixed3.m: tests/hard_coded/purity/impure_pred_t1_fixed3.exp: tests/invalid/purity/Mmakefile: tests/invalid/purity/impure_func_t5_fixed.m: tests/invalid/purity/impure_func_t5_fixed.err_exp: tests/invalid/purity/impure_pred_t1_fixed.m: tests/invalid/purity/impure_pred_t1_fixed.err_exp: Add new test cases to test the new feature. tests/invalid/purity/impure_func_t5.err_exp: tests/invalid/purity/impure_pred_t1.err_exp: tests/invalid/purity/impure_pred_t2.err_exp: tests/invalid/purity/purity.err_exp: tests/invalid/purity/purity_nonsense.err_exp: Update the expected error messages for existing test cases. tests/invalid/purity/.cvsignore: New file, copied from tests/invalid/.cvsignore. |
||
|
|
9dbcf4714a |
Fix a bug which caused type-incorrect HLDS to be generated by mode
Estimated hours taken: 5
Branches: main
Fix a bug which caused type-incorrect HLDS to be generated by mode
analysis, which then caused a compiler abort in simplification.
In the code below, mode analysis must treat the headvar unification
as a construction followed by a var-var unification. If it is treated
as a deconstruction, the argument unifications will be ill-typed.
:- type t ---> some [T] f(T) => enum(T).
:- pred p(t::in) is semidet.
p('new f'(1)).
compiler/modecheck_unify.m:
Make sure unifications with a RHS of the form 'new f(X)'
are always classified as constructions.
compiler/hlds_goal.m:
compiler/*.m:
Add a field to var-functor unifications which identifies
those which must be treated as constructions.
compiler/polymorphism.m:
Fill in the field.
tests/hard_coded/Mmakefile:
tests/hard_coded/unify_existq_cons.{m,exp}:
Test case.
|
||
|
|
189b9215ae |
This diff implements stack slot optimization for the LLDS back end based on
Estimated hours taken: 400
Branches: main
This diff implements stack slot optimization for the LLDS back end based on
the idea that after a unification such as A = f(B, C, D), saving the
variable A on the stack indirectly also saves the values of B, C and D.
Figuring out what subset of {B,C,D} to access via A and what subset to access
via their own stack slots is a tricky optimization problem. The algorithm we
use to solve it is described in the paper "Using the heap to eliminate stack
accesses" by Zoltan Somogyi and Peter Stuckey, available in ~zs/rep/stackslot.
That paper also describes (and has examples of) the source-to-source
transformation that implements the optimization.
The optimization needs to know what variables are flushed at call sites
and at program points that establish resume points (e.g. entries to
disjunctions and if-then-elses). We already had code to compute this
information in live_vars.m, but this code was being invoked too late.
This diff modifies live_vars.m to allow it to be invoked both by the stack
slot optimization transformation and by the code generator, and allows its
function to be tailored to the requirements of each invocation.
The information computed by live_vars.m is specific to the LLDS back end,
since the MLDS back ends do not (yet) have the same control over stack
frame layout. We therefore store this information in a new back end specific
field in goal_infos. For uniformity, we make all the other existing back end
specific fields in goal_infos, as well as the similarly back end specific
store map field of goal_exprs, subfields of this new field. This happens
to significantly reduce the sizes of goal_infos.
To allow a more meaningful comparison of the gains produced by the new
optimization, do not save any variables across erroneous calls even if
the new optimization is not enabled.
compiler/stack_opt.m:
New module containing the code that performs the transformation
to optimize stack slot usage.
compiler/matching.m:
New module containing an algorithm for maximal matching in bipartite
graphs, specialized for the graphs needed by stack_opt.m.
compiler/mercury_compile.m:
Invoke the new optimization if the options ask for it.
compiler/stack_alloc.m:
New module containing code that is shared between the old,
non-optimizing stack slot allocation system and the new, optimizing
stack slot allocation system, and the code for actually allocating
stack slots in the absence of optimization.
Live_vars.m used to have two tasks: find out what variables need to be
saved on the stack, and allocating those variables to stack slots.
Live_vars.m now does only the first task; stack_alloc.m now does
the second, using code that used to be in live_vars.m.
compiler/trace_params:
Add a new function to test the trace level, which returns yes if we
want to preserve the values of the input headvars.
compiler/notes/compiler_design.html:
Document the new modules (as well as trace_params.m, which wasn't
documented earlier).
compiler/live_vars.m:
Delete the code that is now in stack_alloc.m and graph_colour.m.
Separate out the kinds of stack uses due to nondeterminism: the stack
slots used by nondet calls, and the stack slots used by resumption
points, in order to allow the reuse of stack slots used by resumption
points after execution has left their scope. This should allow the
same stack slots to be used by different variables in the resumption
point at the start of an else branch and nondet calls in the then
branch, since the resumption point of the else branch is not in effect
when the then branch is executed.
If the new option --opt-no-return-calls is set, then say that we do not
need to save any values across erroneous calls.
Use type classes to allow the information generated by this module
to be recorded in the way required by its invoker.
Package up the data structures being passed around readonly into a
single tuple.
compiler/store_alloc.m:
Allow this module to be invoked by stack_opt.m without invoking the
follow_vars transformation, since applying follow_vars before the form
of the HLDS code is otherwise final can be a pessimization.
Make the module_info a part of the record containing the readonly data
passed around during the traversal.
compiler/common.m:
Do not delete or move around unifications created by stack_opt.m.
compiler/call_gen.m:
compiler/code_info.m:
compiler/continuation_info.m:
compiler/var_locn.m:
Allow the code generator to delete its last record of the location
of a value when generating code to make an erroneous call, if the new
--opt-no-return-calls option is set.
compiler/code_gen.m:
Use a more useful algorithm to create the messages/comments that
we put into incr_sp instructions, e.g. by distinguishing between
predicates and functions. This is to allow the new scripts in the
tool directory to gather statistics about the effect of the
optimization on stack frame sizes.
library/exception.m:
Make a hand-written incr_sp follow the new pattern.
compiler/arg_info.m:
Add predicates to figure out the set of input, output and unused
arguments of a procedure in several different circumstances.
Previously, variants of these predicates were repeated in several
places.
compiler/goal_util.m:
Export some previously private utility predicates.
compiler/handle_options.m:
Turn off stack slot optimizations when debugging, unless
--trace-optimized is set.
Add a new dump format useful for debugging --optimize-saved-vars.
compiler/hlds_llds.m:
New module for handling all the stuff specific to the LLDS back end
in HLDS goal_infos.
compiler/hlds_goal.m:
Move all the relevant stuff into the new back end specific field
in goal_infos.
compiler/notes/allocation.html:
Update the documentation of store maps to reflect their movement
into a subfield of goal_infos.
compiler/*.m:
Minor changes to accomodate the placement of all back end specific
information about goals from goal_exprs and individual fields of
goal_infos into a new field in goal_infos that gathers together
all back end specific information.
compiler/use_local_vars.m:
Look for sequences in which several instructions use a fake register
or stack slot as a base register pointing to a cell, and make those
instructions use a local variable instead.
Without this, a key assumption of the stack slot optimization,
that accessing a field in a cell costs only one load or store
instruction, would be much less likely to be true. (With this
optimization, the assumption will be false only if the C compiler's
code generator runs out of registers in a basic block, which for
the code we generate should be unlikely even on x86s.)
compiler/options.m:
Make the old option --optimize-saved-vars ask for both the old stack
slot optimization (implemented by saved_vars.m) that only eliminates
the storing of constants in stack slots, and the new optimization.
Add two new options --optimize-saved-vars-{const,cell} to turn on
the two optimizations separately.
Add a bunch of options to specify the parameters of the new
optimizations, both in stack_opt.m and use_local_vars.m. These are
for implementors only; they are deliberately not documented.
Add a new option, --opt-no-return-cells, that governs whether we avoid
saving variables on the stack at calls that cannot return, either by
succeeding or by failing. This is for implementors only, and thus
deliberately documented only in comments. It is enabled by default.
compiler/optimize.m:
Transmit the value of a new option to use_local_vars.m.
doc/user_guide.texi:
Update the documentation of --optimize-saved-vars.
library/tree234.m:
Undo a previous change of mine that effectively applied this
optimization by hand. That change complicated the code, and now
the compiler can do the optimization automatically.
tools/extract_incr_sp:
A new script for extracting stack frame sizes and messages from
stack increment operations in the C code for LLDS grades.
tools/frame_sizes:
A new script that uses extract_incr_sp to extract information about
stack frame sizes from the C files saved from a stage 2 directory
by makebatch and summarizes the resulting information.
tools/avg_frame_size:
A new script that computes average stack frame sizes from the files
created by frame_sizes.
tools/compare_frame_sizes:
A new script that compares the stack frame size information
extracted from two different stage 2 directories by frame_sizes,
reporting on both average stack frame sizes and on specific procedures
that have different stack frame sizes in the two versions.
|
||
|
|
7597790760 |
Use sub-modules to structure the modules in the Mercury compiler directory.
The main aim of this change is to make the overall, high-level structure of the compiler clearer, and to encourage better encapsulation of the major components. compiler/libs.m: compiler/backend_libs.m: compiler/parse_tree.m: compiler/hlds.m: compiler/check_hlds.m: compiler/transform_hlds.m: compiler/bytecode_backend.m: compiler/aditi_backend.m: compiler/ml_backend.m: compiler/ll_backend.m: compiler/top_level.m: New files. One module for each of the major components of the Mercury compiler. These modules contain (as separate sub-modules) all the other modules in the Mercury compiler, except gcc.m and mlds_to_gcc.m. Mmakefile: compiler/Mmakefile: Handle the fact that the top-level module is now `top_level', not `mercury_compile' (since `mercury_compile' is a sub-module of `top_level'). compiler/Mmakefile: Update settings of *FLAGS-<modulename> to use the appropriate nested module names. compiler/recompilation_check.m: compiler/recompilation_version.m: compiler/recompilation_usage.m: compiler/recompilation.check.m: compiler/recompilation.version.m: compiler/recompilation.version.m: Convert the `recompilation_*' modules into sub-modules of the `recompilation' module. compiler/*.m: compiler/*.pp: Module-qualify the module names in `:- module', `:- import_module', and `:- use_module' declarations. compiler/base_type_info.m: compiler/base_type_layout.m: Deleted these unused empty modules. compiler/prog_data.m: compiler/globals.m: Move the `foreign_language' type from prog_data to globals. compiler/mlds.m: compiler/ml_util.m: compiler/mlds_to_il.m: Import `globals', for `foreign_language'. Mmake.common.in: trace/Mmakefile: runtime/Mmakefile: Rename the %.check.c targets as %.check_hdr.c, to avoid conflicts with compiler/recompilation.check.c. |
||
|
|
ceae383ec2 |
Fix some bugs with the hlc.agc grade where the compiler was generating
Estimated hours taken: 2 Branches: main Fix some bugs with the hlc.agc grade where the compiler was generating references to type_info variables that were not in scope. compiler/hlds_pred.m: Document the invariant that type_info arguments must precede non-type_info arguments, since MLDS->C accurate GC relies on this. compiler/type_util.m: Add new function put_typeinfo_vars_first, for use by lamdbda.m and ml_code_gen.m. compiler/lambda.m: Call put_typeinfo_vars_first on the arguments of the introduced procedures, to ensure that invariant documented in hlds_pred.m holds. compiler/ml_code_gen.m: Call put_typeinfo_vars_first on the list of local variables that we generate for each subgoal, to avoid referring to type_info variables that are not in scope in the GC tracing code. |
||
|
|
d701d8ba06 |
Use pred_const cons_ids in the unify_rhs field for constructions
Estimated hours taken: 4
Use pred_const cons_ids in the unify_rhs field for constructions
of higher-order terms. Previously there would be a `cons(sym_name, arity)'
cons_id in the `unify_rhs', and a pred_const in the `unification'.
This avoids multiple calls to get_pred_id_and_proc_id, and is more
consistent with how other cons_ids are handled.
compiler/post_typecheck.m:
Find the pred_const cons_id for constructions of higher-order terms.
Make sure the sym_name field of a call goal is fully module qualified.
compiler/higher_order.m:
compiler/lambda.m:
Use `pred_const' rather than `cons(sym_name, arity)' in the
`unify_rhs' of constructions of higher-order terms.
compiler/polymorphism.m:
compiler/modecheck_unify.m:
Change the interface of polymorphism__convert_pred_to_lambda_goal
to reflect the fact that the pred_proc_id of the higher-order term
has already been computed by post_typecheck.m.
compiler/purity.m:
Don't attempt to resolve overloading if there were type errors.
If the type inference iteration limit was exceeded the code
to resolve overloading of higher-order terms in post_typecheck.m
can abort. This occurred with tests/invalid/type_inf_loop.m.
compiler/hlds_goal.m:
Remove documentation about the restrictions on cons_ids
in a unify_rhs, since they no longer apply.
compiler/intermod.m:
Remove code duplicated from post_typecheck.m.
compiler/hlds_data.m:
Add a comment that code_addr_const cons_ids are no longer
used (they are left over from an old method of constructing
type_ctor_infos).
compiler/hlds_out.m:
Don't abort on code_addr_consts in hlds_out__write_functor_cons_id.
This will avoid problems if anyone decides to start using
code_addr_consts again.
tests/invalid/Mmakefile:
tests/invalid/aditi_update_errors.m:
tests/invalid/aditi_update_derived_relation.{m,err_exp}:
Separate out parts of aditi_update_errors.m which
were no longer being tested because post_typecheck
is no longer run when there are type errors.
tests/invalid/aditi_update_errors.err_exp:
tests/invalid/aditi_update_mode_errors.err_exp:
Update the expected output.
|
||
|
|
1c65d003f7 |
Add the shorthand_goal_expr wrapper type to ease hlds->hlds transformations.
Estimated hours taken: 4.5
Branches: main
Add the shorthand_goal_expr wrapper type to ease hlds->hlds transformations.
compiler/hlds_goal.m
Create a new type, the `shorthand_goal_expr', for goals kinds that
are implemented by a (ordinary_hlds + shorthand) -> (ordinary_hlds)
transformation. At present, bi_implication is the only kind of
of goal that is implemented in this way.
Moved bi_implication functor from the type goal_expr to the new
shorthand_goal_expr type.
Added the functor shorthand to the goal_expr type.
compiler/*.m
Change switches on hlds_goal_expr that call error when they recognise
`bi_implication' from calling error when they recognise
`bi_implication' to calling error when they recognise `shorthand'.
For all predicates K that
a) switch on hlds_goal_expr and
b) perform non-trivial processing when they recognise
`bi_implication'
change K such that it now calls K_shorthand upon recognising the
functor `shorthand'. Define K_shorthand to switch on
shorthand_goal_expr, where the code for the `bi_implication' case
formerly contained in K is now contained in K_shorthand.
|
||
|
|
711da78188 |
Rename foreign_code as foreign_proc where appropriate in the compiler.
Estimated hours taken: 4.0 Branches: main Rename foreign_code as foreign_proc where appropriate in the compiler. The rationale for this change is that it makes maintaining the code much simpler because it is clear whether `foreign' refers to a slab of code (foreign_code) or a procedure (foreign_proc). :- type pragma_foreign_code_attributes :- type pragma_foreign_proc_attributes The functors for pragma_type foreign(Lang, BodyCode) foreign(Attributes, Name, PredOrFunc, Vars, Varset, Impl) become foreign_code(Lang, BodyCode) foreign_proc(Attributes, Name, PredOrFunc, Vars, Varset, Impl) And the HLDS goal `pragma_foreign_code' becomes `foreign_proc'. compiler/*.m: Update the compiler to use the new names. |
||
|
|
9588e2a5ab |
Fix a bug that was causing the GCC back-end to abort with an internal
Estimated hours taken: 5 Fix a bug that was causing the GCC back-end to abort with an internal compiler error (map__det_insert failed) in mlds_to_gcc.m for tests/hard_coded/curry2 and tests/higher_order_syntax2.m. The C back-end also had a bug for these test cases: it generated incorrect code, which `gcc -Wshadow' even warned about, but that by coincidence didn't cause the test to fail. The root cause was that lambda.m was generating incorrect HLDS: it was not recomputing the non-locals properly. compiler/lambda.m: Recompute the non-locals of the introduced procedure, if needed, to handle the case where extra non-locals need to be added for a lambda expression that is itself nested inside another lambda expression. (Also wrap some long lines.) |
||
|
|
4be69fa961 |
Eliminated a lot of the dependencies on the the `code_model' type,
Estimated hours taken: 6 Eliminated a lot of the dependencies on the the `code_model' type, and move that type from llds.m into a new module `code_model'. The aim of this change is to improve the modularity of the compiler by reducing the number of places in the compiler front-end that depend on back-end concepts and the number of places in the MLDS back-end which depend on the LLDS. compiler/code_model.m: New module. Contains the code_model type and associated procedures. compiler/llds.m: Move the code_model type into code_model.m. compiler/hlds_goal.m: Move the goal_info_get_code_model procedure into code_model.m, to avoid having the HLDS modules import code_model. compiler/hlds_out.m: Delete `hlds_out__write_code_model', since it wasn't being used. compiler/hlds_pred.m: Move the proc_info_interface_code_model procedure into code_model.m, to avoid having the HLDS modules import code_model. compiler/goal_path.m: When computing the `maybe_cut' field for `some' goals, compute it by comparing the determinism rather than by comparing the goal_infos. compiler/unique_modes.m: Use determinism and test for soln_count = at_most_many rather than using code_model and testing for model_non. compiler/inlining.m: Test for determinism nondet/multi rather than testing for code_model model_non. compiler/hlds_pred.m: compiler/det_report.m: Change valid_code_model_for_eval_method, which succeeded unless the eval_method was minimal_model and the code_model was model_det, to valid_determinism_for_eval_method, which succeeds unless the eval_method is minimal_model and the determinism cannot fail. As well as avoiding a dependency on code_model in the HLDS modules, this also fixes a bug where det_report could give misleading error messages, saying that `multi' was a valid determinism for `minimal_model' predicates, when in fact the compiler will always report a determinism error if you declare a `minimal_model' predicate with determinism `multi'. (Actually the code in which this bug occurs is in fact unreachable, but this is no doubt also a bug... I'll address that one in a separate change.) compiler/lookup_switch.m: Simplify the code a bit by using globals__lookup_*_option rather than globals__get_option and then getopt__lookup_option. compiler/*.m: Add `import_module' declarations for `code_model', and in some cases remove `import_module' declarations for `llds'. |
||
|
|
477ecb18f6 |
Implement pragma foreign_code for Managed C++.
Estimated hours taken: 60 Implement pragma foreign_code for Managed C++. Currently you can only write MC++ code if your backend is capable of generating use MC++ as its "native" foreign language. The IL backend is the only backend that does this at the moment (the other backends have C as their "native" foreign language). Most of the machinery is in place to call from C to (normal) C++ but there is little work done on actually spitting out the C++ code into a separate file. The IL backend does this step already with managed C++. The intention is to turn foreign_code for C++ into a pragma import (which imports the C++ function from a separate file) and foreign_code for C (which calls the imported function). The C++ code will be inserted into a separate file that is compiled using C linkage. The important improvement this change gives is that you can write a module with a C and a MC++ implementations side-by-side. The target backend will select the most appropriate foreign language to use. You can override its choice using --use-foreign-language. Later on we will probably want more flexibility than just a single language selection option). This change also implements :- pragma foreign_decl, which allows header file style declarations to be written in languages other than C. compiler/code_gen.m: Reject code that is not C when generating LLDS. compiler/export.m: Start renaming C as foreign. Reject code that is not C when generating exports. compiler/foreign.m: A new module to handle foreign language interfacing. The bulk of the code for pragma import has been moved here from make_hlds. compiler/globals.m: Convert foreign language names to foreign_language. This code has been moved closer to the similar conversion we do for target language names. Add globals__io_lookup_foreign_language_option to make it easier to deterministically lookup the options relating to foreign languages. compiler/hlds_module.m: Move module_add_foreign_decl and module_add_foreign_body_code from make_hlds.m (where they were called module_add_c_header and module_add_c_code). compiler/hlds_out.m: Write the foreign language out in HLDS dumps. compiler/llds.m: Change foreign_header_info to foreign_decl_info. Change definitions of foreign_decl_code and foreign_body_code to include the language. compiler/llds_out.m: Reject code that is not C when writing out LLDS. compiler/make_hlds.m: Add foreign language information to the bodys and decls when creating them. Update error messages to refer to foreign code instead of C code. Use foreign.m to generate interfaces from the backend language to the foreign language. Hardcode C as the language for fact tables. compiler/mercury_compile.m: Collect the appropriate foreign language code together for output to the backend. compiler/intermod.m: compiler/mercury_to_mercury.m: Output the foreign language string. Change a few names to foreign_code instead of c_code. compiler/ml_code_gen.m: Filter the foreign language bodys and decls so that we only get the ones we are in (given by the use-foreign-language option). compiler/mlds_to_c.m: Abort if we are given non C foreign language code to output (we might handle it here in future, or we might handle it elsewhere). compiler/mlds_to_ilasm.m: Abort if we are given non MC++ foreign language code to output (we might handle it here in future, or we might handle it elsewhere). compiler/options.m: compiler/handle_options.m: Add --use-foreign-language as a user option to control the preferred foreign language to use as the implementation of this module. Add backend_foreign_language as an internal option which stores the foreign language that the compiler will use as a default (e.g. the natural foreign language for the backend to use). Set the preferred backend foreign language depending on the target. compiler/prog_data.m: Add managedcplusplus as a new alternative for the foreign_language type. Make c_header_code into foreign_decl. Give the foreign language for foreign_code as an attribute of the code. Write code to turn attributes into a list of strings (suitable for writing out by mercury_to_mercury). This fixes what appears to be a bug in tabled_for_io -- the tabled_for_io attribute was not being written out. Structure the code so this bug is difficult to repeat in future. compiler/prog_io_pragma.m: Parse foreign_decl. Turn c_header_code into a special case of foreign_decl. compiler/*.m: Remove the language field from pragma_foreign_code, it is now an attribute of the code. Various type and variable renamings. tests/invalid/pragma_c_code_and_clauses1.err_exp: tests/invalid/pragma_c_code_dup_var.err_exp: tests/warnings/singleton_test.exp: Update the tests to reflect the new error messages talking about :- pragma foreign_code rather than :- pragma c_code. |
||
|
|
4fd150c78f |
Change the MLDS calling convention so that for model_det Mercury functions
Estimated hours taken: 6 Change the MLDS calling convention so that for model_det Mercury functions with output mode results, the function results get mapped to MLDS function return values rather than to by-ref parameters. The rationale for this is to make interoperability simpler (especially for the IL & Java back-ends). compiler/lambda.m: Change the rules for compatibility of closures so that for MLDS grades function closures are not treated as compatible with predicate closures. compiler/ml_code_util.m: Change ml_gen_params so that it takes a pred_or_func parameter, and for model_det functions it maps the output-moded function results to MLDS return values. compiler/ml_code_gen.m: For model_det functions with output mode results, return the function result by value. Rename the `output_vars' field of the ml_gen_info as `byref_output_vars'. compiler/ml_call_gen.m: Pass down the pred_or_func parameter to ml_gen_params. For calls to model_det functions with output mode results, return the function result by value. compiler/hlds_goal.m: Add new predicate generic_call_pred_or_func, for use by ml_call_gen.m. compiler/ml_unify_gen.m: Modify the code for generating wrapper functions for closures so that it reflects the new calling convention for Mercury functions. compiler/mlds.m: compiler/mlds_to_c.m: compiler/ml_code_gen.m: Don't handle model_det functions with output mode results specially in `pragma export' anymore, since the internal MLDS form now has the same prototype as the exported one. |
||
|
|
82378c381b |
Allow polymorphic ground insts. This change assumes that all inst
Estimated hours taken: 80 Allow polymorphic ground insts. This change assumes that all inst parameters in the mode declaration for a predicate or function are constrained to be ground-shared. This is a temporary measure until we work out a nice syntax to allow the programmer to tell the compiler that certain inst parameters may be treated as ground insts. Since we don't currently support unconstrained inst parameters anyway, this shouldn't cause a problem. TODO: - Add syntax, something like `:- mode p(in(I)) <= ground(I).', to specify that an inst parameter represents a ground inst. - Allow abstract ground insts that are treated in a similar way to what we've done here with ground inst parameters. - Make mode checking more efficient (i.e. rewrite the mode system). compiler/inst.m: Add a new alternative for ground insts: `constrained_inst_var(inst_var)'. Define the type `inst_var_sub'. compiler/inst_match.m: Change inst_matches_initial so that it: - handles constrained_inst_vars correctly; - returns the inst_var substitutions necessary for the call; - handles inst_matches_initial(ground(...), bound(...), ...) properly (this requires knowing the type of the variable). The last change has also been made for inst_matches_final and inst_matches_binding. However, the check is disabled for now because, without alias tracking, the mode checker becomes too conservative. compiler/hlds_pred.m: compiler/mode_info.m: compiler/simplify.m: compiler/det_util.m: Include the inst_varset in the proc_info, mode_info and simplify_info. Add a vartypes field to the det_info. Remove the vartypes field from the simplify_info since it is now in the det_info. Use record syntax for these data structures and their access predicates to make future changes easier. compiler/prog_io.m: When processing pred and func mode declarations, convert all inst_var(V) insts to ground(shared, constrained_inst_var(V)). compiler/prog_data.m: compiler/hlds_data.m: compiler/make_hlds.m: compiler/mode_util.m: Use inst_vars instead of inst_params. compiler/modes.m: compiler/modecheck_call.m: compiler/unique_modes.m: compiler/mode_util.m: When checking or recomputing initial insts of a call, build up an inst_var substitution (using the modified inst_matches_initial) and apply this to the final insts of the called procedure before checking/recomputing them. compiler/mode_util.m: Make sure that recompute_instmap_delta recomputes the instmap_deltas for lambda_goals even when RecomputeAtomic = no. compiler/type_util.m: Add a new predicate, type_util__cons_id_arg_types which nondeterministically returns the cons_ids and argument types for a given type. Add a new predicate type_util__get_consid_non_existential_arg_types which is the same as type_util__get_existential_arg_types except that it fails rather than aborting for existenially typed arguments. compiler/accumulator.m: compiler/check_typeclass.m: compiler/clause_to_proc.m: compiler/common.m: compiler/continuation_info.m: compiler/deforest.m: compiler/det_analysis.m: compiler/det_report.m: compiler/det_util.m: compiler/dnf.m: compiler/follow_code.m: compiler/goal_store.m: compiler/goal_util.m: compiler/higher_order.m: compiler/inst_util.m: compiler/instmap.m: compiler/lambda.m: compiler/magic.m: compiler/magic_util.m: compiler/mercury_to_mercury.m: compiler/modecheck_unify.m: compiler/module_qual.m: compiler/pd_info.m: compiler/pd_util.m: compiler/polymorphism.m: compiler/post_typecheck.m: compiler/prog_io_util.m: compiler/prog_rep.m: compiler/saved_vars.m: compiler/stack_layout.m: compiler/table_gen.m: compiler/unify_proc.m: compiler/unneeded_code.m: compiler/unused_args.m: Pass inst_varsets and types where needed. Changes to reflect change in definition of the inst data type. compiler/inlining.m: Recompute the instmap deltas for a procedure after inlining. This bug showed up compiling tests/hard_coded/lp.m with inlining and deforestation turned on: deforestation was getting incorrect instmap deltas from inlining, causing the transformation to break mode-correctness. It has only just shown up because of the added call to `inst_matches_initial' from within `recompute_instmap_delta'. tests/invalid/Mmakefile: tests/invalid/unbound_inst_var.m: tests/invalid/unbound_inst_var.err_exp: tests/valid/Mmakefile: tests/valid/unbound_inst_var.m: Move the `unbound_inst_var' test case from `invalid' to `valid' and extend its coverage a bit. |
||
|
|
10a433374b |
Restore the clipping of instmap deltas to the nonlocals set, undoing most of
Estimated hours taken: 16 Restore the clipping of instmap deltas to the nonlocals set, undoing most of a recent change of mine. (The general cleanup parts of that change, e.g. added field names, stay.) The reason is that the previous diff changed the clipping algorithm only where the instmap deltas were being originally computed, whereas for completeness you also need to do this in places where they are recomputed after optimizations such as deforestation, and doing so would have required changes in several more parts of the compiler, which would have been tedious to maintain. Instead, I now use a different technique to solve the original problem. This technique is to change liveness.m so that it considers the first occurrence of any type(class)info variable to be a value giving occurrence even if the variable is not referred to by the instmap delta of the goal. This assumption is true in the current polymorphism design and in any extension of it that I can foresee. Type(class)info variables will therefore be born in the first goal that refers to them, even if they are not in the nonlocal set of that goal. If there are any later references to variables whose type is described in whole or in part by that typeinfo, the typeinfo will die at the last such reference, otherwise it will die in the goal in which it is born. From now on, the only module of the compile which needs to worry about the extension of the life of type(class)info variables beyond the goals referring to them is liveness.m. compiler/quantification.m: compiler/mode_info.m: compiler/mode_util.m: Reset the interfaces of quantification and mode checking to the old ones, which do not require knowing typeinfo_liveness and typeinfo varmaps. compiler/modes.m: compiler/unique_modes.m: Clip instmap deltas to the nonlocals, not the completed nonlocals. compiler/hlds_goal.m: Add a utility pred which gets the nonlocals from a goal, not a goal_info. compiler/liveness.m: Add special handling for type(class)info vars as described above. compiler/accumulator.m: compiler/cse_detection.m: compiler/deforest.m: compiler/follow_code.m: compiler/higher_order.m: compiler/lambda.m: compiler/magic.m: compiler/make_hlds.m: compiler/pd_util.m: compiler/polymorphism.m: compiler/saved_vars.m: compiler/simplify.m: compiler/unify_proc.m: compiler/unify_proc.m: compiler/unneeded_code.m: compiler/unused_args.m: Use the reset interfaces of quantification and mode checking, and eliminate redundant local copies of goal_get_nonlocals. |
||
|
|
c192d50143 |
Add preliminary support for a new pragma:
Estimated hours taken: 15 Add preliminary support for a new pragma: :- pragma foreign_code(LanguageString, .... <same args as c_code>). This is intended to be the eventual replacement of pragma c_code. Presently the only valid language is "C". The existing pragma c_code is simply turned into pragma foreign_code. pragma foreign_code is not a supported pragma at the moment. There are several other changes that are intended (for example, foreign_code will be impure by default). This change also changes the HLDS goal pragma_c_code/7 to pragma_foreign_code/8 where the extra argument is the foreign language. Any code currently generating output for pragma C code simply checks that the foreign language is set to "c". Since this is the only alternative of the type foreign_language, it will always succeed. However when new alternatives are added it should be fairly easy to find where the changes need to be made. Some type names and predicate names have also been updated, however there are many more that haven't yet been touched. compiler/prog_io_pragma.m: Accept the new syntax. Turn the old syntax into the new item. compiler/hlds_goal.m: Change pragma_c_code/7 to pragma_foreign_code/8. Define the foreign_language type. compiler/llds.m: Change user_c_code/2 to user_foreign_code/3. compiler/*.m: Update the rest of the compiler to handle these types. Make a few small changes to update variable names, predicate names and type names. |
||
|
|
891b89e650 |
Make sure that all parts of the compiler use a consistent idea of which
Estimated hours taken: 4 Make sure that all parts of the compiler use a consistent idea of which predicates should have typeinfo liveness applied to their bodies when the relevant option is set. This set is all predicates except the few in the builtin modules which do not have the required arguments. compiler/hlds_pred.m: Expand the interface of the should_use_typeinfo_liveness family of predicates to include an id of the predicate in question, to enable them to test whether the pred is a no_type_info_builtin. compiler/hlds_pred.m: compiler/polymorphism.m: Move the list of no_type_info_builtins from polymorphism to hlds_pred, since body_should_use_typeinfo_liveness also needs it now. compiler/*.m: Minor changes to pass the right arguments to predicates of the should_use_typeinfo_liveness family, directly or indirectly. |
||
|
|
a0a6daa06f |
If we are using typeinfo liveness, then clip the instmap delta fields in
Estimated hours taken: 16 If we are using typeinfo liveness, then clip the instmap delta fields in goal_infos not to the nonlocals, but to the nonlocals plus the type info or typeclass info variables needed to describe the types of the nonlocals (this set is now called the "typeinfo completed nonlocals"). This is necessary for the proper handling of code such as resume_typeinfos.m in tests/debugger. This involves a call to a procedure with an existentially typed argument, where the returned argument is processed only in ways that do not need the typeinfo describing it. The compiler therefore considered the typeinfo to be local to the call binding it. Its binding was therefore not recorded in the instmap delta, which in turn meant that in the absence of a value-giving occurrence, liveness.m considered it not to be born anywhere. On the other hand, with typeinfo liveness, occurrences of the argument are also considered value-using occurrences of the typeinfo, so the typeinfo was considered to die at the last such occurrence. Therefore the typeinfo died without being born. The current code generator is sloppy enough not to mind this, but the upcoming eager code generator isn't. compiler/hlds_goal.m: Document the new semantics of instmap_deltas. compiler/quantification.m: compiler/mode_util.m: compiler/modes.m: compiler/unique_modes.m: If typeinfo liveness is set, include the relevant typeinfo variables in the set of variables the instmap is limited to. compiler/modes.m: Delete some unused predicates. compiler/hlds_pred.m: Centralize the code for (maybe) completing a set of vars with the set of typeinfo vars describing their types here. compiler/call_gen.m: compiler/live_vars.m: Use the central code in hlds_pred.m. compiler/accumulator.m: compiler/cse_detection.m: compiler/follow_code.m: compiler/higher_order.m: compiler/lambda.m: compiler/liveness.m: compiler/magic.m: compiler/make_hlds.m: compiler/mode_info.m: compiler/pd_util.m: compiler/polymorphism.m: compiler/simplify.m: compiler/unify_proc.m: compiler/unneeded_code.m: compiler/unused_args.m: Call quantification and/or mode_util with the right arguments. In some cases, introduce field names, predmode declarations and/or shorter type names to make this change easier. |
||
|
|
082b084ac7 |
Implement static allocation of grounds terms for the
Estimated hours taken: 20 Implement static allocation of grounds terms for the MLDS back-end. compiler/hlds_goal.m: Change the `maybe(cell_to_reuse)' field of `construct' unifications from a `maybe(cell_to_reuse)' into a `how_to_construct' type with three alternatives, `reuse_cell(cell_to_reuse)', `construct_dynamically', and the new alternative `construct_statically(static_cons)'. `static_cons' is a new type that provides information on how to construct a static ground term. compiler/goal_util.m: compiler/lambda.m: compiler/magic.m: compiler/magic_util.m: compiler/modecheck_unify.m: compiler/polymorphism.m: compiler/quantification.m: Trivial changes to handle the change to the `maybe(cell_to_reuse)' field of `construct' unifications. compiler/mark_static_terms.m: New module. This traverses the HLDS and marks terms which can be construction unifications which can be allocated statically with the `construct_statically' flag. compiler/mercury_compile.m: For the MLDS back-end, if the static_ground_terms option is set, invoke the mark_static_terms pass. compiler/ml_unify_gen.m: When generating code for construction unifications, pass down the `how_to_reuse' field. If this is `construct_statically', then generate a local initialized static constant, rather than using `new_object' to allocate the memory dynamically. (This required some fairly substantial reorganization. I changed ml_gen_construct so that no_tag types and compound terms, including closures, are handled separately from constants. I moved some of the code from ml_gen_construct_rep into ml_gen_construct, and the remainder, which deals with constants, was simplified and renamed ml_get_constant. The code for constructing closures was moved into a separate predicate ml_gen_closure, and was simplified by elimination of some code duplication. I also added a bunch of new procedures for generating static constants.) compiler/mlds.m: Add a new alternative `mlds__array_type' to the mlds__type type. This is needed by ml_unify_gen.m for static constants. compiler/mlds_to_c.m: Handle `mlds__array_type'. This required splitting mlds_output_type into mlds_output_type_prefix and mlds_output_type_suffix. compiler/ml_code_util.m: Reorder the code slightly, to improve readability. |
||
|
|
c48050a71a |
Fix a bug: it wasn't calculating the non-locals correctly.
Estimated hours taken: 0.75 compiler/lambda.m: Fix a bug: it wasn't calculating the non-locals correctly. This bug caused the MLDS back-end to generate incorrect code (which gcc -Wshadow warned about) for compiler/call_gen.m. |
||
|
|
245976353d |
Fix some bugs in lambda.m.
Estimated hours taken: 4 Fix some bugs in lambda.m. compiler/lambda.m: Fix a bug: in some cases (the cases when it avoided introducing a new predicate), lambda.m was not setting the `address_taken' field correctly. A fix for the MLDS back-end: the optimization of assuming that the calling convention for `model_det' is compatible with the calling convention for `model_non' is not valid if the `--high-level-code' option is set. Update an obsolete comment. compiler/hlds_pred.m: Add a new predicate `proc_info_set_address_taken', for use by lambda.m. tests/hard_coded/deep_copy_bug.m: tests/hard_coded/deep_copy_bug.exp: Add some more regression tests to test the above-mentioned bugs. |
||
|
|
5940825cdb |
Implement syntax for getting and setting fields of constructors.
Estimated hours taken: 70 Implement syntax for getting and setting fields of constructors. compiler/make_hlds.m: Add information about field definitions to the module_info. Check that user-defined field access functions for exported fields are also exported, otherwise predicates in other modules could use a different method to access a field than predicates in module defining the field. Add a `predicate preds_add_implicit_report_error' to allow that check to be performed for functions which are added to the module_info by some means other than a `:- func' declaration. Parse field access goals and expressions. Add predicates `insert_arg_unifications_with_supplied_contexts', and `append_arg_unification', which allow more control over the contexts given to the added unifications. These are useful because the field value for an update is really an argument of the inner-most update function call, while the input term is an argument of the outer-most function call. compiler/prog_io_dcg.m: Allow DCG goals of the form `:=(DCGArg)', which unifies `DCGArg' with the output DCG argument, ignoring the input DCG argument. The rationale for this change is that if we have convenient syntax for updating parts of a DCG argument, we should also have convenient syntax for updating the whole DCG argument. compiler/typecheck.m: Add a default clause for field access functions for which the user has supplied type and mode declarations but no clauses. Typecheck field access function calls. Use `io__write_list' to remove some duplication of code to write out comma separated lists of error descriptions. compiler/post_typecheck.m: Expand field accessor goals into the equivalent unifications. They are expanded inline rather than generating new get and set predicates for field name to avoid having to work out how to mode the generated predicates. Remove an unnecessary goal traversal to qualify function calls and constructors. That code is now called from purity.m. compiler/prog_data.m: compiler/prog_io.m: compiler/mercury_to_goedel.m: compiler/mercury_to_mercury.m: Store field names as `sym_name's rather than strings. Use a `maybe' type rather than an empty string to designate an unlabelled field. compiler/hlds_data.m: Define data structures to hold information about the field names visible in a module. compiler/hlds_module.m: Add a field to type module_info to hold information about the fields visible in a module. compiler/hlds_pred.m: Add predicates to identify field access function names, and to handle the arguments of field access functions. compiler/make_hlds.m: compiler/hlds_goal.m: compiler/modecheck_call.m: compiler/higher_order.m: compiler/purity.m: compiler/polymorphism.m: compiler/dnf.m: compiler/cse_detection.m: compiler/lambda.m: Move `create_atomic_unification' from make_hlds.m to hlds_goal.m because it is used by several other modules. compiler/hlds_goal.m: Add a version of goal_info_init which takes the context of the goal, for use by make_hlds.m. compiler/type_util.m: Add a predicate `type_util__get_type_and_cons_defn' to get the hlds_type_defn and hlds_cons_defn for a user-defined constructor. compiler/prog_util.m: Add predicates to add and remove prefixes or suffixes from the unqualified part of a sym_name. compiler/prog_out.m: Add a predicate to convert a `sym_name/arity' to a string. compiler/hlds_out.m: Add `hlds_out__simple_call_id_to_string' to convert a `pred_or_func - sym_name/arity' to a string for use in error messages. compiler/purity.m: Thread through the pred_info so that the expansion of field accessor goals can add new variables. compiler/mercury_to_mercury.m: library/ops.m: Reduce precedence of `^/2' for use as a field name separator. Add operator `^'/1 to designate which side of the `:=' is the field name in a DCG field access goal. Add operator `:=/2' for field update expressions. doc/reference_manual.texi: Document the new syntax. doc/transition_guide.texi: Document the new operators. tests/hard_coded/Mmakefile: tests/hard_coded/record_syntax.m: tests/hard_coded/record_syntax.exp: tests/invalid/Mmakefile: tests/invalid/record_syntax_errors.m: tests/invalid/record_syntax_errors.err_exp: Test cases. |
||
|
|
d551dd1dc9 |
Handle quantification analysis of bi-implication (`<=>') goals correctly.
Estimated hours taken: 10
Handle quantification analysis of bi-implication (`<=>') goals correctly.
Previously we used to expand bi-implications before doing quantification
analysis, which stuffed up the results of quantification analysis for
those goals. We need to do quantification analysis first, and only
then can we expand bi-implications. In addition, elimination of double
negation needs to come after expansion of bi-implication, so I moved
that from make_hlds.m to purity.m.
compiler/hlds_goal.m:
Add a new alternative to the HLDS goal type for bi-implications.
Also add a new predicate negate_goal, for use by purity.m.
compiler/make_hlds.m:
Don't expand bi-implication here, instead just use the new
bi_implication/2 HLDS goal type.
Don't eliminated double negation here.
compiler/quantification.m:
Handle quantification for bi-implications.
Expand bi-implications.
compiler/purity.m:
Eliminate double negation.
compiler/hlds_out.m:
Add code to print out bi-implication goals.
compiler/*.m:
Trivial changes to handle the new bi_implication/2
alternative in the HLDS goal type.
compiler/notes/compiler_design.html:
Document the above changes.
tests/hard_coded/Mmakefile:
tests/hard_coded/quantifier2.m:
tests/hard_coded/quantifier2.exp:
A regression test for the above change.
|
||
|
|
01911fbc00 |
Clean up the code a bit: lambda__transform_lambda does not
Estimated hours taken: 0.5 compiler/lambda.m: Clean up the code a bit: lambda__transform_lambda does not need to be exported, since it isn't used elsewhere, and the code is in fact clearer if it is manually inlined into its caller (lambda__process_lambda). |
||
|
|
9136d4fc6d |
Fix a bug: when adding extra type_infos need for lambda procs,
Estimated hours taken: 4 compiler/lambda.m: Fix a bug: when adding extra type_infos need for lambda procs, we need to add extra type_infos for the lambda parameters too, not just for the the lambda goal's non-locals. This bug caused an internal compiler error when compiling extras/trailed_update/tests/var_test.m. |
||
|
|
3c2a19adfd |
Make closures always include layout information, not just in grades in which
Estimated hours taken: 51 Make closures always include layout information, not just in grades in which typeinfo liveness is turned on. This requires separating two notions, which were previously combined: - Body typeinfo liveness means that when a variable X is live, any typeinfo variables describing type variables that occur in the type of X must also be live. - Interface typeinfo liveness means that when the input arguments of a procedure include a polymorphically typed variable (e.g. X), typeinfo variables describing type variables that occur in the type of X must also be among the arguments. This change turns on interface typeinfo liveness for procedures that either have their address taken in the current module, or are exported and thus may have their address taken in some other module. compiler/hlds_pred.m: Centralize decisions wrt whether procedure interfaces and bodies use typeinfo liveness here. compiler/options.m: Rename the typeinfo_liveness option as body_typeinfo_liveness, since this reflects its new function. compiler/call_gen.m: compiler/higher_order.m: compiler/live_vars.m: compiler/liveness.m: compiler/unused_args.m: Use hlds_pred.m to make decisions about liveness. compiler/lambda.m: Always include the relevant typeinfos in the interfaces of procedures created for lambdas. compiler/continuation_info.m: compiler/stack_layout.m: compiler/unify_gen.m: Modify the predicates that record and use layout information about closures to always do so, since the necessary information is now always available about the interfaces of procedures which can be put into closures. Previously, they only did so if typeinfo_liveness was set. Also, generate information about the types of the variables in a closure from the pred_info's arg types field, not from the proc_info's var types field, because unlike the latter, it is valid even for imported predicates. compiler/hlds_out.m: Print the non-clause-related information in the clauses_info part of a pred_info (e.g. the type parameters) even if the predicate has no actual clauses. Simplify the code a bit by getting rid of a duplicate test. compiler/middle_rec.m: Require that the code generated for the base case not refer to any stack slots if this way of generating code is to be used. This is necessary because the base case is executed when the current procedure has no stack frame, and thus any references to stack slots would refer to and possibly overwrite the data in another procedure's frame. In the absence of requiring body typeinfo liveness for exported procedures, such references were not generated; in its presence, they were. However, we now require only interface liveness for exported procedures, so we can still use middle recursion for them. compiler/handle_options.m: Do not turn off middle_rec if (body) typeinfo liveness is turned on, now that the bug has been fixed. For polymorphic predicates, the base case will still contain references to stack slots, and thus the middle-rec optimization will not applied for them, but the optimization may apply to monomorphic predicates. compiler/passes_aux.m: Add the ability to call compiler passes with the procedure id as well as the predicate id of the procedure they are passed. tests/hard_coded/typeclasses/Mmakefile: Refer to --body-typeinfo-liveness instead of --typeinfo-liveness. |
||
|
|
e95a4f59a6 |
Don't require an `aditi_bottom_up' annotation for
Estimated hours taken: 0.25 compiler/lambda.m: Don't require an `aditi_bottom_up' annotation for aggregate input closures -- the interface in extras/aditi/aditi.m has not yet been changed. |
||
|
|
88c3e52881 |
Record in which predicate an assertion is used.
Estimated hours taken: 8
Record in which predicate an assertion is used.
compiler/accumulator.m:
compiler/lambda.m:
compiler/magic.m:
Initialise the assertions field in the new pred_info.
compiler/assertion.m:
An abstract interface to the assertion table (hopefully).
compiler/hlds_data.m:
Modify assertion_table_add_assertion to return the assert_id of the
inserted assertion.
compiler/hlds_pred.m:
Record in the pred_info the set of assertions that mention the pred.
compiler/post_typecheck.m:
Now record which predicates are used in assertions.
compiler/notes/compiler_design.html:
Document assertion.m
|
||
|
|
2725b1a331 |
Aditi update syntax, type and mode checking.
Estimated hours taken: 220
Aditi update syntax, type and mode checking.
Change the hlds_goal for constructions in preparation for
structure reuse to avoid making multiple conflicting changes.
compiler/hlds_goal.m:
Merge `higher_order_call' and `class_method_call' into a single
`generic_call' goal type. This also has alternatives for the
various Aditi builtins for which type declarations can't
be written.
Remove the argument types field from higher-order/class method calls.
It wasn't used often, and wasn't updated by optimizations
such as inlining. The types can be obtained from the vartypes
field of the proc_info.
Add a `lambda_eval_method' field to lambda_goals.
Add a field to constructions to identify which RL code fragment should
be used for an top-down Aditi closure.
Add fields to constructions to hold structure reuse information.
This is currently ignored -- the changes to implement structure
reuse will be committed to the alias branch.
This is included here to avoid lots of CVS conflicts caused by
changing the definition of `hlds_goal' twice.
Add a field to `some' goals to specify whether the quantification
can be removed. This is used to make it easier to ensure that
indexes are used for updates.
Add a field to lambda_goals to describe whether the modes were
guessed by the compiler and may need fixing up after typechecking
works out the argument types.
Add predicate `hlds_goal__generic_call_id' to work out a call_id
for a generic call for use in error messages.
compiler/purity.m:
compiler/post_typecheck.m:
Fill in the modes of Aditi builtin calls and closure constructions.
This needs to know which are the `aditi__state' arguments, so
it must be done after typechecking.
compiler/prog_data.m:
Added `:- type sym_name_and_arity ---> sym_name/arity'.
Add a type `lambda_eval_method', which describes how a closure
is to be executed. The alternatives are normal Mercury execution,
bottom-up execution by Aditi and top-down execution by Aditi.
compiler/prog_out.m:
Add predicate `prog_out__write_sym_name_and_arity', which
replaces duplicated inline code in a few places.
compiler/hlds_data.m:
Add a `lambda_eval_method' field to `pred_const' cons_ids and
`pred_closure_tag' cons_tags.
compiler/hlds_pred.m:
Remove type `pred_call_id', replace it with type `simple_call_id',
which combines a `pred_or_func' and a `sym_name_and_arity'.
Add a type `call_id' which describes all the different types of call,
including normal calls, higher-order and class-method calls
and Aditi builtins.
Add `aditi_top_down' to the type `marker'.
Remove `aditi_interface' from type `marker'. Interfacing to
Aditi predicates is now handled by `generic_call' hlds_goals.
Add a type `rl_exprn_id' which identifies a predicate to
be executed top-down by Aditi.
Add a `maybe(rl_exprn_id)' field to type `proc_info'.
Add predicate `adjust_func_arity' to convert between the arity
of a function to its arity as a predicate.
Add predicates `get_state_args' and `get_state_args_det' to
extract the DCG state arguments from an argument list.
Add predicate `pred_info_get_call_id' to get a `simple_call_id'
for a predicate for use in error messages.
compiler/hlds_out.m:
Write the new representation for call_ids.
Add a predicate `hlds_out__write_call_arg_id' which
replaces similar code in mode_errors.m and typecheck.m.
compiler/prog_io_goal.m:
Add support for `aditi_bottom_up' and `aditi_top_down' annotations
on pred expressions.
compiler/prog_io_util.m:
compiler/prog_io_pragma.m:
Add predicates
- `prog_io_util:parse_name_and_arity' to parse `SymName/Arity'
(moved from prog_io_pragma.m).
- `prog_io_util:parse_pred_or_func_name_and_arity to parse
`pred SymName/Arity' or `func SymName/Arity'.
- `prog_io_util:parse_pred_or_func_and_args' to parse terms resembling
a clause head (moved from prog_io_pragma.m).
compiler/type_util.m:
Add support for `aditi_bottom_up' and `aditi_top_down' annotations
on higher-order types.
Add predicates `construct_higher_order_type',
`construct_higher_order_pred_type' and
`construct_higher_order_func_type' to avoid some code duplication.
compiler/mode_util.m:
Add predicate `unused_mode/1', which returns `builtin:unused'.
Add functions `aditi_di_mode/0', `aditi_ui_mode/0' and
`aditi_uo_mode/0' which return `in', `in', and `out', but will
be changed to return `di', `ui' and `uo' when alias tracking
is implemented.
compiler/goal_util.m:
Add predicate `goal_util__generic_call_vars' which returns
any arguments to a generic_call which are not in the argument list,
for example the closure passed to a higher-order call or
the typeclass_info for a class method call.
compiler/llds.m:
compiler/exprn_aux.m:
compiler/dupelim.m:
compiler/llds_out.m:
compiler/opt_debug.m:
Add builtin labels for the Aditi update operations.
compiler/hlds_module.m:
Add predicate predicate_table_search_pf_sym, used for finding
possible matches for a call with the wrong number of arguments.
compiler/intermod.m:
Don't write predicates which build `aditi_top_down' goals,
because there is currently no way to tell importing modules
which RL code fragment to use.
compiler/simplify.m:
Obey the `cannot_remove' field of explicit quantification goals.
compiler/make_hlds.m:
Parse Aditi updates.
Don't typecheck clauses for which syntax errors in Aditi updates
are found - this avoids spurious "undefined predicate `aditi_insert/3'"
errors.
Factor out some common code to handle terms of the form `Head :- Body'.
Factor out common code in the handling of pred and func expressions.
compiler/typecheck.m:
Typecheck Aditi builtins.
Allow the argument types of matching predicates to be adjusted
when typechecking the higher-order arguments of Aditi builtins.
Change `typecheck__resolve_pred_overloading' to take a list of
argument types rather than a `map(var, type)' and a list of
arguments to allow a transformation to be performed on the
argument types before passing them.
compiler/error_util.m:
Move the part of `report_error_num_args' which writes
"wrong number of arguments (<x>; expected <y>)" from
typecheck.m for use by make_hlds.m when reporting errors
for Aditi builtins.
compiler/modes.m:
compiler/unique_modes.m:
compiler/modecheck_call.m:
Modecheck Aditi builtins.
compiler/lambda.m:
Handle the markers for predicates introduced for
`aditi_top_down' and `aditi_bottom_up' lambda expressions.
compiler/polymorphism.m:
Add extra type_infos to `aditi_insert' calls
describing the tuple to insert.
compiler/call_gen.m:
Generate code for Aditi builtins.
compiler/unify_gen.m:
compiler/bytecode_gen.m:
Abort on `aditi_top_down' and `aditi_bottom_up' lambda
expressions - code generation for them is not yet implemented.
compiler/magic.m:
Use the `aditi_call' generic_call rather than create
a new procedure for each Aditi predicate called from C.
compiler/rl_out.pp:
compiler/rl_gen.m:
compiler/rl.m:
Move some utility code used by magic.m and call_gen.m into rl.m.
Remove an XXX comment about reference counting being not yet
implemented - Evan has fixed that.
library/ops.m:
compiler/mercury_to_mercury.m:
doc/transition_guide.texi:
Add unary prefix operators `aditi_bottom_up' and `aditi_top_down',
used as qualifiers on lambda expressions.
Add infix operator `==>' to separate the tuples in an
`aditi_modify' call.
compiler/follow_vars.m:
Thread a `map(prog_var, type)' through, needed because
type information is no longer held in higher-order call goals.
compiler/table_gen.m:
Use the `make_*_construction' predicates in hlds_goal.m
to construct constants.
compiler/*.m:
Trivial changes to add extra fields to hlds_goal structures.
doc/reference_manual.texi:
Document Aditi updates.
Use @samp{pragma base_relation} instead of
@samp{:- pragma base_relation} throughout the Aditi documentation
to be consistent with other parts of the reference manual.
tests/valid/Mmakefile:
tests/valid/aditi_update.m:
tests/valid/aditi.m:
Test case.
tests/valid/Mmakefile:
Remove some hard-coded --intermodule-optimization rules which are
no longer needed because `mmake depend' is now run in this directory.
tests/invalid/*.err_exp:
Fix expected output for changes in reporting of call_ids
in typecheck.m.
tests/invalid/Mmakefile
tests/invalid/aditi_update_errors.{m,err_exp}:
tests/invalid/aditi_update_mode_errors.{m,err_exp}:
Test error messages for Aditi updates.
tests/valid/aditi.m:
tests/invalid/aditi.m:
Cut down version of extras/aditi/aditi.m to provide basic declarations
for Aditi compilation such as `aditi__state' and the modes
`aditi_di', `aditi_uo' and `aditi_ui'. Installing extras/aditi/aditi.m
somewhere would remove the need for these.
|
||
|
|
6af76f74ea |
Move some declarations around and make some other minor changes in order
Estimated hours taken: 4
Move some declarations around and make some other minor changes in order
to reduce the number and complexity of the intermodule dependencies.
In particular, ensure that prog_data.m does not need to import
hlds*.m, purity.m, rl.m, or term_util.m.
Since we expect to have only one input language, but potentially many
different target languages, the general design principle that we have adopted
in order to minimize the number of dependencies, particularly cyclic ones,
is that modules which belong to an earlier stage of compilation should
not depend on modules which belong to a later stage of compilation.
However, that design principle has not been adhered to in many cases.
This change reduces the number of such cases.
compiler/prog_data.m:
compiler/hlds_pred.m:
Move definition of the types `eval_method' and `pred_or_func'
from hlds_pred.m to prog_data.m.
Add new type `mode_num' to prog_data.m, defined by
`type mode_num == int', and change the proc_id argument of
the `unused_args' pragma to instead use this type instead of proc_id.
Delete the import of module hlds_pred from prog_data.m.
compiler/prog_data.m:
compiler/hlds_data.m:
Move the definition of the type `determinism' from hlds_data.m to
prog_data.m. Delete the import of module hlds_data from prog_data.m.
compiler/prog_data.m:
compiler/purity.m:
Move the definition of the type `purity' from purity.m to prog_data.m.
Add import of module prog_data to purity.m.
Delete the import of module purity from prog_data.m.
This is needed because purity.m imports hlds*.m and so by
importing purity.m, prog_data.m was indirectly importing hlds*.m.
(An possible alternative here would be to split purity.m into two
parts, called say purity.m and check_purity.m; of these, only the
second would import hlds*.m. But that would be a significantly
more complicated change.)
compiler/prog_data.m:
compiler/rl.m:
Move the definition of the `index_spec' and `index_type' types from
rl.m to prog_data.m. Delete the import of module rl from prog_data.m.
compiler/prog_data.m:
Add new types `pragma_arg_size_info' and `pragma_termination_info'
to prog_data.m. These are similar to the existing types
`arg_size_info' and `termination_info' defined in term_util.m,
except that they correspond more directly to what is actually
used in `pragma termination_info' declarations.
compiler/term_util.m:
Add new predicates `add_context_to_arg_size_info' and
`add_context_to_pragma_termination_info' for converting
the prog_data types to their corresponding term_util types.
compiler/make_hlds.m:
compiler/mercury_to_mercury.m:
compiler/prog_io_pragma.m:
compiler/unused_args.m:
Minor modifications to handle the change in the type of the
mode number argument in `unused_args' pragmas, and in the types
of the arg_size_info and termination_info arguments in
`termination_info' pragmas.
compiler/mercury_to_mercury.m:
compiler/prog_io_pragma.m:
compiler/inst.m:
compiler/make_hlds.m:
compiler/call_gen.m:
compiler/common.m:
compiler/continuation_info.m:
compiler/det_report.m:
compiler/hlds_pred.m:
compiler/lambda.m:
compiler/magic_util.m:
compiler/modecheck_call.m:
compiler/prog_io_goal.m:
compiler/prog_io_util.m:
compiler/prog_util.m:
compiler/termination.m:
Delete imports of modules purity, rl, and hlds_pred, or
move them from the interface section to the implementation section.
compiler/inst.m:
compiler/prog_io_util.m:
Add an XXX comment explaining why we need to import hlds_data.m.
|
||
|
|
ec86c88404 |
Merge in the changes from the existential_types_2 branch.
Estimated hours taken: 4 Merge in the changes from the existential_types_2 branch. This change adds support for mode re-ordering of code involving existential types. The change required modifying the order of the compiler passes so that polymorphism comes before mode analysis, so that mode analysis can check the modes of the `type_info' or `typeclass_info' variables that polymorphism introduces, so that it can thus re-order the code accordingly. This change also includes some more steps towards making existential data types work. In particular, you should be able to declare existentially typed data types, the compiler will generate appropriate unification and compare/3 routines for them, and deconstruction unifications for them should work OK. However, currently there's no way to construct them except via `pragam c_code', and we don't generate correct RTTI for them, so you can't use `io__write' etc. on them. library/private_builtin.m: compiler/accumulator.m: compiler/bytecode_gen.m: compiler/check_typeclass.m: compiler/clause_to_proc.m: compiler/code_util.m: compiler/common.m: compiler/dead_proc_elim.m: compiler/dependency_graph.m: compiler/det_analysis.m: compiler/det_report.m: compiler/follow_code.m: compiler/follow_vars.m: compiler/goal_util.m: compiler/higher_order.m: compiler/hlds_goal.m: compiler/hlds_out.m: compiler/hlds_pred.m: compiler/intermod.m: compiler/lambda.m: compiler/live_vars.m: compiler/magic.m: compiler/make_hlds.m: compiler/mercury_compile.m: compiler/mercury_to_c.m: compiler/mode_errors.m: compiler/mode_info.m: compiler/mode_util.m: compiler/modecheck_call.m: compiler/modecheck_unify.m: compiler/modes.m: compiler/pd_cost.m: compiler/polymorphism.m: compiler/post_typecheck.m: compiler/purity.m: compiler/quantification.m: compiler/rl_exprn.m: compiler/rl_key.m: compiler/simplify.m: compiler/table_gen.m: compiler/term_traversal.m: compiler/type_util.m: compiler/typecheck.m: compiler/unify_gen.m: compiler/unify_proc.m: compiler/unique_modes.m: compiler/unused_args.m: compiler/notes/compiler_design.html: doc/reference_manual.texi: tests/hard_coded/typeclasses/Mmakefile: tests/hard_coded/typeclasses/existential_data_types.m: tests/hard_coded/typeclasses/existential_data_types.exp: tests/warnings/simple_code.exp: tests/hard_coded/Mmakefile: tests/term/arit_exp.trans_opt_exp: tests/term/associative.trans_opt_exp: tests/term/pl5_2_2.trans_opt_exp: tests/term/vangelder.trans_opt_exp: tests/term/arit_exp.trans_opt_exp: tests/term/associative.trans_opt_exp: tests/term/pl5_2_2.trans_opt_exp: tests/term/vangelder.trans_opt_exp: tests/invalid/errors2.err_exp2: tests/invalid/prog_io_erroneous.err_exp2: tests/invalid/type_inf_loop.err_exp2: tests/invalid/types.err_exp2: tests/invalid/polymorphic_unification.err_exp: tests/invalid/Mmakefile: tests/warnings/simple_code.exp: tests/debugger/queens.exp: tests/hard_coded/Mmakefile: tests/hard_coded/existential_reordering.m: tests/hard_coded/existential_reordering.exp: Merge in the changes from the existential_types_2 branch. |
||
|
|
c6812299c2 |
Remove support for --args simple. We don't use it, we won't use it even for
Estimated hours taken: 4.5 Remove support for --args simple. We don't use it, we won't use it even for experiments, and it is unnecessary complication. If anybody were using --args simple, this would need bootstrapping, but since nobody does, there is no need, and this can be committed as an ordinary change. compiler/options.m: doc/user_guide.texi: scripts/*.in: scripts/*.sh-subr: Remove the --args option. compiler/globals.m: Remove the args_method global and its access predicates. compiler/handle_options.m: Don't set the args_method global from the option. compiler/arg_info.m: Remove support for --args simple. This allows us to remove a now redundant argument from an exported predicate. compiler/mercury_compile.m: Remove the code for passing -DCOMPACT_ARGS to the C compiler. compiler/bytecode_gen.m: compiler/fact_table.m: compiler/follow_vars.m: compiler/live_vars.m: compiler/call_gen.m: Don't pass the unnecessary argument to arg_info. compiler/call_gen.m: compiler/unify_gen.m: Remove now unnecessary assertions. compiler/hlds_pred.m: Don't include an args_method in proc_infos; instead, include a slot that says whether the procedure's address is taken or not. (In most cases, this determined whether the args_method was simple or compact.) We will need this bool in the near future (when we generate layout structures for procedures whose address is taken). Modify the signatures of exported predicates to accommodate this change to the data structure. compiler/hlds_out.m: Print the new slot, not the args_method. compiler/lambda.m: When creating procedures from lambdas, set the address-taken slot to address_is_taken instead of setting up its args_method. compiler/make_hlds.m: Minor changes to conform to the changes in the signatures of the predicates exported from hlds_pred.m. compiler/check_typeclass.m: compiler/clause_to_proc.m: compiler/dnf.m: compiler/magic.m: compiler/magic_util.m: compiler/modecheck_call.m: compiler/pd_info.m: compiler/post_typecheck.m: compiler/unify_gen.m: Minor changes to conform to the changes in the signatures of the predicates exported from hlds_pred.m and make_hlds.m. runtime/mercury_type_info.h: Remove the conditional definition of the macros that provided an argument-method-independent way of referring to the registers holding the inputs and outputs of e.g. unification procedures. We don't need the independence anymore, and using registers instead of macros in the code ensures that maintainers are aware of register reuse issues (e.g. they copy an input from r1 before overwriting it with an output). runtime/mercury_conf_param.h: runtime/mercury_grade.h: Remove support for the args method component of the grade. runtime/mercury_ho_call.c: runtime/mercury_tabling.c: library/*.m: Conform to the changes in runtime/mercury_type_info.h by effectively applying the #defines appropriate to compact args by hand. Remove code and data structures only needed for simple args. Remove comments needed only in the presence of uncertainty about the args method. |
||
|
|
18430aaef1 |
Aditi compilation.
Estimated hours taken: 1200
Aditi compilation.
compiler/options.m:
The documentation for these is commented out because the Aditi
system is not currently useful to the general public.
--aditi: enable Aditi compilation.
--dump-rl: write the intermediate RL to `<module>.rl_dump'.
--dump-rl-bytecode: write a text version of the bytecodes
to `<module>.rla'
--aditi-only: don't produce a `.c' file.
--filenames-from-stdin: accept a list of filenames to compile
from stdin. This is used by the query shell.
--optimize-rl, --optimize-rl-cse, --optimize-rl-invariants,
--optimize-rl-index, --detect-rl-streams:
Options to control RL optimization passes.
--aditi-user:
Default owner of any Aditi procedures,
defaults to $USER or "guest".
--generate-schemas:
write schemas for base relations to `<module>'.base_schema
and schemas for derived relations to `<module>'.derived_schema.
This is used by the query shell.
compiler/handle_options.m:
Handle the default for --aditi-user.
compiler/hlds_pred.m:
compiler/prog_data.m:
compiler/prog_io_pragma.m:
compiler/make_hlds.m:
Add some Aditi pragma declarations - `aditi', `supp_magic', `context',
`naive', `psn' (predicate semi-naive), `aditi_memo', `aditi_no_memo',
`base_relation', `owner' and `index'.
Separate out code to parse a predicate name and arity.
compiler/hlds_pred.m:
Add predicates to identify Aditi procedures.
Added markers `generate_inline' and `aditi_interface', which
are used internally for Aditi code generation.
Add an `owner' field to pred_infos, which is used for database
security checks.
Add a field to pred_infos to hold the list of indexes for a base
relation.
compiler/make_hlds.m:
Some pragmas must be exported if the corresponding predicates
are exported, check this.
Make sure stratification of Aditi procedures is checked.
Predicates with a mode declaration but no type declaration
are no longer assumed to be local.
Set the `do_aditi_compilation' field of the module_info if there
are any local Aditi procedures or base relations.
Check that `--aditi' is set if Aditi compilation is required.
compiler/post_typecheck.m:
Check that every Aditi predicate has an `aditi__state' argument,
which is used to ensure sequencing of updates and that Aditi
procedures are only called within transactions.
compiler/dnf.m:
Changed the definition of disjunctive normal form slightly
so that a call followed by some atomic goals not including
any database calls is considered atomic. magic.m can handle
this kind of goal, and it results in more efficient RL code.
compiler/hlds_module.m:
compiler/dependency_graph.m:
Added dependency_graph__get_scc_entry_points which finds
the procedures in an SCC which could be called from outside.
Added a new field to the dependency_info, the
aditi_dependency_ordering. This contains all Aditi SCCs of
the original program, with multiple SCCs merged where
possible to improve the effectiveness of differential evaluation
and the low level RL optimizations.
compiler/hlds_module.m:
Add a field to record whether there are any local Aditi procedures
in the current module.
Added versions of module_info_pred_proc_info and
module_info_set_pred_proc_info which take a pred_proc_id,
not a separate pred_id and proc_id.
compiler/polymorphism.m:
compiler/lambda.m:
Make sure that predicates created for closures in Aditi procedures
have the correct markers.
compiler/goal_util.m:
Added goal_util__switch_to_disjunction,
goal_util__case_to_disjunct (factored out from simplify.m)
and goal_util__if_then_else_to_disjunction. These are
require because supplementary magic sets can't handle
if-then-elses or switches.
compiler/type_util.m:
Added type_is_aditi_state/1.
compiler/mode_util.m:
Added partition_args/5 which partitions a list of arguments
into inputs and others.
compiler/inlining.m:
Don't inline memoed procedures.
Don't inline Aditi procedures into non-Aditi procedures.
compiler/intermod.m:
Handle Aditi markers.
Clean up handling of markers which should not appear in `.opt' files.
compiler/simplify.m:
Export a slightly different interface for use by magic.m.
Remove explicit quantifications where possible.
Merge multiple nested quantifications.
Don't report infinite recursion warnings for Aditi procedures.
compiler/prog_out.m:
Generalised the code to output a module list to write any list.
compiler/code_gen.m:
compiler/arg_info.m:
Don't process Aditi procedures.
compiler/mercury_compile.m:
Call magic.m and rl_gen.m.
Don't perform the low-level annotation passes on Aditi procedures.
Remove calls to constraint.m - sometime soon a rewritten version
will be called directly from deforestation.
compiler/passes_aux.m:
Add predicates to process only non-Aditi procedures.
compiler/llds.m:
compiler/llds_out.m:
Added new `code_addr' enum members, do_{det,semidet,nondet}_aditi_call,
which are defined in extras/aditi/aditi.m.
compiler/call_gen.m:
Handle generation of do_*_aditi_call.
compiler/llds_out.m:
Write the RL code for the module as a constant char array
in the `.c' file.
compiler/term_errors.m:
compiler/error_util.m:
Move code to describe predicates into error_util.m
Allow the caller to explicitly add line breaks.
Added error_util:list_to_pieces to format a list of
strings.
Reordered some arguments for currying.
compiler/hlds_out.m:
Don't try to print clauses if there are none.
runtime/mercury_init.h:
util/mkinit.c:
scripts/c2init.in:
Added a function `mercury__load_aditi_rl_code()' to the generated
`<module>_init.c' file which throws all the RL code for the program
at the database. This should be called at connection time by
`aditi__connect'.
Added an option `--aditi' which controls the output
`mercury__load_aditi_rl_code()'.
compiler/notes/compiler_design.html:
Document the new files.
Mmakefile:
bindist/Mmakefile:
Don't distribute extras/aditi yet.
New files:
compiler/magic.m:
compiler/magic_util.m:
Supplementary magic sets transformation. Report errors
for constructs that Aditi can't handle.
compiler/context.m:
Supplementary context transformation.
compiler/rl_gen.m:
compiler/rl_relops.m:
Aditi code generation.
compiler/rl_info.m:
Code generator state.
compiler/rl.m:
Intermediate RL representation.
compiler/rl_util:
Predicates to collect information about RL instructions.
compiler/rl_dump.m:
Print out the representation in rl.m.
compiler/rl_opt.m:
Control low-level RL optimizations.
compiler/rl_block.m:
Break a procedure into basic blocks.
compiler/rl_analyse.m:
Generic dataflow analysis for RL procedures.
compiler/rl_liveness.m:
Make sure all relations are initialised before used, clear
references to relations that are no longer required.
compiler/rl_loop.m:
Loop invariant removal.
compiler/rl_block_opt.m:
CSE and instruction merging on basic blocks.
compiler/rl_key.m:
Detect upper/lower bounds for which a goal could succeed.
compiler/rl_sort.m:
Use indexing for joins and projections.
Optimize away unnecessary sorting and indexing.
compiler/rl_stream.m:
Detect relations which don't need to be materialised.
compiler/rl_code.m:
RL bytecode definitions. Automatically generated from the Aditi
header files.
compiler/rl_out.m:
compiler/rl_file.m:
Output the RL bytecodes in binary to <module>.rlo (for use by Aditi)
and in text to <module>.rla (for use by the RL interpreter).
Also output the schema information if --generate-schemas is set.
compiler/rl_exprn.m:
Generate bytecodes for join conditions.
extras/aditi/Mmakefile:
extras/aditi/aditi.m:
Definitions of some Aditi library predicates and the
interfacing and transaction processing code.
|
||
|
|
5c955626f2 |
These changes make var' and term' polymorphic.
Estimated hours taken: 20 These changes make `var' and `term' polymorphic. This allows us to make variables and terms representing types of a different type to those representing program terms and those representing insts. These changes do not *fix* any existing problems (for instance there was a messy conflation of program variables and inst variables, and where necessary I've just called varset__init(InstVarSet) with an XXX comment). NEWS: Mention the changes to the standard library. library/term.m: Make term, var and var_supply polymorphic. Add new predicates: term__generic_term/1 term__coerce/2 term__coerce_var/2 term__coerce_var_supply/2 library/varset.m: Make varset polymorphic. Add the new predicate: varset__coerce/2 compiler/prog_data.m: Introduce type equivalences for the different kinds of vars, terms, and varsets that we use (tvar and tvarset were already there but have been changed to use the polymorphic var and term). Also change the various kinds of items to use the appropriate kinds of var/varset. compiler/*.m: Thousands of boring changes to make the compiler type correct with the different types for type, program and inst vars and varsets. |
||
|
|
3e244090d7 |
Rework the handling of types in higher_order.m.
Estimated hours taken: 50 Rework the handling of types in higher_order.m. - Fix bugs in higher_order.m that stopped it working with --typeinfo-liveness. - Perform type and typeclass specialisation. compiler/polymorphism.m: Previously the type of typeclass_infos variables did not contain any information about the constraint about which the variable contains information. Now the type of a typeclass_info is `private_builtin:typeclass_info( private_builtin:constraint([ClassName, ConstrainedTypes]))'. This allows predicates such as type_list_subsumes to check that the class constraints match. Note that `private_builtin:constraint' has no declaration, so a lookup in the type definition map will fail. That's OK, because type_to_type_id will fail on it, so it will be treated as a type variable by any code which doesn't manipulate types directly. Added polymorphism__typeclass_info_class_constraint to get the class_constraint from a typeclass_info's type. This isn't used yet. Also, fix a bug in extract_type_info: an entry in the typeinfo_var_map was being overwritten using an entry from a dummy typevarset. Actually the optimization to overwrite the location of the type_info after extracting it from a typeclass_info was wrong because the type_info won't be in that location in other branches. compiler/higher_order.m: Rework the handling of type substitutions. Now the types of the called procedure are `inlined' into the calling procedure, rather than building up the types of the specialised version using the higher-order arguments. The advantage of this is that the code is a bit simpler and handles extra type_infos properly. The disadvantage is that the argument types for specialised versions may be more specific than they need to be, so in some cases more specialised versions will be created than before. Also, don't actually rebuild the higher-order terms in the specialised versions - just pass the terms through in case they are needed. Handle the extra typeinfos required for --typeinfo-liveness. Specialize calls to unify/2, index/2 and compare/3. Specialize class_method_calls. Specialize calls to the predicates in private_builtin.m which manipulate typeclass_infos. compiler/type_util.m: type_to_type_id now fails on the dummy `constraint' type. Remove typeinfos for non-variable types from the typeinfo_varmap after inlining and higher-order specialisation. compiler/inlining.m: Factor out some common code to handle type substitutions for use by higher_order.m. compiler/hlds_pred.m: Return the list of extra type_info variables added to the argument list. compiler/goal_util.m: Take a set of non-locals as an argument to goal_util__extra_nonlocal_typeinfos rather than extracting them from a goal. compiler/special_pred.m: Handle unmangled unify/compare/index in special_pred_get_type. compiler/base_type_layout.m: Don't generate references to the typeinfo for `private_builtin:constraint' - it doesn't exist. compiler/unused_args.m: Don't barf on specialised unification predicate names. compiler/options.m: Added options: `--type-specialization' (default off). `--higher-order-size-limit' - restrict the size of specialized versions produced by higher_order.m. `--disable-opt-for-trace' (default on) - where possible don't change the options to make the trace match the source code. compiler/handle_options.m: Don't disable higher_order.m when --typeinfo-liveness is set. Handle `--disable-opt-for-trace'. compiler/hlds_data.m: compiler/*.m: Add the instance number to `base_typeclass_info_const' cons_ids, so that higher_order.m can easily index into the list of instances for a class to find the methods. compiler/hlds_out.m: Use the correct varset when printing out the constraint proofs. Write the typeclass_info_varmap for each procedure. compiler/mercury_to_mercury.m: Print type variables with variable numbers. library/private_builtin.m: Add the argument to the typeclass_info type to hold the representation of the constraint. runtime/mercury_ho_call.c: Semidet and nondet class_method_calls where (0 < num_arg_typeclass_infos < 4) were aborting at runtime because arguments were being placed starting at r1 rather than at r(1 + num_arg_typeclass_infos). doc/user_guide.texi Document the new options. compiler/notes/compiler_design.html: Update the role of higher_order.m. tests/hard_coded/typeclasses/extra_typeinfo.m: Test case for the mercury_ho_call.c bug and the polymorphism.m extract_typeinfo bug and for updating the typeclass_info_varmap for specialised versions. |