mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-16 06:14:59 +00:00
Estimated hours taken: 50 Rework the handling of types in higher_order.m. - Fix bugs in higher_order.m that stopped it working with --typeinfo-liveness. - Perform type and typeclass specialisation. compiler/polymorphism.m: Previously the type of typeclass_infos variables did not contain any information about the constraint about which the variable contains information. Now the type of a typeclass_info is `private_builtin:typeclass_info( private_builtin:constraint([ClassName, ConstrainedTypes]))'. This allows predicates such as type_list_subsumes to check that the class constraints match. Note that `private_builtin:constraint' has no declaration, so a lookup in the type definition map will fail. That's OK, because type_to_type_id will fail on it, so it will be treated as a type variable by any code which doesn't manipulate types directly. Added polymorphism__typeclass_info_class_constraint to get the class_constraint from a typeclass_info's type. This isn't used yet. Also, fix a bug in extract_type_info: an entry in the typeinfo_var_map was being overwritten using an entry from a dummy typevarset. Actually the optimization to overwrite the location of the type_info after extracting it from a typeclass_info was wrong because the type_info won't be in that location in other branches. compiler/higher_order.m: Rework the handling of type substitutions. Now the types of the called procedure are `inlined' into the calling procedure, rather than building up the types of the specialised version using the higher-order arguments. The advantage of this is that the code is a bit simpler and handles extra type_infos properly. The disadvantage is that the argument types for specialised versions may be more specific than they need to be, so in some cases more specialised versions will be created than before. Also, don't actually rebuild the higher-order terms in the specialised versions - just pass the terms through in case they are needed. Handle the extra typeinfos required for --typeinfo-liveness. Specialize calls to unify/2, index/2 and compare/3. Specialize class_method_calls. Specialize calls to the predicates in private_builtin.m which manipulate typeclass_infos. compiler/type_util.m: type_to_type_id now fails on the dummy `constraint' type. Remove typeinfos for non-variable types from the typeinfo_varmap after inlining and higher-order specialisation. compiler/inlining.m: Factor out some common code to handle type substitutions for use by higher_order.m. compiler/hlds_pred.m: Return the list of extra type_info variables added to the argument list. compiler/goal_util.m: Take a set of non-locals as an argument to goal_util__extra_nonlocal_typeinfos rather than extracting them from a goal. compiler/special_pred.m: Handle unmangled unify/compare/index in special_pred_get_type. compiler/base_type_layout.m: Don't generate references to the typeinfo for `private_builtin:constraint' - it doesn't exist. compiler/unused_args.m: Don't barf on specialised unification predicate names. compiler/options.m: Added options: `--type-specialization' (default off). `--higher-order-size-limit' - restrict the size of specialized versions produced by higher_order.m. `--disable-opt-for-trace' (default on) - where possible don't change the options to make the trace match the source code. compiler/handle_options.m: Don't disable higher_order.m when --typeinfo-liveness is set. Handle `--disable-opt-for-trace'. compiler/hlds_data.m: compiler/*.m: Add the instance number to `base_typeclass_info_const' cons_ids, so that higher_order.m can easily index into the list of instances for a class to find the methods. compiler/hlds_out.m: Use the correct varset when printing out the constraint proofs. Write the typeclass_info_varmap for each procedure. compiler/mercury_to_mercury.m: Print type variables with variable numbers. library/private_builtin.m: Add the argument to the typeclass_info type to hold the representation of the constraint. runtime/mercury_ho_call.c: Semidet and nondet class_method_calls where (0 < num_arg_typeclass_infos < 4) were aborting at runtime because arguments were being placed starting at r1 rather than at r(1 + num_arg_typeclass_infos). doc/user_guide.texi Document the new options. compiler/notes/compiler_design.html: Update the role of higher_order.m. tests/hard_coded/typeclasses/extra_typeinfo.m: Test case for the mercury_ho_call.c bug and the polymorphism.m extract_typeinfo bug and for updating the typeclass_info_varmap for specialised versions.
476 lines
18 KiB
Mathematica
476 lines
18 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 1995-1998 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% file: lambda.m
|
|
% main author: fjh
|
|
|
|
% This module is a pass over the HLDS to deal with lambda expressions.
|
|
%
|
|
% Lambda expressions are converted into separate predicates, so for
|
|
% example we translate
|
|
%
|
|
% :- pred p(int::in) is det.
|
|
% p(X) :-
|
|
% V__1 = lambda([Y::out] is nondet, q(Y, X))),
|
|
% solutions(V__1, List),
|
|
% ...
|
|
% :- pred q(int::out, int::in) is nondet.
|
|
%
|
|
% into
|
|
%
|
|
% p(X) :-
|
|
% V__1 = '__LambdaGoal__1'(X)
|
|
% solutions(V__1, List),
|
|
% ...
|
|
%
|
|
% :- pred '__LambdaGoal__1'(int::in, int::out) is nondet.
|
|
% '__LambdaGoal__1'(X, Y) :- q(Y, X).
|
|
%
|
|
%
|
|
% Note that the mode checker requires that a lambda expression
|
|
% not bind any of the non-local variables such as `X' in the above
|
|
% example.
|
|
%
|
|
% Similarly, a lambda expression may not bind any of the type_infos for
|
|
% those variables; that is, none of the non-local variables
|
|
% should be existentially typed (from the perspective of the lambda goal).
|
|
% When we run the polymorphism.m pass before mode checking, this will
|
|
% be checked by mode analysis. XXX But currently it is not checked.
|
|
%
|
|
% It might be OK to allow the parameters of the lambda goal to be
|
|
% existentially typed, but currently that is not supported.
|
|
% One difficulty is that it's hard to determine here which type variables
|
|
% should be existentially quantified. The information is readily
|
|
% available during type inference, and really type inference should save
|
|
% that information in a field in the lambda_goal struct, but currently it
|
|
% doesn't; it saves the head_type_params field in the pred_info, which
|
|
% tells us which type variables where produced by the body, but for
|
|
% any given lambda goal we don't know whether the type variable was
|
|
% produced by something outside the lambda goal or by something inside
|
|
% the lambda goal (only in the latter case should it be existentially
|
|
% quantified).
|
|
% The other difficulty is that taking the address of a predicate with an
|
|
% existential type would require second-order polymorphism: for a predicate
|
|
% declared as `:- some [T] pred p(int, T)', the expression `p' must have
|
|
% type `some [T] pred(int, T)', which is quite a different thing to saying
|
|
% that there is some type `T' for which `p' has type `pred(int, T)' --
|
|
% we don't know what `T' is until the predicate is called, and it might
|
|
% be different for each call.
|
|
% Currently we don't support second-order polymorphism, so we
|
|
% don't support existentially typed lambda expressions either.
|
|
%
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- module (lambda).
|
|
|
|
:- interface.
|
|
|
|
:- import_module hlds_module, hlds_pred, hlds_goal, hlds_data, prog_data.
|
|
:- import_module list, map, set, term, varset.
|
|
|
|
:- pred lambda__process_pred(pred_id, module_info, module_info).
|
|
:- mode lambda__process_pred(in, in, out) is det.
|
|
|
|
:- pred lambda__transform_lambda(pred_or_func, string, list(var), list(mode),
|
|
determinism, list(var), set(var), hlds_goal, unification,
|
|
varset, map(var, type), class_constraints, tvarset,
|
|
map(tvar, type_info_locn), map(class_constraint, var),
|
|
module_info, unify_rhs, unification, module_info).
|
|
:- mode lambda__transform_lambda(in, in, in, in, in, in, in, in, in, in, in,
|
|
in, in, in, in, in, out, out, out) is det.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
:- import_module make_hlds, globals, options.
|
|
:- import_module goal_util, prog_util, mode_util, inst_match, llds, arg_info.
|
|
|
|
:- import_module bool, string, std_util, require.
|
|
|
|
:- type lambda_info --->
|
|
lambda_info(
|
|
varset, % from the proc_info
|
|
map(var, type), % from the proc_info
|
|
class_constraints, % from the pred_info
|
|
tvarset, % from the proc_info
|
|
map(tvar, type_info_locn),
|
|
% from the proc_info
|
|
% (typeinfos)
|
|
map(class_constraint, var),
|
|
% from the proc_info
|
|
% (typeclass_infos)
|
|
pred_or_func,
|
|
string, % pred/func name
|
|
module_info
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% This whole section just traverses the module structure.
|
|
|
|
lambda__process_pred(PredId, ModuleInfo0, ModuleInfo) :-
|
|
module_info_pred_info(ModuleInfo0, PredId, PredInfo),
|
|
pred_info_procids(PredInfo, ProcIds),
|
|
lambda__process_procs(PredId, ProcIds, ModuleInfo0, ModuleInfo).
|
|
|
|
:- pred lambda__process_procs(pred_id, list(proc_id), module_info, module_info).
|
|
:- mode lambda__process_procs(in, in, in, out) is det.
|
|
|
|
lambda__process_procs(_PredId, [], ModuleInfo, ModuleInfo).
|
|
lambda__process_procs(PredId, [ProcId | ProcIds], ModuleInfo0, ModuleInfo) :-
|
|
lambda__process_proc(PredId, ProcId, ModuleInfo0, ModuleInfo1),
|
|
lambda__process_procs(PredId, ProcIds, ModuleInfo1, ModuleInfo).
|
|
|
|
:- pred lambda__process_proc(pred_id, proc_id, module_info, module_info).
|
|
:- mode lambda__process_proc(in, in, in, out) is det.
|
|
|
|
lambda__process_proc(PredId, ProcId, ModuleInfo0, ModuleInfo) :-
|
|
module_info_preds(ModuleInfo0, PredTable0),
|
|
map__lookup(PredTable0, PredId, PredInfo0),
|
|
pred_info_procedures(PredInfo0, ProcTable0),
|
|
map__lookup(ProcTable0, ProcId, ProcInfo0),
|
|
|
|
lambda__process_proc_2(ProcInfo0, PredInfo0, ModuleInfo0,
|
|
ProcInfo, PredInfo1, ModuleInfo1),
|
|
|
|
pred_info_procedures(PredInfo1, ProcTable1),
|
|
map__det_update(ProcTable1, ProcId, ProcInfo, ProcTable),
|
|
pred_info_set_procedures(PredInfo1, ProcTable, PredInfo),
|
|
module_info_preds(ModuleInfo1, PredTable1),
|
|
map__det_update(PredTable1, PredId, PredInfo, PredTable),
|
|
module_info_set_preds(ModuleInfo1, PredTable, ModuleInfo).
|
|
|
|
:- pred lambda__process_proc_2(proc_info, pred_info, module_info,
|
|
proc_info, pred_info, module_info).
|
|
:- mode lambda__process_proc_2(in, in, in, out, out, out) is det.
|
|
|
|
lambda__process_proc_2(ProcInfo0, PredInfo0, ModuleInfo0,
|
|
ProcInfo, PredInfo, ModuleInfo) :-
|
|
% grab the appropriate fields from the pred_info and proc_info
|
|
pred_info_name(PredInfo0, PredName),
|
|
pred_info_get_is_pred_or_func(PredInfo0, PredOrFunc),
|
|
pred_info_typevarset(PredInfo0, TypeVarSet0),
|
|
pred_info_get_class_context(PredInfo0, Constraints0),
|
|
proc_info_varset(ProcInfo0, VarSet0),
|
|
proc_info_vartypes(ProcInfo0, VarTypes0),
|
|
proc_info_goal(ProcInfo0, Goal0),
|
|
proc_info_typeinfo_varmap(ProcInfo0, TVarMap0),
|
|
proc_info_typeclass_info_varmap(ProcInfo0, TCVarMap0),
|
|
|
|
% process the goal
|
|
Info0 = lambda_info(VarSet0, VarTypes0, Constraints0, TypeVarSet0,
|
|
TVarMap0, TCVarMap0, PredOrFunc, PredName, ModuleInfo0),
|
|
lambda__process_goal(Goal0, Goal, Info0, Info),
|
|
Info = lambda_info(VarSet, VarTypes, Constraints, TypeVarSet,
|
|
TVarMap, TCVarMap, _, _, ModuleInfo),
|
|
|
|
% set the new values of the fields in proc_info and pred_info
|
|
proc_info_set_goal(ProcInfo0, Goal, ProcInfo1),
|
|
proc_info_set_varset(ProcInfo1, VarSet, ProcInfo2),
|
|
proc_info_set_vartypes(ProcInfo2, VarTypes, ProcInfo3),
|
|
proc_info_set_typeinfo_varmap(ProcInfo3, TVarMap, ProcInfo4),
|
|
proc_info_set_typeclass_info_varmap(ProcInfo4, TCVarMap, ProcInfo),
|
|
pred_info_set_typevarset(PredInfo0, TypeVarSet, PredInfo1),
|
|
pred_info_set_class_context(PredInfo1, Constraints, PredInfo).
|
|
|
|
:- pred lambda__process_goal(hlds_goal, hlds_goal,
|
|
lambda_info, lambda_info).
|
|
:- mode lambda__process_goal(in, out, in, out) is det.
|
|
|
|
lambda__process_goal(Goal0 - GoalInfo0, Goal) -->
|
|
lambda__process_goal_2(Goal0, GoalInfo0, Goal).
|
|
|
|
:- pred lambda__process_goal_2(hlds_goal_expr, hlds_goal_info,
|
|
hlds_goal, lambda_info, lambda_info).
|
|
:- mode lambda__process_goal_2(in, in, out, in, out) is det.
|
|
|
|
lambda__process_goal_2(unify(XVar, Y, Mode, Unification, Context), GoalInfo,
|
|
Unify - GoalInfo) -->
|
|
( { Y = lambda_goal(PredOrFunc, NonLocalVars, Vars,
|
|
Modes, Det, LambdaGoal0) } ->
|
|
% for lambda expressions, we must convert the lambda expression
|
|
% into a new predicate
|
|
lambda__process_lambda(PredOrFunc, Vars, Modes, Det,
|
|
NonLocalVars, LambdaGoal0,
|
|
Unification, Y1, Unification1),
|
|
{ Unify = unify(XVar, Y1, Mode, Unification1, Context) }
|
|
;
|
|
% ordinary unifications are left unchanged
|
|
{ Unify = unify(XVar, Y, Mode, Unification, Context) }
|
|
).
|
|
|
|
% the rest of the clauses just process goals recursively
|
|
|
|
lambda__process_goal_2(conj(Goals0), GoalInfo, conj(Goals) - GoalInfo) -->
|
|
lambda__process_goal_list(Goals0, Goals).
|
|
lambda__process_goal_2(par_conj(Goals0, SM), GoalInfo,
|
|
par_conj(Goals, SM) - GoalInfo) -->
|
|
lambda__process_goal_list(Goals0, Goals).
|
|
lambda__process_goal_2(disj(Goals0, SM), GoalInfo, disj(Goals, SM) - GoalInfo)
|
|
-->
|
|
lambda__process_goal_list(Goals0, Goals).
|
|
lambda__process_goal_2(not(Goal0), GoalInfo, not(Goal) - GoalInfo) -->
|
|
lambda__process_goal(Goal0, Goal).
|
|
lambda__process_goal_2(switch(Var, CanFail, Cases0, SM), GoalInfo,
|
|
switch(Var, CanFail, Cases, SM) - GoalInfo) -->
|
|
lambda__process_cases(Cases0, Cases).
|
|
lambda__process_goal_2(some(Vars, Goal0), GoalInfo,
|
|
some(Vars, Goal) - GoalInfo) -->
|
|
lambda__process_goal(Goal0, Goal).
|
|
lambda__process_goal_2(if_then_else(Vars, A0, B0, C0, SM), GoalInfo,
|
|
if_then_else(Vars, A, B, C, SM) - GoalInfo) -->
|
|
lambda__process_goal(A0, A),
|
|
lambda__process_goal(B0, B),
|
|
lambda__process_goal(C0, C).
|
|
lambda__process_goal_2(higher_order_call(A,B,C,D,E,F), GoalInfo,
|
|
higher_order_call(A,B,C,D,E,F) - GoalInfo) -->
|
|
[].
|
|
lambda__process_goal_2(class_method_call(A,B,C,D,E,F), GoalInfo,
|
|
class_method_call(A,B,C,D,E,F) - GoalInfo) -->
|
|
[].
|
|
lambda__process_goal_2(call(A,B,C,D,E,F), GoalInfo,
|
|
call(A,B,C,D,E,F) - GoalInfo) -->
|
|
[].
|
|
lambda__process_goal_2(pragma_c_code(A,B,C,D,E,F,G), GoalInfo,
|
|
pragma_c_code(A,B,C,D,E,F,G) - GoalInfo) -->
|
|
[].
|
|
|
|
:- pred lambda__process_goal_list(list(hlds_goal), list(hlds_goal),
|
|
lambda_info, lambda_info).
|
|
:- mode lambda__process_goal_list(in, out, in, out) is det.
|
|
|
|
lambda__process_goal_list([], []) --> [].
|
|
lambda__process_goal_list([Goal0 | Goals0], [Goal | Goals]) -->
|
|
lambda__process_goal(Goal0, Goal),
|
|
lambda__process_goal_list(Goals0, Goals).
|
|
|
|
:- pred lambda__process_cases(list(case), list(case),
|
|
lambda_info, lambda_info).
|
|
:- mode lambda__process_cases(in, out, in, out) is det.
|
|
|
|
lambda__process_cases([], []) --> [].
|
|
lambda__process_cases([case(ConsId, Goal0) | Cases0],
|
|
[case(ConsId, Goal) | Cases]) -->
|
|
lambda__process_goal(Goal0, Goal),
|
|
lambda__process_cases(Cases0, Cases).
|
|
|
|
:- pred lambda__process_lambda(pred_or_func, list(var), list(mode), determinism,
|
|
list(var), hlds_goal, unification, unify_rhs, unification,
|
|
lambda_info, lambda_info).
|
|
:- mode lambda__process_lambda(in, in, in, in, in, in, in, out, out,
|
|
in, out) is det.
|
|
|
|
lambda__process_lambda(PredOrFunc, Vars, Modes, Det, OrigNonLocals0, LambdaGoal,
|
|
Unification0, Functor, Unification, LambdaInfo0, LambdaInfo) :-
|
|
LambdaInfo0 = lambda_info(VarSet, VarTypes, Constraints, TVarSet,
|
|
TVarMap, TCVarMap, POF, PredName, ModuleInfo0),
|
|
% XXX existentially typed lambda expressions are not yet supported
|
|
% (see the documentation at top of this file)
|
|
ExistQVars = [],
|
|
LambdaGoal = _ - LambdaGoalInfo,
|
|
goal_info_get_nonlocals(LambdaGoalInfo, LambdaNonLocals),
|
|
goal_util__extra_nonlocal_typeinfos(TVarMap, TCVarMap, VarTypes,
|
|
ExistQVars, LambdaNonLocals, ExtraTypeInfos),
|
|
lambda__transform_lambda(PredOrFunc, PredName, Vars, Modes, Det,
|
|
OrigNonLocals0, ExtraTypeInfos, LambdaGoal, Unification0,
|
|
VarSet, VarTypes, Constraints, TVarSet, TVarMap, TCVarMap,
|
|
ModuleInfo0, Functor, Unification, ModuleInfo),
|
|
LambdaInfo = lambda_info(VarSet, VarTypes, Constraints, TVarSet,
|
|
TVarMap, TCVarMap, POF, PredName, ModuleInfo).
|
|
|
|
lambda__transform_lambda(PredOrFunc, OrigPredName, Vars, Modes, Detism,
|
|
OrigVars, ExtraTypeInfos, LambdaGoal, Unification0,
|
|
VarSet, VarTypes, Constraints, TVarSet, TVarMap, TCVarMap,
|
|
ModuleInfo0, Functor, Unification, ModuleInfo) :-
|
|
(
|
|
Unification0 = construct(Var0, _, _, UniModes0)
|
|
->
|
|
Var = Var0,
|
|
UniModes1 = UniModes0
|
|
;
|
|
error("polymorphism__transform_lambda: weird unification")
|
|
),
|
|
|
|
% Optimize a special case: replace
|
|
% `lambda([Y1, Y2, ...] is Detism, p(X1, X2, ..., Y1, Y2, ...))'
|
|
% where `p' has determinism `Detism' with
|
|
% `p(X1, X2, ...)'
|
|
%
|
|
% This optimization is only valid if the modes of the Xi are
|
|
% input, since only input arguments can be curried.
|
|
% It's also only valid if all the inputs in the Yi precede the
|
|
% outputs. It's also not valid if any of the Xi are in the Yi.
|
|
|
|
LambdaGoal = _ - LambdaGoalInfo,
|
|
goal_info_get_nonlocals(LambdaGoalInfo, NonLocals0),
|
|
set__delete_list(NonLocals0, Vars, NonLocals1),
|
|
module_info_globals(ModuleInfo0, Globals),
|
|
|
|
% If typeinfo_liveness is set, all type_infos for the
|
|
% arguments should be included, not just the ones
|
|
% that are used.
|
|
globals__lookup_bool_option(Globals,
|
|
typeinfo_liveness, TypeInfoLiveness),
|
|
( TypeInfoLiveness = yes ->
|
|
set__union(NonLocals1, ExtraTypeInfos, NonLocals)
|
|
;
|
|
NonLocals = NonLocals1
|
|
),
|
|
|
|
set__to_sorted_list(NonLocals, ArgVars1),
|
|
(
|
|
LambdaGoal = call(PredId0, ProcId0, CallVars,
|
|
_, _, PredName0) - _,
|
|
module_info_pred_proc_info(ModuleInfo0, PredId0, ProcId0, _,
|
|
Call_ProcInfo),
|
|
|
|
% check that this procedure uses an args_method which
|
|
% is always directly higher-order callable.
|
|
proc_info_args_method(Call_ProcInfo, Call_ArgsMethod),
|
|
module_info_globals(ModuleInfo0, Globals),
|
|
arg_info__args_method_is_ho_callable(Globals,
|
|
Call_ArgsMethod, yes),
|
|
|
|
list__remove_suffix(CallVars, Vars, InitialVars),
|
|
|
|
% check that none of the variables that we're trying to
|
|
% use as curried arguments are lambda-bound variables
|
|
\+ (
|
|
list__member(InitialVar, InitialVars),
|
|
list__member(InitialVar, Vars)
|
|
),
|
|
|
|
proc_info_interface_code_model(Call_ProcInfo, Call_CodeModel),
|
|
determinism_to_code_model(Detism, CodeModel),
|
|
% Check that the code models are compatible.
|
|
% Note that det is not compatible with semidet,
|
|
% and semidet is not compatible with nondet,
|
|
% since the arguments go in different registers.
|
|
% But det is compatible with nondet.
|
|
( CodeModel = Call_CodeModel
|
|
; CodeModel = model_non, Call_CodeModel = model_det
|
|
),
|
|
% check that the curried arguments are all input
|
|
proc_info_argmodes(Call_ProcInfo, Call_ArgModes),
|
|
list__length(InitialVars, NumInitialVars),
|
|
list__take(NumInitialVars, Call_ArgModes, CurriedArgModes),
|
|
\+ ( list__member(Mode, CurriedArgModes),
|
|
\+ mode_is_input(ModuleInfo0, Mode)
|
|
)
|
|
->
|
|
ArgVars = InitialVars,
|
|
PredId = PredId0,
|
|
ProcId = ProcId0,
|
|
PredName = PredName0,
|
|
ModuleInfo = ModuleInfo0,
|
|
NumArgVars = NumInitialVars,
|
|
mode_util__modes_to_uni_modes(CurriedArgModes, CurriedArgModes,
|
|
ModuleInfo0, UniModes)
|
|
;
|
|
% Prepare to create a new predicate for the lambda
|
|
% expression: work out the arguments, module name, predicate
|
|
% name, arity, arg types, determinism,
|
|
% context, status, etc. for the new predicate.
|
|
|
|
ArgVars = ArgVars1,
|
|
list__append(ArgVars, Vars, AllArgVars),
|
|
|
|
module_info_name(ModuleInfo0, ModuleName),
|
|
module_info_next_lambda_count(ModuleInfo0, LambdaCount,
|
|
ModuleInfo1),
|
|
goal_info_get_context(LambdaGoalInfo, OrigContext),
|
|
term__context_line(OrigContext, OrigLine),
|
|
make_pred_name_with_context(ModuleName, "IntroducedFrom",
|
|
PredOrFunc, OrigPredName, OrigLine,
|
|
LambdaCount, PredName),
|
|
goal_info_get_context(LambdaGoalInfo, LambdaContext),
|
|
% The TVarSet is a superset of what it really ought be,
|
|
% but that shouldn't matter.
|
|
% XXX existentially typed lambda expressions are not
|
|
% yet supported (see the documentation at top of this file)
|
|
ExistQVars = [],
|
|
lambda__uni_modes_to_modes(UniModes1, OrigArgModes),
|
|
|
|
% We have to jump through hoops to work out the mode
|
|
% of the lambda predicate. For introduced
|
|
% type_info arguments, we use the mode "in". For the original
|
|
% non-local vars, we use the modes from `UniModes1'.
|
|
% For the lambda var arguments at the end,
|
|
% we use the mode in the lambda expression.
|
|
|
|
list__length(ArgVars, NumArgVars),
|
|
in_mode(In),
|
|
list__duplicate(NumArgVars, In, InModes),
|
|
map__from_corresponding_lists(ArgVars, InModes,
|
|
ArgModesMap),
|
|
|
|
map__from_corresponding_lists(OrigVars, OrigArgModes,
|
|
OrigArgModesMap),
|
|
map__overlay(ArgModesMap, OrigArgModesMap, ArgModesMap1),
|
|
map__apply_to_list(ArgVars, ArgModesMap1, ArgModes1),
|
|
|
|
% Recompute the uni_modes.
|
|
mode_util__modes_to_uni_modes(ArgModes1, ArgModes1,
|
|
ModuleInfo1, UniModes),
|
|
|
|
list__append(ArgModes1, Modes, AllArgModes),
|
|
map__apply_to_list(AllArgVars, VarTypes, ArgTypes),
|
|
|
|
% Choose an args_method which is always directly callable
|
|
% from do_call_*_closure even if the inputs don't preceed
|
|
% the outputs in the declaration. mercury_ho_call.c requires
|
|
% that procedures which are directly higher-order-called use
|
|
% the compact args_method.
|
|
%
|
|
% Previously we permuted the argument variables so that
|
|
% inputs came before outputs, but that resulted in the
|
|
% HLDS not being type or mode correct which caused problems
|
|
% for some transformations and for rerunning mode analysis.
|
|
arg_info__ho_call_args_method(Globals, ArgsMethod),
|
|
|
|
% Now construct the proc_info and pred_info for the new
|
|
% single-mode predicate, using the information computed above
|
|
|
|
proc_info_create(VarSet, VarTypes, AllArgVars,
|
|
AllArgModes, Detism, LambdaGoal, LambdaContext,
|
|
TVarMap, TCVarMap, ArgsMethod, ProcInfo),
|
|
|
|
init_markers(Markers),
|
|
pred_info_create(ModuleName, PredName, TVarSet, ExistQVars,
|
|
ArgTypes, true, LambdaContext, local, Markers,
|
|
PredOrFunc, Constraints, ProcInfo, ProcId, PredInfo),
|
|
|
|
% save the new predicate in the predicate table
|
|
|
|
module_info_get_predicate_table(ModuleInfo1, PredicateTable0),
|
|
predicate_table_insert(PredicateTable0, PredInfo,
|
|
PredId, PredicateTable),
|
|
module_info_set_predicate_table(ModuleInfo1, PredicateTable,
|
|
ModuleInfo)
|
|
),
|
|
Functor = functor(cons(PredName, NumArgVars), ArgVars),
|
|
ConsId = pred_const(PredId, ProcId),
|
|
Unification = construct(Var, ConsId, ArgVars, UniModes).
|
|
|
|
:- pred lambda__uni_modes_to_modes(list(uni_mode), list(mode)).
|
|
:- mode lambda__uni_modes_to_modes(in, out) is det.
|
|
|
|
% This predicate works out the modes of the original non-local
|
|
% variables of a lambda expression based on the list of uni_mode
|
|
% in the unify_info for the lambda unification.
|
|
|
|
lambda__uni_modes_to_modes([], []).
|
|
lambda__uni_modes_to_modes([UniMode | UniModes], [Mode | Modes]) :-
|
|
UniMode = ((_Initial0 - Initial1) -> (_Final0 - _Final1)),
|
|
Mode = (Initial1 -> Initial1),
|
|
lambda__uni_modes_to_modes(UniModes, Modes).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
%---------------------------------------------------------------------------%
|