Files
mercury/compiler/lambda.m
Julien Fischer a3352a6e5d Do not include :- import_module' and :- use_module' declarations
Estimated hours taken: 22
Branches: main

Do not include `:- import_module' and `:- use_module' declarations
in the implementation section of .int and .int2 files unless
the types that they export are required by the definition of
an equivalence type.  This should help prevent unnecessary
recompilations when new imports are made in the implementation
of modules.

Break up check_hlds.type_util so that predicates that do
not require access to the HLDS are placed in a new module,
parse_tree.prog_type.  The above change requires some of
these predicates.  This also removes one of the dependencies
between the parse_tree package on modules of the check_hlds
package.

Remove the remaining such dependency by moving
inst_constrains_unconstrained_var/1 from check_hlds.inst_util
to parse_tree.prog_mode.  None of the modules in parse_tree
now depend upon modules in check_hlds.

Modify the parser so that import_module declarations
that specify more than one module are replaced by multiple
import_module declarations, with one module per declaration.
This makes the above change easier to implement and is in
any case required by the upcoming diff for canonicalizing
module interfaces.  We also do the same for use_module and
include_module declarations.

compiler/modules.m:
	Don't import modules in the implementation section
	of interface files unless they are required by the
	definition of equivalence types.

compiler/prog_type.m:
	New module.  Move procedures from type_util that do
	not depend on the HLDS to here so that we can use them
	when generating interface files.

	XXX There are probably others that could be moved as
	well - I only moved those that were immediately useful.

compiler/type_util.m:
	Delete the procedures that have been moved to the
	new prog_type module.

compiler/prog_io.m:
	Remove the dependency on check_hlds.inst_util.

compiler/prog_io_typeclass.m:
compiler/equiv_type.m:
	Remove dependencies on check_hlds.type_util.

compiler/prog_util.m:
	Add a predicate sym_name_get_module_name/2 that is
	similar to sym_name_get_module_name/3 except that it
	fails if the input is an unqualified sym_name.

compiler/inst_util.m:
	Delete inst_contains_unconstrained_var/1 from this
	module and copy it to prog_mode.m.

compiler/parse_tree.m:
	Include the new module.

	Do not import the check_hlds package as all dependencies
	on this package have been removed.

compiler/*.m:
	Minor changes to conform to the above.

compiler/notes/compiler_design.html:
	Mention the new module.
2005-01-21 03:27:58 +00:00

619 lines
22 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1995-2005 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% file: lambda.m
% main author: fjh
% This module is a pass over the HLDS to deal with lambda expressions.
%
% Lambda expressions are converted into separate predicates, so for
% example we translate
%
% :- pred p(int::in) is det.
% p(X) :-
% V__1 = lambda([Y::out] is nondet, q(Y, X))),
% solutions(V__1, List),
% ...
% :- pred q(int::out, int::in) is nondet.
%
% into
%
% p(X) :-
% V__1 = '__LambdaGoal__1'(X)
% solutions(V__1, List),
% ...
%
% :- pred '__LambdaGoal__1'(int::in, int::out) is nondet.
% '__LambdaGoal__1'(X, Y) :- q(Y, X).
%
%
% Note that the mode checker requires that a lambda expression
% not bind any of the non-local variables such as `X' in the above
% example.
%
% Similarly, a lambda expression may not bind any of the type_infos for
% those variables; that is, none of the non-local variables
% should be existentially typed (from the perspective of the lambda goal).
% Now that we run the polymorphism.m pass before mode checking, this is
% also checked by mode analysis.
%
% It might be OK to allow the parameters of the lambda goal to be
% existentially typed, but currently that is not supported.
% One difficulty is that it's hard to determine here which type variables
% should be existentially quantified. The information is readily
% available during type inference, and really type inference should save
% that information in a field in the lambda_goal struct, but currently it
% doesn't; it saves the head_type_params field in the pred_info, which
% tells us which type variables where produced by the body, but for
% any given lambda goal we don't know whether the type variable was
% produced by something outside the lambda goal or by something inside
% the lambda goal (only in the latter case should it be existentially
% quantified).
% The other difficulty is that taking the address of a predicate with an
% existential type would require second-order polymorphism: for a predicate
% declared as `:- some [T] pred p(int, T)', the expression `p' must have
% type `some [T] pred(int, T)', which is quite a different thing to saying
% that there is some type `T' for which `p' has type `pred(int, T)' --
% we don't know what `T' is until the predicate is called, and it might
% be different for each call.
% Currently we don't support second-order polymorphism, so we
% don't support existentially typed lambda expressions either.
%
%-----------------------------------------------------------------------------%
:- module transform_hlds__lambda.
:- interface.
:- import_module hlds__hlds_module.
:- import_module hlds__hlds_pred.
:- pred lambda__process_module(module_info::in, module_info::out) is det.
:- pred lambda__process_pred(pred_id::in, module_info::in, module_info::out)
is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
% Parse tree modules
:- import_module parse_tree__prog_data.
:- import_module parse_tree__prog_mode.
:- import_module parse_tree__prog_util.
:- import_module parse_tree__prog_type.
% HLDS modules
:- import_module check_hlds__inst_match.
:- import_module check_hlds__mode_util.
:- import_module check_hlds__type_util.
:- import_module hlds__code_model.
:- import_module hlds__goal_util.
:- import_module hlds__hlds_data.
:- import_module hlds__hlds_goal.
:- import_module hlds__quantification.
% Misc
:- import_module libs__globals.
:- import_module libs__options.
:- import_module mdbcomp__prim_data.
% Standard library modules
:- import_module list, map, set.
:- import_module term, varset, bool, string, std_util, require.
:- type lambda_info --->
lambda_info(
prog_varset, % from the proc_info
map(prog_var, type), % from the proc_info
class_constraints, % from the pred_info
tvarset, % from the proc_info
inst_varset, % from the proc_info
map(tvar, type_info_locn),
% from the proc_info
% (typeinfos)
map(class_constraint, prog_var),
% from the proc_info
% (typeclass_infos)
pred_markers, % from the pred_info
pred_or_func,
string, % pred/func name
aditi_owner,
module_info,
bool % true iff we need to recompute the nonlocals
).
%-----------------------------------------------------------------------------%
% This whole section just traverses the module structure.
lambda__process_module(ModuleInfo0, ModuleInfo) :-
module_info_predids(ModuleInfo0, PredIds),
lambda__process_preds(PredIds, ModuleInfo0, ModuleInfo1),
% Need update the dependency graph to include the lambda predicates.
module_info_clobber_dependency_info(ModuleInfo1, ModuleInfo).
:- pred lambda__process_preds(list(pred_id)::in,
module_info::in, module_info::out) is det.
lambda__process_preds([], ModuleInfo, ModuleInfo).
lambda__process_preds([PredId | PredIds], ModuleInfo0, ModuleInfo) :-
lambda__process_pred(PredId, ModuleInfo0, ModuleInfo1),
lambda__process_preds(PredIds, ModuleInfo1, ModuleInfo).
lambda__process_pred(PredId, ModuleInfo0, ModuleInfo) :-
module_info_pred_info(ModuleInfo0, PredId, PredInfo),
ProcIds = pred_info_procids(PredInfo),
lambda__process_procs(PredId, ProcIds, ModuleInfo0, ModuleInfo).
:- pred lambda__process_procs(pred_id::in, list(proc_id)::in,
module_info::in, module_info::out) is det.
lambda__process_procs(_PredId, [], ModuleInfo, ModuleInfo).
lambda__process_procs(PredId, [ProcId | ProcIds], ModuleInfo0, ModuleInfo) :-
lambda__process_proc(PredId, ProcId, ModuleInfo0, ModuleInfo1),
lambda__process_procs(PredId, ProcIds, ModuleInfo1, ModuleInfo).
:- pred lambda__process_proc(pred_id::in, proc_id::in,
module_info::in, module_info::out) is det.
lambda__process_proc(PredId, ProcId, !ModuleInfo) :-
module_info_preds(!.ModuleInfo, PredTable0),
map__lookup(PredTable0, PredId, PredInfo0),
pred_info_procedures(PredInfo0, ProcTable0),
map__lookup(ProcTable0, ProcId, ProcInfo0),
lambda__process_proc_2(ProcInfo0, ProcInfo, PredInfo0, PredInfo1,
!ModuleInfo),
pred_info_procedures(PredInfo1, ProcTable1),
map__det_update(ProcTable1, ProcId, ProcInfo, ProcTable),
pred_info_set_procedures(ProcTable, PredInfo1, PredInfo),
module_info_preds(!.ModuleInfo, PredTable1),
map__det_update(PredTable1, PredId, PredInfo, PredTable),
module_info_set_preds(PredTable, !ModuleInfo).
:- pred lambda__process_proc_2(proc_info::in, proc_info::out,
pred_info::in, pred_info::out, module_info::in, module_info::out)
is det.
lambda__process_proc_2(!ProcInfo, !PredInfo, !ModuleInfo) :-
% grab the appropriate fields from the pred_info and proc_info
PredName = pred_info_name(!.PredInfo),
PredOrFunc = pred_info_is_pred_or_func(!.PredInfo),
pred_info_typevarset(!.PredInfo, TypeVarSet0),
pred_info_get_markers(!.PredInfo, Markers),
pred_info_get_class_context(!.PredInfo, Constraints0),
pred_info_get_aditi_owner(!.PredInfo, Owner),
proc_info_headvars(!.ProcInfo, HeadVars),
proc_info_varset(!.ProcInfo, VarSet0),
proc_info_vartypes(!.ProcInfo, VarTypes0),
proc_info_goal(!.ProcInfo, Goal0),
proc_info_typeinfo_varmap(!.ProcInfo, TVarMap0),
proc_info_typeclass_info_varmap(!.ProcInfo, TCVarMap0),
proc_info_inst_varset(!.ProcInfo, InstVarSet0),
MustRecomputeNonLocals0 = no,
% process the goal
Info0 = lambda_info(VarSet0, VarTypes0, Constraints0, TypeVarSet0,
InstVarSet0, TVarMap0, TCVarMap0, Markers, PredOrFunc,
PredName, Owner, !.ModuleInfo, MustRecomputeNonLocals0),
lambda__process_goal(Goal0, Goal1, Info0, Info1),
Info1 = lambda_info(VarSet1, VarTypes1, Constraints, TypeVarSet,
_, TVarMap, TCVarMap, _, _, _, _, !:ModuleInfo,
MustRecomputeNonLocals),
% check if we need to requantify
( MustRecomputeNonLocals = yes ->
implicitly_quantify_clause_body(HeadVars, _Warnings,
Goal1, Goal, VarSet1, VarSet, VarTypes1, VarTypes)
;
Goal = Goal1,
VarSet = VarSet1,
VarTypes = VarTypes1
),
% set the new values of the fields in proc_info and pred_info
proc_info_set_goal(Goal, !ProcInfo),
proc_info_set_varset(VarSet, !ProcInfo),
proc_info_set_vartypes(VarTypes, !ProcInfo),
proc_info_set_typeinfo_varmap(TVarMap, !ProcInfo),
proc_info_set_typeclass_info_varmap(TCVarMap, !ProcInfo),
pred_info_set_typevarset(TypeVarSet, !PredInfo),
pred_info_set_class_context(Constraints, !PredInfo).
:- pred lambda__process_goal(hlds_goal::in, hlds_goal::out,
lambda_info::in, lambda_info::out) is det.
lambda__process_goal(Goal0 - GoalInfo0, Goal, !Info) :-
lambda__process_goal_2(Goal0, GoalInfo0, Goal, !Info).
:- pred lambda__process_goal_2(hlds_goal_expr::in, hlds_goal_info::in,
hlds_goal::out, lambda_info::in, lambda_info::out) is det.
lambda__process_goal_2(unify(XVar, Y, Mode, Unification, Context), GoalInfo,
Unify - GoalInfo, !Info) :-
(
Y = lambda_goal(Purity, PredOrFunc, EvalMethod, _,
NonLocalVars, Vars, Modes, Det, LambdaGoal0)
->
% first, process the lambda goal recursively, in case it
% contains some nested lambda expressions.
lambda__process_goal(LambdaGoal0, LambdaGoal1, !Info),
% then, convert the lambda expression into a new predicate
lambda__process_lambda(Purity, PredOrFunc, EvalMethod, Vars,
Modes, Det, NonLocalVars, LambdaGoal1,
Unification, Y1, Unification1, !Info),
Unify = unify(XVar, Y1, Mode, Unification1, Context)
;
% ordinary unifications are left unchanged
Unify = unify(XVar, Y, Mode, Unification, Context)
).
% the rest of the clauses just process goals recursively
lambda__process_goal_2(conj(Goals0), GoalInfo, conj(Goals) - GoalInfo,
!Info) :-
lambda__process_goal_list(Goals0, Goals, !Info).
lambda__process_goal_2(par_conj(Goals0), GoalInfo,
par_conj(Goals) - GoalInfo, !Info) :-
lambda__process_goal_list(Goals0, Goals, !Info).
lambda__process_goal_2(disj(Goals0), GoalInfo, disj(Goals) - GoalInfo,
!Info) :-
lambda__process_goal_list(Goals0, Goals, !Info).
lambda__process_goal_2(not(Goal0), GoalInfo, not(Goal) - GoalInfo, !Info) :-
lambda__process_goal(Goal0, Goal, !Info).
lambda__process_goal_2(switch(Var, CanFail, Cases0), GoalInfo,
switch(Var, CanFail, Cases) - GoalInfo, !Info) :-
lambda__process_cases(Cases0, Cases, !Info).
lambda__process_goal_2(some(Vars, CanRemove, Goal0), GoalInfo,
some(Vars, CanRemove, Goal) - GoalInfo, !Info) :-
lambda__process_goal(Goal0, Goal, !Info).
lambda__process_goal_2(if_then_else(Vars, Cond0, Then0, Else0), GoalInfo,
if_then_else(Vars, Cond, Then, Else) - GoalInfo, !Info) :-
lambda__process_goal(Cond0, Cond, !Info),
lambda__process_goal(Then0, Then, !Info),
lambda__process_goal(Else0, Else, !Info).
lambda__process_goal_2(Goal @ generic_call(_, _, _, _), GoalInfo,
Goal - GoalInfo, !Info).
lambda__process_goal_2(Goal @ call(_, _, _, _, _, _), GoalInfo,
Goal - GoalInfo, !Info).
lambda__process_goal_2(Goal @ foreign_proc(_, _, _, _, _, _), GoalInfo,
Goal - GoalInfo, !Info).
lambda__process_goal_2(shorthand(_), _, _, !Info) :-
% these should have been expanded out by now
error("lambda__process_goal_2: unexpected shorthand").
:- pred lambda__process_goal_list(list(hlds_goal)::in, list(hlds_goal)::out,
lambda_info::in, lambda_info::out) is det.
lambda__process_goal_list([], [], !Info).
lambda__process_goal_list([Goal0 | Goals0], [Goal | Goals], !Info) :-
lambda__process_goal(Goal0, Goal, !Info),
lambda__process_goal_list(Goals0, Goals, !Info).
:- pred lambda__process_cases(list(case)::in, list(case)::out,
lambda_info::in, lambda_info::out) is det.
lambda__process_cases([], [], !Info).
lambda__process_cases([case(ConsId, Goal0) | Cases0],
[case(ConsId, Goal) | Cases], !Info) :-
lambda__process_goal(Goal0, Goal, !Info),
lambda__process_cases(Cases0, Cases, !Info).
:- pred lambda__process_lambda(purity::in, pred_or_func::in,
lambda_eval_method::in, list(prog_var)::in, list(mode)::in,
determinism::in, list(prog_var)::in, hlds_goal::in, unification::in,
unify_rhs::out, unification::out, lambda_info::in, lambda_info::out)
is det.
lambda__process_lambda(Purity, PredOrFunc, EvalMethod, Vars, Modes, Detism,
OrigNonLocals0, LambdaGoal, Unification0, Functor,
Unification, LambdaInfo0, LambdaInfo) :-
LambdaInfo0 = lambda_info(VarSet, VarTypes, _PredConstraints, TVarSet,
InstVarSet, TVarMap, TCVarMap, Markers, POF, OrigPredName,
Owner, ModuleInfo0, MustRecomputeNonLocals0),
% Calculate the constraints which apply to this lambda
% expression.
% Note currently we only allow lambda expressions
% to have universally quantified constraints.
map__keys(TCVarMap, AllConstraints),
map__apply_to_list(Vars, VarTypes, LambdaVarTypes),
list__map(prog_type__vars, LambdaVarTypes, LambdaTypeVarsList),
list__condense(LambdaTypeVarsList, LambdaTypeVars),
list__filter(lambda__constraint_contains_vars(LambdaTypeVars),
AllConstraints, UnivConstraints),
Constraints = constraints(UnivConstraints, []),
% existentially typed lambda expressions are not yet supported
% (see the documentation at top of this file)
ExistQVars = [],
LambdaGoal = _ - LambdaGoalInfo,
goal_info_get_nonlocals(LambdaGoalInfo, LambdaGoalNonLocals),
set__insert_list(LambdaGoalNonLocals, Vars, LambdaNonLocals),
goal_util__extra_nonlocal_typeinfos(TVarMap, TCVarMap, VarTypes,
ExistQVars, LambdaNonLocals, ExtraTypeInfos),
OrigVars = OrigNonLocals0,
(
Unification0 = construct(Var0, _, _, UniModes0, _, _, _)
->
Var = Var0,
UniModes1 = UniModes0
;
error("lambda__transform_lambda: weird unification")
),
set__delete_list(LambdaGoalNonLocals, Vars, NonLocals1),
% We need all the typeinfos, including the ones that are not used,
% for the layout structure describing the closure.
NewTypeInfos = ExtraTypeInfos `set__difference` NonLocals1,
NonLocals = NonLocals1 `set__union` NewTypeInfos,
% If we added variables to the nonlocals of the lambda goal,
% then we need to recompute the nonlocals for the procedure
% that contains it.
( \+ set__empty(NewTypeInfos) ->
MustRecomputeNonLocals = yes
;
MustRecomputeNonLocals = MustRecomputeNonLocals0
),
set__to_sorted_list(NonLocals, ArgVars1),
(
% Optimize a special case: replace
% `lambda([Y1, Y2, ...] is Detism,
% p(X1, X2, ..., Y1, Y2, ...))'
% where `p' has determinism `Detism' with
% `p(X1, X2, ...)'
%
% This optimization is only valid if the modes of the Xi are
% input, since only input arguments can be curried.
% It's also only valid if all the inputs in the Yi precede the
% outputs. It's also not valid if any of the Xi are in the Yi.
LambdaGoal = call(PredId0, ProcId0, CallVars, _, _, _) - _,
module_info_pred_proc_info(ModuleInfo0, PredId0, ProcId0,
Call_PredInfo, Call_ProcInfo),
(
EvalMethod = (aditi_bottom_up),
pred_info_get_markers(Call_PredInfo, Call_Markers),
check_marker(Call_Markers, aditi)
;
EvalMethod = normal
),
list__remove_suffix(CallVars, Vars, InitialVars),
% check that none of the variables that we're trying to
% use as curried arguments are lambda-bound variables
\+ (
list__member(InitialVar, InitialVars),
list__member(InitialVar, Vars)
),
% Check that the code models are compatible.
% Note that det is not compatible with semidet,
% and semidet is not compatible with nondet,
% since the calling conventions are different.
% If we're using the LLDS back-end
% (i.e. not --high-level-code),
% det is compatible with nondet.
% If we're using the MLDS back-end,
% then predicates and functions have different
% calling conventions.
proc_info_interface_code_model(Call_ProcInfo, Call_CodeModel),
determinism_to_code_model(Detism, CodeModel),
module_info_globals(ModuleInfo0, Globals),
globals__lookup_bool_option(Globals, highlevel_code,
HighLevelCode),
(
HighLevelCode = no,
( CodeModel = Call_CodeModel
; CodeModel = model_non, Call_CodeModel = model_det
)
;
HighLevelCode = yes,
Call_PredOrFunc =
pred_info_is_pred_or_func(Call_PredInfo),
PredOrFunc = Call_PredOrFunc,
CodeModel = Call_CodeModel
),
% check that the curried arguments are all input
proc_info_argmodes(Call_ProcInfo, Call_ArgModes),
list__length(InitialVars, NumInitialVars),
list__take(NumInitialVars, Call_ArgModes, CurriedArgModes),
\+ ( list__member(Mode, CurriedArgModes),
\+ mode_is_input(ModuleInfo0, Mode)
)
->
ArgVars = InitialVars,
PredId = PredId0,
ProcId = ProcId0,
mode_util__modes_to_uni_modes(CurriedArgModes, CurriedArgModes,
ModuleInfo0, UniModes),
%
% we need to mark the procedure as having had its
% address taken
%
proc_info_set_address_taken(address_is_taken,
Call_ProcInfo, Call_NewProcInfo),
module_info_set_pred_proc_info(PredId, ProcId,
Call_PredInfo, Call_NewProcInfo,
ModuleInfo0, ModuleInfo)
;
% Prepare to create a new predicate for the lambda
% expression: work out the arguments, module name, predicate
% name, arity, arg types, determinism,
% context, status, etc. for the new predicate.
ArgVars = put_typeinfo_vars_first(ArgVars1, VarTypes),
list__append(ArgVars, Vars, AllArgVars),
module_info_name(ModuleInfo0, ModuleName),
module_info_next_lambda_count(LambdaCount,
ModuleInfo0, ModuleInfo1),
goal_info_get_context(LambdaGoalInfo, OrigContext),
term__context_line(OrigContext, OrigLine),
make_pred_name_with_context(ModuleName, "IntroducedFrom",
PredOrFunc, OrigPredName, OrigLine,
LambdaCount, PredName),
goal_info_get_context(LambdaGoalInfo, LambdaContext),
% The TVarSet is a superset of what it really ought be,
% but that shouldn't matter.
% Existentially typed lambda expressions are not
% yet supported (see the documentation at top of this file)
ExistQVars = [],
lambda__uni_modes_to_modes(UniModes1, OrigArgModes),
% We have to jump through hoops to work out the mode
% of the lambda predicate. For introduced
% type_info arguments, we use the mode "in". For the original
% non-local vars, we use the modes from `UniModes1'.
% For the lambda var arguments at the end,
% we use the mode in the lambda expression.
list__length(ArgVars, NumArgVars),
in_mode(In),
list__duplicate(NumArgVars, In, InModes),
map__from_corresponding_lists(ArgVars, InModes,
ArgModesMap),
map__from_corresponding_lists(OrigVars, OrigArgModes,
OrigArgModesMap),
map__overlay(ArgModesMap, OrigArgModesMap, ArgModesMap1),
map__apply_to_list(ArgVars, ArgModesMap1, ArgModes1),
% Recompute the uni_modes.
mode_util__modes_to_uni_modes(ArgModes1, ArgModes1,
ModuleInfo1, UniModes),
list__append(ArgModes1, Modes, AllArgModes),
map__apply_to_list(AllArgVars, VarTypes, ArgTypes),
purity_to_markers(Purity, LambdaMarkers0),
(
% Pass through the aditi markers for
% aggregate query closures.
% XXX we should differentiate between normal
% top-down closures and aggregate query closures,
% possibly by using a different type for aggregate
% queries. Currently all nondet lambda expressions
% within Aditi predicates are treated as aggregate
% inputs.
% EvalMethod = (aditi_bottom_up),
determinism_components(Detism, _, at_most_many),
check_marker(Markers, aditi)
->
markers_to_marker_list(Markers, MarkerList0),
list__filter(
(pred(Marker::in) is semidet :-
% Pass through only Aditi markers.
% Don't pass through `context' markers, since
% they are useless for non-recursive predicates
% such as the created predicate.
( Marker = aditi
; Marker = dnf
; Marker = psn
; Marker = naive
; Marker = supp_magic
; Marker = aditi_memo
; Marker = aditi_no_memo
)),
MarkerList0, MarkerList),
list__foldl(add_marker, MarkerList,
LambdaMarkers0, LambdaMarkers)
;
EvalMethod = (aditi_bottom_up)
->
add_marker(aditi, LambdaMarkers0, LambdaMarkers)
;
LambdaMarkers = LambdaMarkers0
),
% Now construct the proc_info and pred_info for the new
% single-mode predicate, using the information computed above
proc_info_create(LambdaContext, VarSet, VarTypes,
AllArgVars, InstVarSet, AllArgModes, Detism,
LambdaGoal, TVarMap, TCVarMap, address_is_taken,
ProcInfo0),
% The debugger ignores unnamed variables.
ensure_all_headvars_are_named(ProcInfo0, ProcInfo1),
% If we previously already needed to recompute the nonlocals,
% then we'd better to that recomputation for the procedure
% that we just created.
(
MustRecomputeNonLocals0 = yes,
requantify_proc(ProcInfo1, ProcInfo)
;
MustRecomputeNonLocals0 = no,
ProcInfo = ProcInfo1
),
set__init(Assertions),
pred_info_create(ModuleName, PredName, PredOrFunc,
LambdaContext, local, LambdaMarkers,
ArgTypes, TVarSet, ExistQVars, Constraints,
Assertions, Owner, ProcInfo, ProcId, PredInfo),
% save the new predicate in the predicate table
module_info_get_predicate_table(ModuleInfo1, PredicateTable0),
predicate_table_insert(PredInfo, PredId,
PredicateTable0, PredicateTable),
module_info_set_predicate_table(PredicateTable,
ModuleInfo1, ModuleInfo)
),
ShroudedPredProcId = shroud_pred_proc_id(proc(PredId, ProcId)),
ConsId = pred_const(ShroudedPredProcId, EvalMethod),
Functor = functor(ConsId, no, ArgVars),
Unification = construct(Var, ConsId, ArgVars, UniModes,
construct_dynamically, cell_is_unique, no),
LambdaInfo = lambda_info(VarSet, VarTypes, Constraints, TVarSet,
InstVarSet, TVarMap, TCVarMap, Markers, POF, OrigPredName,
Owner, ModuleInfo, MustRecomputeNonLocals).
:- pred lambda__constraint_contains_vars(list(tvar)::in, class_constraint::in)
is semidet.
lambda__constraint_contains_vars(LambdaVars, ClassConstraint) :-
ClassConstraint = constraint(_, ConstraintTypes),
list__map(prog_type__vars, ConstraintTypes, ConstraintVarsList),
list__condense(ConstraintVarsList, ConstraintVars),
% Probably not the most efficient way of doing it, but I
% wouldn't think that it matters.
set__list_to_set(LambdaVars, LambdaVarsSet),
set__list_to_set(ConstraintVars, ConstraintVarsSet),
set__subset(ConstraintVarsSet, LambdaVarsSet).
:- pred lambda__uni_modes_to_modes(list(uni_mode)::in, list(mode)::out)
is det.
% This predicate works out the modes of the original non-local
% variables of a lambda expression based on the list of uni_mode
% in the unify_info for the lambda unification.
lambda__uni_modes_to_modes([], []).
lambda__uni_modes_to_modes([UniMode | UniModes], [Mode | Modes]) :-
UniMode = ((_Initial0 - Initial1) -> (_Final0 - _Final1)),
Mode = (Initial1 -> Initial1),
lambda__uni_modes_to_modes(UniModes, Modes).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%