mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-18 07:15:19 +00:00
Estimated hours taken: 4 Branches: main Reduce the dependence of earlier parts of the compiler on the later ones. Unnecessary import_module declarations in top level modules such as hlds.m cause unnecessary recompilations when adding new types in later modules, such as submodules of ll_backend.m. This change reduces the number of such unnecessary imports. There are no changes in algorithms, only functionality being moved around. compiler/code_model.m: Change this module from being a submodule of backend_libs.m to being a submodule of hlds.m, since nothing in it is dependent on any backend. compiler/arg_info.m: compiler/code_util.m: Change arg_info.m from being a submodule of ll_backend.m to being a submodule of hlds.m, since most of it is applicable to all current and foreseeable backends. Move the one exported predicate that is ll_backend dependent, and its support predicates, to code_util.m. compiler/backend_libs.m: compiler/ll_backend.m: compiler/hlds.m: Update include_module declarations in accordance with the above. compiler/prog_data.m: compiler/term_util.m: Instead of defining two separate types for holding argument size and termination information, one including HLDS-specific information (in term_util.m) and one not (in prog_data.m), use a polymorphic type defined in prog_data.m and two monomorphic instances. compiler/termination.m: compiler/mercury_to_mercury.m: Change the predicates for writing out argument size and termination information to handle the polymorphic type (we don't need special handling of the monomorphic versions), and move them from termination.m to mercury_to_mercury.m, since this allows us to avoid some undesirable dependencies. compiler/base_typeclass_info.m: compiler/hlds_code_util.m: Move the predicate make_instance_string from base_typeclass_info.m to hlds_code_util.m, again because it allows us to remove some undesirable dependencies. compiler/top_level.m: compiler/backend_libs.m: compiler/check_hlds.m: compiler/hlds.m: compiler/ll_backend.m: compiler/parse_tree.m: compiler/transform_hlds.m: Delete some import_module declarations of other top level modules in these top level modules. Some imports were totally unnecessary. Some imports were useful in only a small minority of submodules; those submodules now import the necessary top level modules directly. Move remaining import_module declarations to the implementation section where this is feasible. Where we still need to import modules we ideally shouldn't, note why. compiler/*.m: Update imports of code_util and arg_info. In some cases, import top level modules no longer imported by the parent module. In some cases, delete unnecessary imports.
614 lines
22 KiB
Mathematica
614 lines
22 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 1995-2004 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% file: lambda.m
|
|
% main author: fjh
|
|
|
|
% This module is a pass over the HLDS to deal with lambda expressions.
|
|
%
|
|
% Lambda expressions are converted into separate predicates, so for
|
|
% example we translate
|
|
%
|
|
% :- pred p(int::in) is det.
|
|
% p(X) :-
|
|
% V__1 = lambda([Y::out] is nondet, q(Y, X))),
|
|
% solutions(V__1, List),
|
|
% ...
|
|
% :- pred q(int::out, int::in) is nondet.
|
|
%
|
|
% into
|
|
%
|
|
% p(X) :-
|
|
% V__1 = '__LambdaGoal__1'(X)
|
|
% solutions(V__1, List),
|
|
% ...
|
|
%
|
|
% :- pred '__LambdaGoal__1'(int::in, int::out) is nondet.
|
|
% '__LambdaGoal__1'(X, Y) :- q(Y, X).
|
|
%
|
|
%
|
|
% Note that the mode checker requires that a lambda expression
|
|
% not bind any of the non-local variables such as `X' in the above
|
|
% example.
|
|
%
|
|
% Similarly, a lambda expression may not bind any of the type_infos for
|
|
% those variables; that is, none of the non-local variables
|
|
% should be existentially typed (from the perspective of the lambda goal).
|
|
% Now that we run the polymorphism.m pass before mode checking, this is
|
|
% also checked by mode analysis.
|
|
%
|
|
% It might be OK to allow the parameters of the lambda goal to be
|
|
% existentially typed, but currently that is not supported.
|
|
% One difficulty is that it's hard to determine here which type variables
|
|
% should be existentially quantified. The information is readily
|
|
% available during type inference, and really type inference should save
|
|
% that information in a field in the lambda_goal struct, but currently it
|
|
% doesn't; it saves the head_type_params field in the pred_info, which
|
|
% tells us which type variables where produced by the body, but for
|
|
% any given lambda goal we don't know whether the type variable was
|
|
% produced by something outside the lambda goal or by something inside
|
|
% the lambda goal (only in the latter case should it be existentially
|
|
% quantified).
|
|
% The other difficulty is that taking the address of a predicate with an
|
|
% existential type would require second-order polymorphism: for a predicate
|
|
% declared as `:- some [T] pred p(int, T)', the expression `p' must have
|
|
% type `some [T] pred(int, T)', which is quite a different thing to saying
|
|
% that there is some type `T' for which `p' has type `pred(int, T)' --
|
|
% we don't know what `T' is until the predicate is called, and it might
|
|
% be different for each call.
|
|
% Currently we don't support second-order polymorphism, so we
|
|
% don't support existentially typed lambda expressions either.
|
|
%
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- module transform_hlds__lambda.
|
|
|
|
:- interface.
|
|
|
|
:- import_module hlds__hlds_module.
|
|
:- import_module hlds__hlds_pred.
|
|
|
|
:- pred lambda__process_module(module_info, module_info).
|
|
:- mode lambda__process_module(in, out) is det.
|
|
|
|
:- pred lambda__process_pred(pred_id, module_info, module_info).
|
|
:- mode lambda__process_pred(in, in, out) is det.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
% Parse tree modules
|
|
:- import_module parse_tree__prog_data.
|
|
:- import_module parse_tree__prog_util.
|
|
|
|
% HLDS modules
|
|
:- import_module check_hlds__inst_match.
|
|
:- import_module check_hlds__mode_util.
|
|
:- import_module check_hlds__type_util.
|
|
:- import_module hlds__code_model.
|
|
:- import_module hlds__goal_util.
|
|
:- import_module hlds__hlds_data.
|
|
:- import_module hlds__hlds_goal.
|
|
:- import_module hlds__quantification.
|
|
|
|
% Misc
|
|
:- import_module libs__globals.
|
|
:- import_module libs__options.
|
|
|
|
% Standard library modules
|
|
:- import_module list, map, set.
|
|
:- import_module term, varset, bool, string, std_util, require.
|
|
|
|
:- type lambda_info --->
|
|
lambda_info(
|
|
prog_varset, % from the proc_info
|
|
map(prog_var, type), % from the proc_info
|
|
class_constraints, % from the pred_info
|
|
tvarset, % from the proc_info
|
|
inst_varset, % from the proc_info
|
|
map(tvar, type_info_locn),
|
|
% from the proc_info
|
|
% (typeinfos)
|
|
map(class_constraint, prog_var),
|
|
% from the proc_info
|
|
% (typeclass_infos)
|
|
pred_markers, % from the pred_info
|
|
pred_or_func,
|
|
string, % pred/func name
|
|
aditi_owner,
|
|
module_info,
|
|
bool % true iff we need to recompute the nonlocals
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% This whole section just traverses the module structure.
|
|
|
|
lambda__process_module(ModuleInfo0, ModuleInfo) :-
|
|
module_info_predids(ModuleInfo0, PredIds),
|
|
lambda__process_preds(PredIds, ModuleInfo0, ModuleInfo1),
|
|
% Need update the dependency graph to include the lambda predicates.
|
|
module_info_clobber_dependency_info(ModuleInfo1, ModuleInfo).
|
|
|
|
:- pred lambda__process_preds(list(pred_id), module_info, module_info).
|
|
:- mode lambda__process_preds(in, in, out) is det.
|
|
|
|
lambda__process_preds([], ModuleInfo, ModuleInfo).
|
|
lambda__process_preds([PredId | PredIds], ModuleInfo0, ModuleInfo) :-
|
|
lambda__process_pred(PredId, ModuleInfo0, ModuleInfo1),
|
|
lambda__process_preds(PredIds, ModuleInfo1, ModuleInfo).
|
|
|
|
lambda__process_pred(PredId, ModuleInfo0, ModuleInfo) :-
|
|
module_info_pred_info(ModuleInfo0, PredId, PredInfo),
|
|
ProcIds = pred_info_procids(PredInfo),
|
|
lambda__process_procs(PredId, ProcIds, ModuleInfo0, ModuleInfo).
|
|
|
|
:- pred lambda__process_procs(pred_id, list(proc_id), module_info, module_info).
|
|
:- mode lambda__process_procs(in, in, in, out) is det.
|
|
|
|
lambda__process_procs(_PredId, [], ModuleInfo, ModuleInfo).
|
|
lambda__process_procs(PredId, [ProcId | ProcIds], ModuleInfo0, ModuleInfo) :-
|
|
lambda__process_proc(PredId, ProcId, ModuleInfo0, ModuleInfo1),
|
|
lambda__process_procs(PredId, ProcIds, ModuleInfo1, ModuleInfo).
|
|
|
|
:- pred lambda__process_proc(pred_id, proc_id, module_info, module_info).
|
|
:- mode lambda__process_proc(in, in, in, out) is det.
|
|
|
|
lambda__process_proc(PredId, ProcId, !ModuleInfo) :-
|
|
module_info_preds(!.ModuleInfo, PredTable0),
|
|
map__lookup(PredTable0, PredId, PredInfo0),
|
|
pred_info_procedures(PredInfo0, ProcTable0),
|
|
map__lookup(ProcTable0, ProcId, ProcInfo0),
|
|
|
|
lambda__process_proc_2(ProcInfo0, ProcInfo, PredInfo0, PredInfo1,
|
|
!ModuleInfo),
|
|
|
|
pred_info_procedures(PredInfo1, ProcTable1),
|
|
map__det_update(ProcTable1, ProcId, ProcInfo, ProcTable),
|
|
pred_info_set_procedures(ProcTable, PredInfo1, PredInfo),
|
|
module_info_preds(!.ModuleInfo, PredTable1),
|
|
map__det_update(PredTable1, PredId, PredInfo, PredTable),
|
|
module_info_set_preds(PredTable, !ModuleInfo).
|
|
|
|
:- pred lambda__process_proc_2(proc_info::in, proc_info::out,
|
|
pred_info::in, pred_info::out, module_info::in, module_info::out)
|
|
is det.
|
|
|
|
lambda__process_proc_2(!ProcInfo, !PredInfo, !ModuleInfo) :-
|
|
% grab the appropriate fields from the pred_info and proc_info
|
|
PredName = pred_info_name(!.PredInfo),
|
|
PredOrFunc = pred_info_is_pred_or_func(!.PredInfo),
|
|
pred_info_typevarset(!.PredInfo, TypeVarSet0),
|
|
pred_info_get_markers(!.PredInfo, Markers),
|
|
pred_info_get_class_context(!.PredInfo, Constraints0),
|
|
pred_info_get_aditi_owner(!.PredInfo, Owner),
|
|
proc_info_headvars(!.ProcInfo, HeadVars),
|
|
proc_info_varset(!.ProcInfo, VarSet0),
|
|
proc_info_vartypes(!.ProcInfo, VarTypes0),
|
|
proc_info_goal(!.ProcInfo, Goal0),
|
|
proc_info_typeinfo_varmap(!.ProcInfo, TVarMap0),
|
|
proc_info_typeclass_info_varmap(!.ProcInfo, TCVarMap0),
|
|
proc_info_inst_varset(!.ProcInfo, InstVarSet0),
|
|
MustRecomputeNonLocals0 = no,
|
|
|
|
% process the goal
|
|
Info0 = lambda_info(VarSet0, VarTypes0, Constraints0, TypeVarSet0,
|
|
InstVarSet0, TVarMap0, TCVarMap0, Markers, PredOrFunc,
|
|
PredName, Owner, !.ModuleInfo, MustRecomputeNonLocals0),
|
|
lambda__process_goal(Goal0, Goal1, Info0, Info1),
|
|
Info1 = lambda_info(VarSet1, VarTypes1, Constraints, TypeVarSet,
|
|
_, TVarMap, TCVarMap, _, _, _, _, !:ModuleInfo,
|
|
MustRecomputeNonLocals),
|
|
|
|
% check if we need to requantify
|
|
( MustRecomputeNonLocals = yes ->
|
|
implicitly_quantify_clause_body(HeadVars, _Warnings,
|
|
Goal1, Goal, VarSet1, VarSet, VarTypes1, VarTypes)
|
|
;
|
|
Goal = Goal1,
|
|
VarSet = VarSet1,
|
|
VarTypes = VarTypes1
|
|
),
|
|
|
|
% set the new values of the fields in proc_info and pred_info
|
|
proc_info_set_goal(Goal, !ProcInfo),
|
|
proc_info_set_varset(VarSet, !ProcInfo),
|
|
proc_info_set_vartypes(VarTypes, !ProcInfo),
|
|
proc_info_set_typeinfo_varmap(TVarMap, !ProcInfo),
|
|
proc_info_set_typeclass_info_varmap(TCVarMap, !ProcInfo),
|
|
pred_info_set_typevarset(TypeVarSet, !PredInfo),
|
|
pred_info_set_class_context(Constraints, !PredInfo).
|
|
|
|
:- pred lambda__process_goal(hlds_goal, hlds_goal,
|
|
lambda_info, lambda_info).
|
|
:- mode lambda__process_goal(in, out, in, out) is det.
|
|
|
|
lambda__process_goal(Goal0 - GoalInfo0, Goal) -->
|
|
lambda__process_goal_2(Goal0, GoalInfo0, Goal).
|
|
|
|
:- pred lambda__process_goal_2(hlds_goal_expr, hlds_goal_info,
|
|
hlds_goal, lambda_info, lambda_info).
|
|
:- mode lambda__process_goal_2(in, in, out, in, out) is det.
|
|
|
|
lambda__process_goal_2(unify(XVar, Y, Mode, Unification, Context), GoalInfo,
|
|
Unify - GoalInfo) -->
|
|
( { Y = lambda_goal(Purity, PredOrFunc, EvalMethod, _, NonLocalVars,
|
|
Vars, Modes, Det, LambdaGoal0) } ->
|
|
% first, process the lambda goal recursively, in case it
|
|
% contains some nested lambda expressions.
|
|
lambda__process_goal(LambdaGoal0, LambdaGoal1),
|
|
|
|
% then, convert the lambda expression into a new predicate
|
|
lambda__process_lambda(Purity, PredOrFunc, EvalMethod, Vars,
|
|
Modes, Det, NonLocalVars, LambdaGoal1,
|
|
Unification, Y1, Unification1),
|
|
{ Unify = unify(XVar, Y1, Mode, Unification1, Context) }
|
|
;
|
|
% ordinary unifications are left unchanged
|
|
{ Unify = unify(XVar, Y, Mode, Unification, Context) }
|
|
).
|
|
|
|
% the rest of the clauses just process goals recursively
|
|
|
|
lambda__process_goal_2(conj(Goals0), GoalInfo, conj(Goals) - GoalInfo) -->
|
|
lambda__process_goal_list(Goals0, Goals).
|
|
lambda__process_goal_2(par_conj(Goals0), GoalInfo,
|
|
par_conj(Goals) - GoalInfo) -->
|
|
lambda__process_goal_list(Goals0, Goals).
|
|
lambda__process_goal_2(disj(Goals0), GoalInfo, disj(Goals) - GoalInfo)
|
|
-->
|
|
lambda__process_goal_list(Goals0, Goals).
|
|
lambda__process_goal_2(not(Goal0), GoalInfo, not(Goal) - GoalInfo) -->
|
|
lambda__process_goal(Goal0, Goal).
|
|
lambda__process_goal_2(switch(Var, CanFail, Cases0), GoalInfo,
|
|
switch(Var, CanFail, Cases) - GoalInfo) -->
|
|
lambda__process_cases(Cases0, Cases).
|
|
lambda__process_goal_2(some(Vars, CanRemove, Goal0), GoalInfo,
|
|
some(Vars, CanRemove, Goal) - GoalInfo) -->
|
|
lambda__process_goal(Goal0, Goal).
|
|
lambda__process_goal_2(if_then_else(Vars, A0, B0, C0), GoalInfo,
|
|
if_then_else(Vars, A, B, C) - GoalInfo) -->
|
|
lambda__process_goal(A0, A),
|
|
lambda__process_goal(B0, B),
|
|
lambda__process_goal(C0, C).
|
|
lambda__process_goal_2(generic_call(A,B,C,D), GoalInfo,
|
|
generic_call(A,B,C,D) - GoalInfo) -->
|
|
[].
|
|
lambda__process_goal_2(call(A,B,C,D,E,F), GoalInfo,
|
|
call(A,B,C,D,E,F) - GoalInfo) -->
|
|
[].
|
|
lambda__process_goal_2(foreign_proc(A,B,C,D,E,F,G), GoalInfo,
|
|
foreign_proc(A,B,C,D,E,F,G) - GoalInfo) -->
|
|
[].
|
|
lambda__process_goal_2(shorthand(_), _, _) -->
|
|
% these should have been expanded out by now
|
|
{ error("lambda__process_goal_2: unexpected shorthand") }.
|
|
|
|
:- pred lambda__process_goal_list(list(hlds_goal), list(hlds_goal),
|
|
lambda_info, lambda_info).
|
|
:- mode lambda__process_goal_list(in, out, in, out) is det.
|
|
|
|
lambda__process_goal_list([], []) --> [].
|
|
lambda__process_goal_list([Goal0 | Goals0], [Goal | Goals]) -->
|
|
lambda__process_goal(Goal0, Goal),
|
|
lambda__process_goal_list(Goals0, Goals).
|
|
|
|
:- pred lambda__process_cases(list(case), list(case),
|
|
lambda_info, lambda_info).
|
|
:- mode lambda__process_cases(in, out, in, out) is det.
|
|
|
|
lambda__process_cases([], []) --> [].
|
|
lambda__process_cases([case(ConsId, Goal0) | Cases0],
|
|
[case(ConsId, Goal) | Cases]) -->
|
|
lambda__process_goal(Goal0, Goal),
|
|
lambda__process_cases(Cases0, Cases).
|
|
|
|
:- pred lambda__process_lambda(purity, pred_or_func, lambda_eval_method,
|
|
list(prog_var), list(mode), determinism, list(prog_var),
|
|
hlds_goal, unification, unify_rhs, unification,
|
|
lambda_info, lambda_info).
|
|
:- mode lambda__process_lambda(in, in, in, in, in, in, in, in, in, out, out,
|
|
in, out) is det.
|
|
|
|
lambda__process_lambda(Purity, PredOrFunc, EvalMethod, Vars, Modes, Detism,
|
|
OrigNonLocals0, LambdaGoal, Unification0, Functor,
|
|
Unification, LambdaInfo0, LambdaInfo) :-
|
|
LambdaInfo0 = lambda_info(VarSet, VarTypes, _PredConstraints, TVarSet,
|
|
InstVarSet, TVarMap, TCVarMap, Markers, POF, OrigPredName,
|
|
Owner, ModuleInfo0, MustRecomputeNonLocals0),
|
|
|
|
% Calculate the constraints which apply to this lambda
|
|
% expression.
|
|
% Note currently we only allow lambda expressions
|
|
% to have universally quantified constraints.
|
|
map__keys(TCVarMap, AllConstraints),
|
|
map__apply_to_list(Vars, VarTypes, LambdaVarTypes),
|
|
list__map(type_util__vars, LambdaVarTypes, LambdaTypeVarsList),
|
|
list__condense(LambdaTypeVarsList, LambdaTypeVars),
|
|
list__filter(lambda__constraint_contains_vars(LambdaTypeVars),
|
|
AllConstraints, UnivConstraints),
|
|
Constraints = constraints(UnivConstraints, []),
|
|
|
|
% existentially typed lambda expressions are not yet supported
|
|
% (see the documentation at top of this file)
|
|
ExistQVars = [],
|
|
LambdaGoal = _ - LambdaGoalInfo,
|
|
goal_info_get_nonlocals(LambdaGoalInfo, LambdaGoalNonLocals),
|
|
set__insert_list(LambdaGoalNonLocals, Vars, LambdaNonLocals),
|
|
goal_util__extra_nonlocal_typeinfos(TVarMap, TCVarMap, VarTypes,
|
|
ExistQVars, LambdaNonLocals, ExtraTypeInfos),
|
|
OrigVars = OrigNonLocals0,
|
|
|
|
(
|
|
Unification0 = construct(Var0, _, _, UniModes0, _, _, _)
|
|
->
|
|
Var = Var0,
|
|
UniModes1 = UniModes0
|
|
;
|
|
error("lambda__transform_lambda: weird unification")
|
|
),
|
|
|
|
set__delete_list(LambdaGoalNonLocals, Vars, NonLocals1),
|
|
|
|
% We need all the typeinfos, including the ones that are not used,
|
|
% for the layout structure describing the closure.
|
|
NewTypeInfos = ExtraTypeInfos `set__difference` NonLocals1,
|
|
NonLocals = NonLocals1 `set__union` NewTypeInfos,
|
|
|
|
% If we added variables to the nonlocals of the lambda goal,
|
|
% then we need to recompute the nonlocals for the procedure
|
|
% that contains it.
|
|
( \+ set__empty(NewTypeInfos) ->
|
|
MustRecomputeNonLocals = yes
|
|
;
|
|
MustRecomputeNonLocals = MustRecomputeNonLocals0
|
|
),
|
|
|
|
set__to_sorted_list(NonLocals, ArgVars1),
|
|
|
|
(
|
|
% Optimize a special case: replace
|
|
% `lambda([Y1, Y2, ...] is Detism,
|
|
% p(X1, X2, ..., Y1, Y2, ...))'
|
|
% where `p' has determinism `Detism' with
|
|
% `p(X1, X2, ...)'
|
|
%
|
|
% This optimization is only valid if the modes of the Xi are
|
|
% input, since only input arguments can be curried.
|
|
% It's also only valid if all the inputs in the Yi precede the
|
|
% outputs. It's also not valid if any of the Xi are in the Yi.
|
|
|
|
LambdaGoal = call(PredId0, ProcId0, CallVars, _, _, _) - _,
|
|
module_info_pred_proc_info(ModuleInfo0, PredId0, ProcId0,
|
|
Call_PredInfo, Call_ProcInfo),
|
|
|
|
(
|
|
EvalMethod = (aditi_bottom_up),
|
|
pred_info_get_markers(Call_PredInfo, Call_Markers),
|
|
check_marker(Call_Markers, aditi)
|
|
;
|
|
EvalMethod = normal
|
|
),
|
|
list__remove_suffix(CallVars, Vars, InitialVars),
|
|
|
|
% check that none of the variables that we're trying to
|
|
% use as curried arguments are lambda-bound variables
|
|
\+ (
|
|
list__member(InitialVar, InitialVars),
|
|
list__member(InitialVar, Vars)
|
|
),
|
|
|
|
% Check that the code models are compatible.
|
|
% Note that det is not compatible with semidet,
|
|
% and semidet is not compatible with nondet,
|
|
% since the calling conventions are different.
|
|
% If we're using the LLDS back-end
|
|
% (i.e. not --high-level-code),
|
|
% det is compatible with nondet.
|
|
% If we're using the MLDS back-end,
|
|
% then predicates and functions have different
|
|
% calling conventions.
|
|
proc_info_interface_code_model(Call_ProcInfo, Call_CodeModel),
|
|
determinism_to_code_model(Detism, CodeModel),
|
|
module_info_globals(ModuleInfo0, Globals),
|
|
globals__lookup_bool_option(Globals, highlevel_code,
|
|
HighLevelCode),
|
|
(
|
|
HighLevelCode = no,
|
|
( CodeModel = Call_CodeModel
|
|
; CodeModel = model_non, Call_CodeModel = model_det
|
|
)
|
|
;
|
|
HighLevelCode = yes,
|
|
Call_PredOrFunc =
|
|
pred_info_is_pred_or_func(Call_PredInfo),
|
|
PredOrFunc = Call_PredOrFunc,
|
|
CodeModel = Call_CodeModel
|
|
),
|
|
|
|
% check that the curried arguments are all input
|
|
proc_info_argmodes(Call_ProcInfo, Call_ArgModes),
|
|
list__length(InitialVars, NumInitialVars),
|
|
list__take(NumInitialVars, Call_ArgModes, CurriedArgModes),
|
|
\+ ( list__member(Mode, CurriedArgModes),
|
|
\+ mode_is_input(ModuleInfo0, Mode)
|
|
)
|
|
->
|
|
ArgVars = InitialVars,
|
|
PredId = PredId0,
|
|
ProcId = ProcId0,
|
|
mode_util__modes_to_uni_modes(CurriedArgModes, CurriedArgModes,
|
|
ModuleInfo0, UniModes),
|
|
%
|
|
% we need to mark the procedure as having had its
|
|
% address taken
|
|
%
|
|
proc_info_set_address_taken(address_is_taken,
|
|
Call_ProcInfo, Call_NewProcInfo),
|
|
module_info_set_pred_proc_info(PredId, ProcId,
|
|
Call_PredInfo, Call_NewProcInfo,
|
|
ModuleInfo0, ModuleInfo)
|
|
;
|
|
% Prepare to create a new predicate for the lambda
|
|
% expression: work out the arguments, module name, predicate
|
|
% name, arity, arg types, determinism,
|
|
% context, status, etc. for the new predicate.
|
|
|
|
ArgVars = put_typeinfo_vars_first(ArgVars1, VarTypes),
|
|
list__append(ArgVars, Vars, AllArgVars),
|
|
|
|
module_info_name(ModuleInfo0, ModuleName),
|
|
module_info_next_lambda_count(LambdaCount,
|
|
ModuleInfo0, ModuleInfo1),
|
|
goal_info_get_context(LambdaGoalInfo, OrigContext),
|
|
term__context_line(OrigContext, OrigLine),
|
|
make_pred_name_with_context(ModuleName, "IntroducedFrom",
|
|
PredOrFunc, OrigPredName, OrigLine,
|
|
LambdaCount, PredName),
|
|
goal_info_get_context(LambdaGoalInfo, LambdaContext),
|
|
% The TVarSet is a superset of what it really ought be,
|
|
% but that shouldn't matter.
|
|
% Existentially typed lambda expressions are not
|
|
% yet supported (see the documentation at top of this file)
|
|
ExistQVars = [],
|
|
lambda__uni_modes_to_modes(UniModes1, OrigArgModes),
|
|
|
|
% We have to jump through hoops to work out the mode
|
|
% of the lambda predicate. For introduced
|
|
% type_info arguments, we use the mode "in". For the original
|
|
% non-local vars, we use the modes from `UniModes1'.
|
|
% For the lambda var arguments at the end,
|
|
% we use the mode in the lambda expression.
|
|
|
|
list__length(ArgVars, NumArgVars),
|
|
in_mode(In),
|
|
list__duplicate(NumArgVars, In, InModes),
|
|
map__from_corresponding_lists(ArgVars, InModes,
|
|
ArgModesMap),
|
|
|
|
map__from_corresponding_lists(OrigVars, OrigArgModes,
|
|
OrigArgModesMap),
|
|
map__overlay(ArgModesMap, OrigArgModesMap, ArgModesMap1),
|
|
map__apply_to_list(ArgVars, ArgModesMap1, ArgModes1),
|
|
|
|
% Recompute the uni_modes.
|
|
mode_util__modes_to_uni_modes(ArgModes1, ArgModes1,
|
|
ModuleInfo1, UniModes),
|
|
|
|
list__append(ArgModes1, Modes, AllArgModes),
|
|
map__apply_to_list(AllArgVars, VarTypes, ArgTypes),
|
|
|
|
purity_to_markers(Purity, LambdaMarkers0),
|
|
(
|
|
% Pass through the aditi markers for
|
|
% aggregate query closures.
|
|
% XXX we should differentiate between normal
|
|
% top-down closures and aggregate query closures,
|
|
% possibly by using a different type for aggregate
|
|
% queries. Currently all nondet lambda expressions
|
|
% within Aditi predicates are treated as aggregate
|
|
% inputs.
|
|
% EvalMethod = (aditi_bottom_up),
|
|
determinism_components(Detism, _, at_most_many),
|
|
check_marker(Markers, aditi)
|
|
->
|
|
markers_to_marker_list(Markers, MarkerList0),
|
|
list__filter(
|
|
(pred(Marker::in) is semidet :-
|
|
% Pass through only Aditi markers.
|
|
% Don't pass through `context' markers, since
|
|
% they are useless for non-recursive predicates
|
|
% such as the created predicate.
|
|
( Marker = aditi
|
|
; Marker = dnf
|
|
; Marker = psn
|
|
; Marker = naive
|
|
; Marker = supp_magic
|
|
; Marker = aditi_memo
|
|
; Marker = aditi_no_memo
|
|
)),
|
|
MarkerList0, MarkerList),
|
|
list__foldl(add_marker, MarkerList,
|
|
LambdaMarkers0, LambdaMarkers)
|
|
;
|
|
EvalMethod = (aditi_bottom_up)
|
|
->
|
|
add_marker(aditi, LambdaMarkers0, LambdaMarkers)
|
|
;
|
|
LambdaMarkers = LambdaMarkers0
|
|
),
|
|
|
|
% Now construct the proc_info and pred_info for the new
|
|
% single-mode predicate, using the information computed above
|
|
|
|
proc_info_create(VarSet, VarTypes, AllArgVars, AllArgModes,
|
|
InstVarSet, Detism, LambdaGoal, LambdaContext,
|
|
TVarMap, TCVarMap, address_is_taken, ProcInfo0),
|
|
% If we previously already needed to recompute the nonlocals,
|
|
% then we'd better to that recomputation for the procedure
|
|
% that we just created.
|
|
( MustRecomputeNonLocals0 = yes ->
|
|
requantify_proc(ProcInfo0, ProcInfo)
|
|
;
|
|
ProcInfo = ProcInfo0
|
|
),
|
|
|
|
set__init(Assertions),
|
|
|
|
pred_info_create(ModuleName, PredName, TVarSet, ExistQVars,
|
|
ArgTypes, true, LambdaContext, local, LambdaMarkers,
|
|
PredOrFunc, Constraints, Owner, Assertions, ProcInfo,
|
|
ProcId, PredInfo),
|
|
|
|
% save the new predicate in the predicate table
|
|
|
|
module_info_get_predicate_table(ModuleInfo1, PredicateTable0),
|
|
predicate_table_insert(PredInfo, PredId,
|
|
PredicateTable0, PredicateTable),
|
|
module_info_set_predicate_table(PredicateTable,
|
|
ModuleInfo1, ModuleInfo)
|
|
),
|
|
ConsId = pred_const(PredId, ProcId, EvalMethod),
|
|
Functor = functor(ConsId, no, ArgVars),
|
|
|
|
Unification = construct(Var, ConsId, ArgVars, UniModes,
|
|
construct_dynamically, cell_is_unique, no),
|
|
LambdaInfo = lambda_info(VarSet, VarTypes, Constraints, TVarSet,
|
|
InstVarSet, TVarMap, TCVarMap, Markers, POF, OrigPredName,
|
|
Owner, ModuleInfo, MustRecomputeNonLocals).
|
|
|
|
:- pred lambda__constraint_contains_vars(list(tvar), class_constraint).
|
|
:- mode lambda__constraint_contains_vars(in, in) is semidet.
|
|
|
|
lambda__constraint_contains_vars(LambdaVars, ClassConstraint) :-
|
|
ClassConstraint = constraint(_, ConstraintTypes),
|
|
list__map(type_util__vars, ConstraintTypes, ConstraintVarsList),
|
|
list__condense(ConstraintVarsList, ConstraintVars),
|
|
% Probably not the most efficient way of doing it, but I
|
|
% wouldn't think that it matters.
|
|
set__list_to_set(LambdaVars, LambdaVarsSet),
|
|
set__list_to_set(ConstraintVars, ConstraintVarsSet),
|
|
set__subset(ConstraintVarsSet, LambdaVarsSet).
|
|
|
|
:- pred lambda__uni_modes_to_modes(list(uni_mode), list(mode)).
|
|
:- mode lambda__uni_modes_to_modes(in, out) is det.
|
|
|
|
% This predicate works out the modes of the original non-local
|
|
% variables of a lambda expression based on the list of uni_mode
|
|
% in the unify_info for the lambda unification.
|
|
|
|
lambda__uni_modes_to_modes([], []).
|
|
lambda__uni_modes_to_modes([UniMode | UniModes], [Mode | Modes]) :-
|
|
UniMode = ((_Initial0 - Initial1) -> (_Final0 - _Final1)),
|
|
Mode = (Initial1 -> Initial1),
|
|
lambda__uni_modes_to_modes(UniModes, Modes).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
%---------------------------------------------------------------------------%
|