mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-17 14:57:03 +00:00
Estimated hours taken: 16 Branches: main Get the purity check pass to not issue warnings about unnecessary purity annotations on compiler-generated predicates. The problem I am addressing is that when an optimization such as type specialization creates a clone of a predicate, that predicate gets all the original predicate's annotations. During the creation of a .opt file, purity checking sees the clauses of the original predicate and knows that the annotation is not redundant, but doesn't know that about the copy, since it has no definition at all (it doesn't need one). The fix is to put into each pred_info an indication of where the predicate came from, and to never warn about unnecessary purity annotations of predicates that the programmer didn't write. This diff also uses the origin indication to record human-usable names of compiler-generated or compiler-transformed predicates in RTTI for use by the debugger. compiler/hlds_pred.m: Replace two fields in pred_infos, that say (a) whether the predicate is a special (unify/compare/index/init) predicate and (b) whether it is a type class method implementation, with an origin field saying where the predicate came from. This field has several alternatives, special preds and type class method implementation being only two. Make the predicates that create pred_infos take an argument specifing where the predicate comes from. Replace a copy of one of the old fields in rtti_proc_labels with the new one. Make the name of the existing function more descriptive. compiler/purity.m: Use the origin field to suppress unnecessary annotation warnings for compiler-generated predicates. compiler/layout_out.m: Use the origin field to generate more human-friendly names for predicates, instead of the existing linker-friendly names. The debugger doesn't insist on predicate names being unique, even within a module. compiler/*.m: Conform to the changed interface of hlds_pred.m. The most significant changes were for recording the origin of new predicates. In one case (dnf.m) it also involved passing the required information down to the place where the new predicates were created through the dnf_info tuple instead of separate arguments, and switching to state variable notation. tests/debugger/*.exp*: tests/debugger/declarative/*.exp*: tests/hard_coded/*.exp*: Update the expected outputs to expect human-friendly predicate names.
621 lines
22 KiB
Mathematica
621 lines
22 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 1995-2005 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% file: lambda.m
|
|
% main author: fjh
|
|
|
|
% This module is a pass over the HLDS to deal with lambda expressions.
|
|
%
|
|
% Lambda expressions are converted into separate predicates, so for
|
|
% example we translate
|
|
%
|
|
% :- pred p(int::in) is det.
|
|
% p(X) :-
|
|
% V__1 = lambda([Y::out] is nondet, q(Y, X))),
|
|
% solutions(V__1, List),
|
|
% ...
|
|
% :- pred q(int::out, int::in) is nondet.
|
|
%
|
|
% into
|
|
%
|
|
% p(X) :-
|
|
% V__1 = '__LambdaGoal__1'(X)
|
|
% solutions(V__1, List),
|
|
% ...
|
|
%
|
|
% :- pred '__LambdaGoal__1'(int::in, int::out) is nondet.
|
|
% '__LambdaGoal__1'(X, Y) :- q(Y, X).
|
|
%
|
|
%
|
|
% Note that the mode checker requires that a lambda expression
|
|
% not bind any of the non-local variables such as `X' in the above
|
|
% example.
|
|
%
|
|
% Similarly, a lambda expression may not bind any of the type_infos for
|
|
% those variables; that is, none of the non-local variables
|
|
% should be existentially typed (from the perspective of the lambda goal).
|
|
% Now that we run the polymorphism.m pass before mode checking, this is
|
|
% also checked by mode analysis.
|
|
%
|
|
% It might be OK to allow the parameters of the lambda goal to be
|
|
% existentially typed, but currently that is not supported.
|
|
% One difficulty is that it's hard to determine here which type variables
|
|
% should be existentially quantified. The information is readily
|
|
% available during type inference, and really type inference should save
|
|
% that information in a field in the lambda_goal struct, but currently it
|
|
% doesn't; it saves the head_type_params field in the pred_info, which
|
|
% tells us which type variables where produced by the body, but for
|
|
% any given lambda goal we don't know whether the type variable was
|
|
% produced by something outside the lambda goal or by something inside
|
|
% the lambda goal (only in the latter case should it be existentially
|
|
% quantified).
|
|
% The other difficulty is that taking the address of a predicate with an
|
|
% existential type would require second-order polymorphism: for a predicate
|
|
% declared as `:- some [T] pred p(int, T)', the expression `p' must have
|
|
% type `some [T] pred(int, T)', which is quite a different thing to saying
|
|
% that there is some type `T' for which `p' has type `pred(int, T)' --
|
|
% we don't know what `T' is until the predicate is called, and it might
|
|
% be different for each call.
|
|
% Currently we don't support second-order polymorphism, so we
|
|
% don't support existentially typed lambda expressions either.
|
|
%
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- module transform_hlds__lambda.
|
|
|
|
:- interface.
|
|
|
|
:- import_module hlds__hlds_module.
|
|
:- import_module hlds__hlds_pred.
|
|
|
|
:- pred lambda__process_module(module_info::in, module_info::out) is det.
|
|
|
|
:- pred lambda__process_pred(pred_id::in, module_info::in, module_info::out)
|
|
is det.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
% Parse tree modules
|
|
:- import_module parse_tree__prog_data.
|
|
:- import_module parse_tree__prog_mode.
|
|
:- import_module parse_tree__prog_util.
|
|
:- import_module parse_tree__prog_type.
|
|
|
|
% HLDS modules
|
|
:- import_module check_hlds__inst_match.
|
|
:- import_module check_hlds__mode_util.
|
|
:- import_module check_hlds__type_util.
|
|
:- import_module hlds__code_model.
|
|
:- import_module hlds__goal_util.
|
|
:- import_module hlds__hlds_data.
|
|
:- import_module hlds__hlds_goal.
|
|
:- import_module hlds__quantification.
|
|
|
|
% Misc
|
|
:- import_module libs__globals.
|
|
:- import_module libs__options.
|
|
:- import_module mdbcomp__prim_data.
|
|
|
|
% Standard library modules
|
|
:- import_module list, map, set.
|
|
:- import_module term, varset, bool, string, std_util, require.
|
|
|
|
:- type lambda_info --->
|
|
lambda_info(
|
|
prog_varset, % from the proc_info
|
|
map(prog_var, type), % from the proc_info
|
|
class_constraints, % from the pred_info
|
|
tvarset, % from the proc_info
|
|
inst_varset, % from the proc_info
|
|
map(tvar, type_info_locn),
|
|
% from the proc_info
|
|
% (typeinfos)
|
|
map(class_constraint, prog_var),
|
|
% from the proc_info
|
|
% (typeclass_infos)
|
|
pred_markers, % from the pred_info
|
|
pred_or_func,
|
|
string, % pred/func name
|
|
aditi_owner,
|
|
module_info,
|
|
bool % true iff we need to recompute the nonlocals
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% This whole section just traverses the module structure.
|
|
|
|
lambda__process_module(ModuleInfo0, ModuleInfo) :-
|
|
module_info_predids(ModuleInfo0, PredIds),
|
|
lambda__process_preds(PredIds, ModuleInfo0, ModuleInfo1),
|
|
% Need update the dependency graph to include the lambda predicates.
|
|
module_info_clobber_dependency_info(ModuleInfo1, ModuleInfo).
|
|
|
|
:- pred lambda__process_preds(list(pred_id)::in,
|
|
module_info::in, module_info::out) is det.
|
|
|
|
lambda__process_preds([], ModuleInfo, ModuleInfo).
|
|
lambda__process_preds([PredId | PredIds], ModuleInfo0, ModuleInfo) :-
|
|
lambda__process_pred(PredId, ModuleInfo0, ModuleInfo1),
|
|
lambda__process_preds(PredIds, ModuleInfo1, ModuleInfo).
|
|
|
|
lambda__process_pred(PredId, ModuleInfo0, ModuleInfo) :-
|
|
module_info_pred_info(ModuleInfo0, PredId, PredInfo),
|
|
ProcIds = pred_info_procids(PredInfo),
|
|
lambda__process_procs(PredId, ProcIds, ModuleInfo0, ModuleInfo).
|
|
|
|
:- pred lambda__process_procs(pred_id::in, list(proc_id)::in,
|
|
module_info::in, module_info::out) is det.
|
|
|
|
lambda__process_procs(_PredId, [], ModuleInfo, ModuleInfo).
|
|
lambda__process_procs(PredId, [ProcId | ProcIds], ModuleInfo0, ModuleInfo) :-
|
|
lambda__process_proc(PredId, ProcId, ModuleInfo0, ModuleInfo1),
|
|
lambda__process_procs(PredId, ProcIds, ModuleInfo1, ModuleInfo).
|
|
|
|
:- pred lambda__process_proc(pred_id::in, proc_id::in,
|
|
module_info::in, module_info::out) is det.
|
|
|
|
lambda__process_proc(PredId, ProcId, !ModuleInfo) :-
|
|
module_info_preds(!.ModuleInfo, PredTable0),
|
|
map__lookup(PredTable0, PredId, PredInfo0),
|
|
pred_info_procedures(PredInfo0, ProcTable0),
|
|
map__lookup(ProcTable0, ProcId, ProcInfo0),
|
|
|
|
lambda__process_proc_2(ProcInfo0, ProcInfo, PredInfo0, PredInfo1,
|
|
!ModuleInfo),
|
|
|
|
pred_info_procedures(PredInfo1, ProcTable1),
|
|
map__det_update(ProcTable1, ProcId, ProcInfo, ProcTable),
|
|
pred_info_set_procedures(ProcTable, PredInfo1, PredInfo),
|
|
module_info_preds(!.ModuleInfo, PredTable1),
|
|
map__det_update(PredTable1, PredId, PredInfo, PredTable),
|
|
module_info_set_preds(PredTable, !ModuleInfo).
|
|
|
|
:- pred lambda__process_proc_2(proc_info::in, proc_info::out,
|
|
pred_info::in, pred_info::out, module_info::in, module_info::out)
|
|
is det.
|
|
|
|
lambda__process_proc_2(!ProcInfo, !PredInfo, !ModuleInfo) :-
|
|
% grab the appropriate fields from the pred_info and proc_info
|
|
PredName = pred_info_name(!.PredInfo),
|
|
PredOrFunc = pred_info_is_pred_or_func(!.PredInfo),
|
|
pred_info_typevarset(!.PredInfo, TypeVarSet0),
|
|
pred_info_get_markers(!.PredInfo, Markers),
|
|
pred_info_get_class_context(!.PredInfo, Constraints0),
|
|
pred_info_get_aditi_owner(!.PredInfo, Owner),
|
|
proc_info_headvars(!.ProcInfo, HeadVars),
|
|
proc_info_varset(!.ProcInfo, VarSet0),
|
|
proc_info_vartypes(!.ProcInfo, VarTypes0),
|
|
proc_info_goal(!.ProcInfo, Goal0),
|
|
proc_info_typeinfo_varmap(!.ProcInfo, TVarMap0),
|
|
proc_info_typeclass_info_varmap(!.ProcInfo, TCVarMap0),
|
|
proc_info_inst_varset(!.ProcInfo, InstVarSet0),
|
|
MustRecomputeNonLocals0 = no,
|
|
|
|
% process the goal
|
|
Info0 = lambda_info(VarSet0, VarTypes0, Constraints0, TypeVarSet0,
|
|
InstVarSet0, TVarMap0, TCVarMap0, Markers, PredOrFunc,
|
|
PredName, Owner, !.ModuleInfo, MustRecomputeNonLocals0),
|
|
lambda__process_goal(Goal0, Goal1, Info0, Info1),
|
|
Info1 = lambda_info(VarSet1, VarTypes1, Constraints, TypeVarSet,
|
|
_, TVarMap, TCVarMap, _, _, _, _, !:ModuleInfo,
|
|
MustRecomputeNonLocals),
|
|
|
|
% check if we need to requantify
|
|
( MustRecomputeNonLocals = yes ->
|
|
implicitly_quantify_clause_body(HeadVars, _Warnings,
|
|
Goal1, Goal, VarSet1, VarSet, VarTypes1, VarTypes)
|
|
;
|
|
Goal = Goal1,
|
|
VarSet = VarSet1,
|
|
VarTypes = VarTypes1
|
|
),
|
|
|
|
% set the new values of the fields in proc_info and pred_info
|
|
proc_info_set_goal(Goal, !ProcInfo),
|
|
proc_info_set_varset(VarSet, !ProcInfo),
|
|
proc_info_set_vartypes(VarTypes, !ProcInfo),
|
|
proc_info_set_typeinfo_varmap(TVarMap, !ProcInfo),
|
|
proc_info_set_typeclass_info_varmap(TCVarMap, !ProcInfo),
|
|
pred_info_set_typevarset(TypeVarSet, !PredInfo),
|
|
pred_info_set_class_context(Constraints, !PredInfo).
|
|
|
|
:- pred lambda__process_goal(hlds_goal::in, hlds_goal::out,
|
|
lambda_info::in, lambda_info::out) is det.
|
|
|
|
lambda__process_goal(Goal0 - GoalInfo0, Goal, !Info) :-
|
|
lambda__process_goal_2(Goal0, GoalInfo0, Goal, !Info).
|
|
|
|
:- pred lambda__process_goal_2(hlds_goal_expr::in, hlds_goal_info::in,
|
|
hlds_goal::out, lambda_info::in, lambda_info::out) is det.
|
|
|
|
lambda__process_goal_2(unify(XVar, Y, Mode, Unification, Context), GoalInfo,
|
|
Unify - GoalInfo, !Info) :-
|
|
(
|
|
Y = lambda_goal(Purity, PredOrFunc, EvalMethod, _,
|
|
NonLocalVars, Vars, Modes, Det, LambdaGoal0)
|
|
->
|
|
% first, process the lambda goal recursively, in case it
|
|
% contains some nested lambda expressions.
|
|
lambda__process_goal(LambdaGoal0, LambdaGoal1, !Info),
|
|
|
|
% then, convert the lambda expression into a new predicate
|
|
lambda__process_lambda(Purity, PredOrFunc, EvalMethod, Vars,
|
|
Modes, Det, NonLocalVars, LambdaGoal1,
|
|
Unification, Y1, Unification1, !Info),
|
|
Unify = unify(XVar, Y1, Mode, Unification1, Context)
|
|
;
|
|
% ordinary unifications are left unchanged
|
|
Unify = unify(XVar, Y, Mode, Unification, Context)
|
|
).
|
|
|
|
% the rest of the clauses just process goals recursively
|
|
|
|
lambda__process_goal_2(conj(Goals0), GoalInfo, conj(Goals) - GoalInfo,
|
|
!Info) :-
|
|
lambda__process_goal_list(Goals0, Goals, !Info).
|
|
lambda__process_goal_2(par_conj(Goals0), GoalInfo,
|
|
par_conj(Goals) - GoalInfo, !Info) :-
|
|
lambda__process_goal_list(Goals0, Goals, !Info).
|
|
lambda__process_goal_2(disj(Goals0), GoalInfo, disj(Goals) - GoalInfo,
|
|
!Info) :-
|
|
lambda__process_goal_list(Goals0, Goals, !Info).
|
|
lambda__process_goal_2(not(Goal0), GoalInfo, not(Goal) - GoalInfo, !Info) :-
|
|
lambda__process_goal(Goal0, Goal, !Info).
|
|
lambda__process_goal_2(switch(Var, CanFail, Cases0), GoalInfo,
|
|
switch(Var, CanFail, Cases) - GoalInfo, !Info) :-
|
|
lambda__process_cases(Cases0, Cases, !Info).
|
|
lambda__process_goal_2(some(Vars, CanRemove, Goal0), GoalInfo,
|
|
some(Vars, CanRemove, Goal) - GoalInfo, !Info) :-
|
|
lambda__process_goal(Goal0, Goal, !Info).
|
|
lambda__process_goal_2(if_then_else(Vars, Cond0, Then0, Else0), GoalInfo,
|
|
if_then_else(Vars, Cond, Then, Else) - GoalInfo, !Info) :-
|
|
lambda__process_goal(Cond0, Cond, !Info),
|
|
lambda__process_goal(Then0, Then, !Info),
|
|
lambda__process_goal(Else0, Else, !Info).
|
|
lambda__process_goal_2(Goal @ generic_call(_, _, _, _), GoalInfo,
|
|
Goal - GoalInfo, !Info).
|
|
lambda__process_goal_2(Goal @ call(_, _, _, _, _, _), GoalInfo,
|
|
Goal - GoalInfo, !Info).
|
|
lambda__process_goal_2(Goal @ foreign_proc(_, _, _, _, _, _), GoalInfo,
|
|
Goal - GoalInfo, !Info).
|
|
lambda__process_goal_2(shorthand(_), _, _, !Info) :-
|
|
% these should have been expanded out by now
|
|
error("lambda__process_goal_2: unexpected shorthand").
|
|
|
|
:- pred lambda__process_goal_list(list(hlds_goal)::in, list(hlds_goal)::out,
|
|
lambda_info::in, lambda_info::out) is det.
|
|
|
|
lambda__process_goal_list([], [], !Info).
|
|
lambda__process_goal_list([Goal0 | Goals0], [Goal | Goals], !Info) :-
|
|
lambda__process_goal(Goal0, Goal, !Info),
|
|
lambda__process_goal_list(Goals0, Goals, !Info).
|
|
|
|
:- pred lambda__process_cases(list(case)::in, list(case)::out,
|
|
lambda_info::in, lambda_info::out) is det.
|
|
|
|
lambda__process_cases([], [], !Info).
|
|
lambda__process_cases([case(ConsId, Goal0) | Cases0],
|
|
[case(ConsId, Goal) | Cases], !Info) :-
|
|
lambda__process_goal(Goal0, Goal, !Info),
|
|
lambda__process_cases(Cases0, Cases, !Info).
|
|
|
|
:- pred lambda__process_lambda(purity::in, pred_or_func::in,
|
|
lambda_eval_method::in, list(prog_var)::in, list(mode)::in,
|
|
determinism::in, list(prog_var)::in, hlds_goal::in, unification::in,
|
|
unify_rhs::out, unification::out, lambda_info::in, lambda_info::out)
|
|
is det.
|
|
|
|
lambda__process_lambda(Purity, PredOrFunc, EvalMethod, Vars, Modes, Detism,
|
|
OrigNonLocals0, LambdaGoal, Unification0, Functor,
|
|
Unification, LambdaInfo0, LambdaInfo) :-
|
|
LambdaInfo0 = lambda_info(VarSet, VarTypes, _PredConstraints, TVarSet,
|
|
InstVarSet, TVarMap, TCVarMap, Markers, POF, OrigPredName,
|
|
Owner, ModuleInfo0, MustRecomputeNonLocals0),
|
|
|
|
% Calculate the constraints which apply to this lambda
|
|
% expression.
|
|
% Note currently we only allow lambda expressions
|
|
% to have universally quantified constraints.
|
|
map__keys(TCVarMap, AllConstraints),
|
|
map__apply_to_list(Vars, VarTypes, LambdaVarTypes),
|
|
list__map(prog_type__vars, LambdaVarTypes, LambdaTypeVarsList),
|
|
list__condense(LambdaTypeVarsList, LambdaTypeVars),
|
|
list__filter(lambda__constraint_contains_vars(LambdaTypeVars),
|
|
AllConstraints, UnivConstraints),
|
|
Constraints = constraints(UnivConstraints, []),
|
|
|
|
% existentially typed lambda expressions are not yet supported
|
|
% (see the documentation at top of this file)
|
|
ExistQVars = [],
|
|
LambdaGoal = _ - LambdaGoalInfo,
|
|
goal_info_get_nonlocals(LambdaGoalInfo, LambdaGoalNonLocals),
|
|
set__insert_list(LambdaGoalNonLocals, Vars, LambdaNonLocals),
|
|
goal_util__extra_nonlocal_typeinfos(TVarMap, TCVarMap, VarTypes,
|
|
ExistQVars, LambdaNonLocals, ExtraTypeInfos),
|
|
OrigVars = OrigNonLocals0,
|
|
|
|
(
|
|
Unification0 = construct(Var0, _, _, UniModes0, _, _, _)
|
|
->
|
|
Var = Var0,
|
|
UniModes1 = UniModes0
|
|
;
|
|
error("lambda__transform_lambda: weird unification")
|
|
),
|
|
|
|
set__delete_list(LambdaGoalNonLocals, Vars, NonLocals1),
|
|
|
|
% We need all the typeinfos, including the ones that are not used,
|
|
% for the layout structure describing the closure.
|
|
NewTypeInfos = ExtraTypeInfos `set__difference` NonLocals1,
|
|
NonLocals = NonLocals1 `set__union` NewTypeInfos,
|
|
|
|
% If we added variables to the nonlocals of the lambda goal,
|
|
% then we need to recompute the nonlocals for the procedure
|
|
% that contains it.
|
|
( \+ set__empty(NewTypeInfos) ->
|
|
MustRecomputeNonLocals = yes
|
|
;
|
|
MustRecomputeNonLocals = MustRecomputeNonLocals0
|
|
),
|
|
|
|
set__to_sorted_list(NonLocals, ArgVars1),
|
|
|
|
(
|
|
% Optimize a special case: replace
|
|
% `lambda([Y1, Y2, ...] is Detism,
|
|
% p(X1, X2, ..., Y1, Y2, ...))'
|
|
% where `p' has determinism `Detism' with
|
|
% `p(X1, X2, ...)'
|
|
%
|
|
% This optimization is only valid if the modes of the Xi are
|
|
% input, since only input arguments can be curried.
|
|
% It's also only valid if all the inputs in the Yi precede the
|
|
% outputs. It's also not valid if any of the Xi are in the Yi.
|
|
|
|
LambdaGoal = call(PredId0, ProcId0, CallVars, _, _, _) - _,
|
|
module_info_pred_proc_info(ModuleInfo0, PredId0, ProcId0,
|
|
Call_PredInfo, Call_ProcInfo),
|
|
|
|
(
|
|
EvalMethod = (aditi_bottom_up),
|
|
pred_info_get_markers(Call_PredInfo, Call_Markers),
|
|
check_marker(Call_Markers, aditi)
|
|
;
|
|
EvalMethod = normal
|
|
),
|
|
list__remove_suffix(CallVars, Vars, InitialVars),
|
|
|
|
% check that none of the variables that we're trying to
|
|
% use as curried arguments are lambda-bound variables
|
|
\+ (
|
|
list__member(InitialVar, InitialVars),
|
|
list__member(InitialVar, Vars)
|
|
),
|
|
|
|
% Check that the code models are compatible.
|
|
% Note that det is not compatible with semidet,
|
|
% and semidet is not compatible with nondet,
|
|
% since the calling conventions are different.
|
|
% If we're using the LLDS back-end
|
|
% (i.e. not --high-level-code),
|
|
% det is compatible with nondet.
|
|
% If we're using the MLDS back-end,
|
|
% then predicates and functions have different
|
|
% calling conventions.
|
|
proc_info_interface_code_model(Call_ProcInfo, Call_CodeModel),
|
|
determinism_to_code_model(Detism, CodeModel),
|
|
module_info_globals(ModuleInfo0, Globals),
|
|
globals__lookup_bool_option(Globals, highlevel_code,
|
|
HighLevelCode),
|
|
(
|
|
HighLevelCode = no,
|
|
( CodeModel = Call_CodeModel
|
|
; CodeModel = model_non, Call_CodeModel = model_det
|
|
)
|
|
;
|
|
HighLevelCode = yes,
|
|
Call_PredOrFunc =
|
|
pred_info_is_pred_or_func(Call_PredInfo),
|
|
PredOrFunc = Call_PredOrFunc,
|
|
CodeModel = Call_CodeModel
|
|
),
|
|
|
|
% check that the curried arguments are all input
|
|
proc_info_argmodes(Call_ProcInfo, Call_ArgModes),
|
|
list__length(InitialVars, NumInitialVars),
|
|
list__take(NumInitialVars, Call_ArgModes, CurriedArgModes),
|
|
\+ ( list__member(Mode, CurriedArgModes),
|
|
\+ mode_is_input(ModuleInfo0, Mode)
|
|
)
|
|
->
|
|
ArgVars = InitialVars,
|
|
PredId = PredId0,
|
|
ProcId = ProcId0,
|
|
mode_util__modes_to_uni_modes(CurriedArgModes, CurriedArgModes,
|
|
ModuleInfo0, UniModes),
|
|
%
|
|
% we need to mark the procedure as having had its
|
|
% address taken
|
|
%
|
|
proc_info_set_address_taken(address_is_taken,
|
|
Call_ProcInfo, Call_NewProcInfo),
|
|
module_info_set_pred_proc_info(PredId, ProcId,
|
|
Call_PredInfo, Call_NewProcInfo,
|
|
ModuleInfo0, ModuleInfo)
|
|
;
|
|
% Prepare to create a new predicate for the lambda
|
|
% expression: work out the arguments, module name, predicate
|
|
% name, arity, arg types, determinism,
|
|
% context, status, etc. for the new predicate.
|
|
|
|
ArgVars = put_typeinfo_vars_first(ArgVars1, VarTypes),
|
|
list__append(ArgVars, Vars, AllArgVars),
|
|
|
|
module_info_name(ModuleInfo0, ModuleName),
|
|
module_info_next_lambda_count(LambdaCount,
|
|
ModuleInfo0, ModuleInfo1),
|
|
goal_info_get_context(LambdaGoalInfo, OrigContext),
|
|
term__context_file(OrigContext, OrigFile),
|
|
term__context_line(OrigContext, OrigLine),
|
|
make_pred_name_with_context(ModuleName, "IntroducedFrom",
|
|
PredOrFunc, OrigPredName, OrigLine,
|
|
LambdaCount, PredName),
|
|
goal_info_get_context(LambdaGoalInfo, LambdaContext),
|
|
% The TVarSet is a superset of what it really ought be,
|
|
% but that shouldn't matter.
|
|
% Existentially typed lambda expressions are not
|
|
% yet supported (see the documentation at top of this file)
|
|
ExistQVars = [],
|
|
lambda__uni_modes_to_modes(UniModes1, OrigArgModes),
|
|
|
|
% We have to jump through hoops to work out the mode
|
|
% of the lambda predicate. For introduced
|
|
% type_info arguments, we use the mode "in". For the original
|
|
% non-local vars, we use the modes from `UniModes1'.
|
|
% For the lambda var arguments at the end,
|
|
% we use the mode in the lambda expression.
|
|
|
|
list__length(ArgVars, NumArgVars),
|
|
in_mode(In),
|
|
list__duplicate(NumArgVars, In, InModes),
|
|
map__from_corresponding_lists(ArgVars, InModes,
|
|
ArgModesMap),
|
|
|
|
map__from_corresponding_lists(OrigVars, OrigArgModes,
|
|
OrigArgModesMap),
|
|
map__overlay(ArgModesMap, OrigArgModesMap, ArgModesMap1),
|
|
map__apply_to_list(ArgVars, ArgModesMap1, ArgModes1),
|
|
|
|
% Recompute the uni_modes.
|
|
mode_util__modes_to_uni_modes(ArgModes1, ArgModes1,
|
|
ModuleInfo1, UniModes),
|
|
|
|
list__append(ArgModes1, Modes, AllArgModes),
|
|
map__apply_to_list(AllArgVars, VarTypes, ArgTypes),
|
|
|
|
purity_to_markers(Purity, LambdaMarkers0),
|
|
(
|
|
% Pass through the aditi markers for
|
|
% aggregate query closures.
|
|
% XXX we should differentiate between normal
|
|
% top-down closures and aggregate query closures,
|
|
% possibly by using a different type for aggregate
|
|
% queries. Currently all nondet lambda expressions
|
|
% within Aditi predicates are treated as aggregate
|
|
% inputs.
|
|
% EvalMethod = (aditi_bottom_up),
|
|
determinism_components(Detism, _, at_most_many),
|
|
check_marker(Markers, aditi)
|
|
->
|
|
markers_to_marker_list(Markers, MarkerList0),
|
|
list__filter(
|
|
(pred(Marker::in) is semidet :-
|
|
% Pass through only Aditi markers.
|
|
% Don't pass through `context' markers, since
|
|
% they are useless for non-recursive predicates
|
|
% such as the created predicate.
|
|
( Marker = aditi
|
|
; Marker = dnf
|
|
; Marker = psn
|
|
; Marker = naive
|
|
; Marker = supp_magic
|
|
; Marker = aditi_memo
|
|
; Marker = aditi_no_memo
|
|
)),
|
|
MarkerList0, MarkerList),
|
|
list__foldl(add_marker, MarkerList,
|
|
LambdaMarkers0, LambdaMarkers)
|
|
;
|
|
EvalMethod = (aditi_bottom_up)
|
|
->
|
|
add_marker(aditi, LambdaMarkers0, LambdaMarkers)
|
|
;
|
|
LambdaMarkers = LambdaMarkers0
|
|
),
|
|
|
|
% Now construct the proc_info and pred_info for the new
|
|
% single-mode predicate, using the information computed above
|
|
|
|
proc_info_create(LambdaContext, VarSet, VarTypes,
|
|
AllArgVars, InstVarSet, AllArgModes, Detism,
|
|
LambdaGoal, TVarMap, TCVarMap, address_is_taken,
|
|
ProcInfo0),
|
|
|
|
% The debugger ignores unnamed variables.
|
|
ensure_all_headvars_are_named(ProcInfo0, ProcInfo1),
|
|
|
|
% If we previously already needed to recompute the nonlocals,
|
|
% then we'd better to that recomputation for the procedure
|
|
% that we just created.
|
|
(
|
|
MustRecomputeNonLocals0 = yes,
|
|
requantify_proc(ProcInfo1, ProcInfo)
|
|
;
|
|
MustRecomputeNonLocals0 = no,
|
|
ProcInfo = ProcInfo1
|
|
),
|
|
|
|
set__init(Assertions),
|
|
|
|
pred_info_create(ModuleName, PredName, PredOrFunc,
|
|
LambdaContext, lambda(OrigFile, OrigLine), local,
|
|
LambdaMarkers, ArgTypes, TVarSet, ExistQVars,
|
|
Constraints, Assertions, Owner, ProcInfo, ProcId,
|
|
PredInfo),
|
|
|
|
% save the new predicate in the predicate table
|
|
|
|
module_info_get_predicate_table(ModuleInfo1, PredicateTable0),
|
|
predicate_table_insert(PredInfo, PredId,
|
|
PredicateTable0, PredicateTable),
|
|
module_info_set_predicate_table(PredicateTable,
|
|
ModuleInfo1, ModuleInfo)
|
|
),
|
|
ShroudedPredProcId = shroud_pred_proc_id(proc(PredId, ProcId)),
|
|
ConsId = pred_const(ShroudedPredProcId, EvalMethod),
|
|
Functor = functor(ConsId, no, ArgVars),
|
|
|
|
Unification = construct(Var, ConsId, ArgVars, UniModes,
|
|
construct_dynamically, cell_is_unique, no),
|
|
LambdaInfo = lambda_info(VarSet, VarTypes, Constraints, TVarSet,
|
|
InstVarSet, TVarMap, TCVarMap, Markers, POF, OrigPredName,
|
|
Owner, ModuleInfo, MustRecomputeNonLocals).
|
|
|
|
:- pred lambda__constraint_contains_vars(list(tvar)::in, class_constraint::in)
|
|
is semidet.
|
|
|
|
lambda__constraint_contains_vars(LambdaVars, ClassConstraint) :-
|
|
ClassConstraint = constraint(_, ConstraintTypes),
|
|
list__map(prog_type__vars, ConstraintTypes, ConstraintVarsList),
|
|
list__condense(ConstraintVarsList, ConstraintVars),
|
|
% Probably not the most efficient way of doing it, but I
|
|
% wouldn't think that it matters.
|
|
set__list_to_set(LambdaVars, LambdaVarsSet),
|
|
set__list_to_set(ConstraintVars, ConstraintVarsSet),
|
|
set__subset(ConstraintVarsSet, LambdaVarsSet).
|
|
|
|
:- pred lambda__uni_modes_to_modes(list(uni_mode)::in, list(mode)::out)
|
|
is det.
|
|
|
|
% This predicate works out the modes of the original non-local
|
|
% variables of a lambda expression based on the list of uni_mode
|
|
% in the unify_info for the lambda unification.
|
|
|
|
lambda__uni_modes_to_modes([], []).
|
|
lambda__uni_modes_to_modes([UniMode | UniModes], [Mode | Modes]) :-
|
|
UniMode = ((_Initial0 - Initial1) -> (_Final0 - _Final1)),
|
|
Mode = (Initial1 -> Initial1),
|
|
lambda__uni_modes_to_modes(UniModes, Modes).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
%---------------------------------------------------------------------------%
|