mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-17 06:47:17 +00:00
05ce757fdfdb43da74be8ee56c541cf7edfb22b8
49 Commits
| Author | SHA1 | Message | Date | |
|---|---|---|---|---|
|
|
295415090e |
Convert almost all remaining modules in the compiler to use
Estimated hours taken: 6 Branches: main compiler/*.m: Convert almost all remaining modules in the compiler to use "$module, $pred" instead of "this_file" in error messages. In a few cases, the old error message was misleading, since it contained an incorrect, out-of-date or cut-and-pasted predicate name. tests/invalid/unresolved_overloading.err_exp: Update an expected output containing an updated error message. |
||
|
|
012962fd17 |
Change the argument order of predicates in the varset module to make
Branches: main Change the argument order of predicates in the varset module to make them more conducive to the use of state variable notation. library/varset.m: As above. library/parser.m: library/term_io.m: library/svvarset.m: compiler/*.m: samples/interpreter.m: tests/debugger/interpreter.m: tests/general/interpreter.m: tests/hard_coded/bigtest.m: tests/hard_coded/deep_copy_bug.m: tests/hard_coded/lp.m: tests/hard_coded/pprint_test.m: tests/hard_coded/type_spec_ho_term.m: Conform to the above change and remove dependencies on the svvarset module. |
||
|
|
9f68c330f0 |
Change the argument order of many of the predicates in the map, bimap, and
Branches: main
Change the argument order of many of the predicates in the map, bimap, and
multi_map modules so they are more conducive to the use of state variable
notation, i.e. make the order the same as in the sv* modules.
Prepare for the deprecation of the sv{bimap,map,multi_map} modules by
removing their use throughout the system.
library/bimap.m:
library/map.m:
library/multi_map.m:
As above.
NEWS:
Announce the change.
Separate out the "highlights" from the "detailed listing" for
the post-11.01 NEWS.
Reorganise the announcement of the Unicode support.
benchmarks/*/*.m:
browser/*.m:
compiler/*.m:
deep_profiler/*.m:
extras/*/*.m:
mdbcomp/*.m:
profiler/*.m:
tests/*/*.m:
ssdb/*.m:
samples/*/*.m
slice/*.m:
Conform to the above change.
Remove any dependencies on the sv{bimap,map,multi_map} modules.
|
||
|
|
1c3bc03415 |
Make the system compiler with --warn-unused-imports.
Estimated hours taken: 2 Branches: main, release Make the system compiler with --warn-unused-imports. browser/*.m: library/*.m: compiler/*.m: Remove unnecesary imports as flagged by --warn-unused-imports. In some files, do some minor cleanup along the way. |
||
|
|
8a28e40c9b |
Add the predicates sorry, unexpected and expect to library/error.m.
Estimated hours taken: 2 Branches: main Add the predicates sorry, unexpected and expect to library/error.m. compiler/compiler_util.m: library/error.m: Move the predicates sorry, unexpected and expect from compiler_util to error. Put the predicates in error.m into the same order as their declarations. compiler/*.m: Change imports as needed. compiler/lp.m: compiler/lp_rational.m: Change imports as needed, and some minor cleanups. deep_profiler/*.m: Switch to using the new library predicates, instead of calling error directly. Some other minor cleanups. NEWS: Mention the new predicates in the standard library. |
||
|
|
e747987afb |
Fix Mantis bug #109.
Estimated hours taken: 3 Branches: main Fix Mantis bug #109. compiler/add_heap_ops.m: Fix the bug. The bug was that this pass tried to record the heap pointer at the start of the nth disjunct, even in cases where there were no following disjuncts at whose starts that saved heap pointer could be restored (to recover the memory allocated by the nth disjunct). The symptom was a disjunction with only one disjunct, but the problem was a simple semantic one. The fix is simply to say that we won't record the heap pointer before the nth disjunct unless disjunct n+1 exists. Improve the generated HLDS in another way as well: wrap the appropriate kind of promise_purity scope around the transformed code (which uses impure primitives). tests/valid/bug109.m: Add the regression test for this bug. tests/valid/Mmakefile: tests/valid/Mercury.options: Enable the test case. |
||
|
|
f4139d8d69 |
Remove support for the old C interface. The parser still recognises the old
pragmas but it now emits an error message saying what pragma in the "new" foreign language interface to use instead. (That will be deleted after the next release.) Remove support for nondet foreign code from the implementation. Add some bits from the old C interface chapter of the reference manual, about linking with C object files and the c_pointer type, to the chapter on the foreign language interface; delete the rest. Add an illustration of simulating nondet foreign code with Mercury clauses and (semi)deterministic foreign_procs. doc/reference_manual.texi: Delete the old C interface chapter. Add a section on linking against C object files to the C specific section of the foreign language interface chapter. (The old version of this was quite mmake-specific, the new version attempts to minimise this.) Mention the c_pointer type in section on C foreign types. Mention that nondet foreign_procs are not allowed. Give an example to use foreign code and nondeterminism. compiler/prog_io_pragma.m: Emit error messages when any of the pragmas used by the old C interface are encountered. compiler/prog_item.m: Delete the parse tree representation of import pragmas. compiler/gcc.m: Replace `:- pragma import' declarations with `:- pragma foreign_proc' declarations for C. compiler/add_heap_ops.m: compiler/add_trail_ops.m: compiler/add_pragma.m: compiler/deep_profiling.m: compiler/det_analysis.m: compiler/equiv_type.m: compiler/erl_call_gen.m: compiler/foreign.m: compiler/goal_util.m: compiler/hlds_out_goal.m: compiler/make_hlds_passes.m: compiler/make_hlds_warn.m: compiler/mercury_to_mercury.m compiler/ml_code_gen.m: compiler/module_qual.m: compiler/modules.m: compiler/polymorphism.m: compiler/pragma_c_gen.m: compiler/proc_gen.m: compiler/prog_data.m: compiler/recompilation.version.m: Delete stuff related the old C interface. tests/hard_coded_Mmakefile: tests/hard_coded/inline_nondet_pragma_c.*: tests/hard_coded/nondet_c.*: tests/hard_coded/nondet_pragma_c_bug.*: tests/hard_coded/pragma_import.*: Delete these tests. The features they exercise are no longer supported. tests/*/*.m: Replace uses of the old C interface with the new. |
||
|
|
77a6a6c10c |
Implement several more changes that together speed up compilation time
Estimated hours taken: 16 Branches: main Implement several more changes that together speed up compilation time on training_cars_full by 12%, and also improve tools/speedtest -h by 7.2% and tools/speedtest by 1.6%. The first change is designed to eliminate the time that the compiler spends constructing error messages that are then ignored. The working predicates of prog_io_sym_name used to always return a single result, which either gave a description of the thing being looked, or an error message. However, in many places, the caller did not consider not finding the thing being looked for to be an error, and thus threw away the error message, keeping only the "not found" indication. For each predicate with such callers, this diff provides a parallel predicate that indicates "not found" simply by failing. This allows us to eliminate the construction of the error message, the preparation for the construction of the error message (usually by describing the context), and the construction of the "ok" wrapper. The second change is to specialize the handling of from_ground_term_construct scopes in the termination analyzer. To make this easier, I also cleaned up of the infrastructure of the termination analyzer. The third change is to avoid traversing from_ground_term_construct scopes in quantification.m when finding the variables in a goal, since termination analysis no longer needs the information it gathers. The fourth change is to avoid traversing second and later conjuncts in conjunctions twice. The first step in handling conjunctions is to call implicitly_quantify_conj, which builds up a data structure that pairs each conjunct with the variables that occur free in all the conjuncts following it. However, after this was done and each conjunct was annotated with its nonlocals, we used to compute the variables that occur free in the conjunction as a whole from scratch. This diff changes the code so that we now compute that set based on the information we gathered earlier, avoiding a redundant traversal. The fifth change is to create specialized, lower-arity versions of many of the predicates in quantification.m. These versions are intended for traversals that take place after the compiler has replaced lambda expressions with references to separate procedures. These traversals do not need to pass around arguments representing the variables occurring free in the (now non-existent) lambda expressions. compiler/prog_io_sym_name.m: Make the first change described above. Change some predicate names to adopt a consistent naming scheme in which predicates that do the same job and differ only in how they handle errors have names that differ only in a "try_" prefix. Add some predicate versions that do common tests on the output of the base versions. For example, try_parse_sym_name_and_no_args is a version of try_parse_sym_name_and_args that insists on finding an empty argument list. Remove the unused "error term" argument that we used to need a while ago. Move some predicate definitions to make their order match the order of their declarations. Turn a predicate into a function for its caller's convenience. compiler/term_constr_build.m: Make the second change described above by modeling each from_ground_term_construct scope as a single unification, assigning the total size of the ground term to the variable being built. compiler/term_constr_util.m: Put the arguments of some predicates into a more standard order. compiler/lp_rational.m: Change the names of some function symbols to avoid both the use of graphic characters that require quoting and clashes with other types. Change the names of some predicates to make their purpose clear, and to avoid ambiguity. compiler/quantification.m: Make the third, fourth and fifth changes described above. compiler/*.m: Conform to the changes above. |
||
|
|
02f9532cc1 |
Optimize calls to formatting functions and predicates such as
Estimated hours taken: 16
Branches: main
Optimize calls to formatting functions and predicates such as
Str = string.format("%s_%d", [s(Prefix), i(Num)])
into
V1 = string.int_to_string(Num),
V2 = "_" ++ V1,
Str = Prefix ++ V2
essentially interpreting the format string at compile time rather than runtime.
At the moment, the optimization applies to calls to string.format/3,
io.format/3 and io.format/4, and only in the case where the format specifiers
are just "%c", "%d", or "%s", with no widths, precisions etc, though
that could be changed relatively easily, though at the cost of coupling
the compiler more tightly to the implementation of library/string.m.
(We don't handle %f, because float_to_string(F) yields a different string
than string.format("%f", [f(F)]). The former yields e.g. "1.23", while the
latter yields "1.23000".)
compiler/format_call.m:
Change the code that looks for malformed calls to formatting predicates
to also look for well-formed, optimizable calls, and to transform them
as shown above.
mdbcomp/prim_data.m:
List the standard library's string module here, since the compiler now
needs to know what its name is (it generates calls to its predicates).
compiler/options.m:
doc/user_guide.texi:
Add a new option, --optimize-format-calls, that calls for this
optimization. Make it enabled by default.
compiler/simplify.m:
Since the transformation in format_call.m will typically introduce
nested conjunctions, we now do it before the rest of the
simplifications. We also invoke the fixups needed by the output
of format_call.m if it actually optimized any code.
Delete the code that used to record whether the procedure has any
format calls, since it now comes too late.
Decide once, when setting up for processing a procedure, whether
we want to invoke format_call.m if appropriate, instead of doing it
later. This allows us to reduce the size of the simplications
data structure we pass around.
Protect the predicates that format_call.m can generate calls to
from being deleted by dead_pred_elim before the simplification pass.
compiler/det_analysis.m:
Since simplify.m itself cannot record early enough whether a given
procedure body contains calls to formatting predicates, do it here.
compiler/det_info.m:
Add a new field to the det_info that records whether we have seen
a call to a formatting predicate.
Add another field to the det_info that records the list of errors
we have found so far, so that we can stop passing it around separately.
compiler/hlds_pred.m:
Add a marker that allows det_analysis.m to record its conclusions.
compiler/hlds_goal.m:
Add utility predicate.
compiler/goal_util.m:
Make the predicates for creating new plain calls (and, for the sake of
uniformity, calls to foreign code) take instmap_deltas, such as those
created by the new utility functions in instmap.m. This allows these
predicates' caller to avoid creating unnecessary intermediate data
structures.
compiler/instmap.m:
Make an existing predicate into a function to allow it to be used
more flexibly.
Move some utility functions for creating instmap_deltas here from
table_gen.m, so that they can be used by other modules.
compiler/liveness.m:
Delete an unused predicate.
compiler/accumulator.m:
compiler/add_heap_ops.m:
compiler/add_trail_ops.m:
compiler/builtin_lib_types.m:
compiler/common.m:
compiler/complexity.m:
compiler/deep_profiling.m:
compiler/deforest.m:
compiler/dep_par_conj.m:
compiler/det_report.m:
compiler/distance_granularity.m:
compiler/granularity.m:
compiler/higher_order.m:
compiler/hlds_out.m:
compiler/inlining.m:
compiler/intermod.m:
compiler/modecheck_unify.m:
compiler/modes.m:
compiler/pd_util.m:
compiler/prog_type.m:
compiler/purity.m:
compiler/rbmm.region_transformation.m:
compiler/size_prof.m:
compiler/ssdebug.m:
compiler/table_gen.m:
compiler/try_expand.m:
compiler/typecheck.m:
compiler/unify_proc.m:
Conform to the changes above.
compiler/stm_expand.m:
Conform to the changes above. Also, build pairs by using "-" directly
as the function symbol, instead of this module's old practice
of doing it the slow way by calling the "pair" function.
tests/general/string_format_lib.m:
Cleanup the style of the code of this test case.
tests/hard_coded/opt_format.{m,exp}:
New test case to exercise the behavior of format_call.m's
transformation.
tests/hard_coded/Mmakefile:
tests/hard_coded/Mercury.options:
Enable the new test case.
|
||
|
|
d69ba1a1f0 |
Include the type_ctor in cons_ids for user-defined types.
Estimated hours taken: 32 Branches: main Include the type_ctor in cons_ids for user-defined types. The intention is two-fold: - It prepares for a future in which we allow more than one function symbol to with the same name to be defined in a module. - It makes the HLDS code more self-contained. In many places, processing construction and deconstruction unifications required knowing which type the cons_id belongs to, but until now, code couldn't know that unless it kept track of the type of the variable unified with the cons_id. With this diff, user-defined cons_ids are represented as cons(SymName, Arity, TypeCtor) The last field is filled in during post-typecheck. After that time, any module qualification in the SymName (which may initially be partial) is redundant, since it is also available in the TypeCtor. In the future, we could make all those SymNames be just unqualified(_) at that time. We could also replace the current maps in HLDS type definitions with full cons_id keys with just name/arity keys (since the module qualifier is a given for any given type definition), we could also support partially qualified cons_ids in source code using a map from name/arity pairs to a list of all the type_ctors that have function symbols with that name/arity, instead of our current practice of inserting all possible partially module qualified version of every cons_id into a single giant table, and we could do the same thing with the field names table. This diff also separates tuples out from user-defined types, since in many respects they are different (they don't have a single type_ctor, for starters). It also separates out character constants, since they were alreay treated specially in most places, though not in some places where they *ought* to have been treated specially. Take the opportunity to give some other cons_ids better names. compiler/prog_data.m: Make the change described above, and document it. Put the implementations of the predicates declared in each part of this module next to the declarations, instead of keeping all the code until the very end (where it was usually far from their declarations). Remove three predicates with identical definitions from inst_match.m, inst_util.m and mode_constraints.m, and put the common definition in prog_data.m. library/term_io.m: Add a new predicate that is basically a reversible version of the existing function espaced_char, since the definition of char_consts needs reversibilty. compiler/post_typecheck.m: For functors of user-defined types, record their type_ctor. For tuples and char constants, record them as such. compiler/builtin_lib_types.m: compiler/parse_tree.m: compiler/notes/compiler_design.html: New module to centralize knowledge about builtin types, specially handled library types, and their function symbols. Previously, the stuff now in this module used to be in several different places, including prog_type.m and stm_expand.m, and some of it was duplicated. mdbcomp/prim_data.m: Add some predicates now needed by builtin_lib_types.m. compiler/builtin_ops.m: Factor out some duplicated code. compiler/add_type.m: Include the relevant type_ctors in the cons_ids generated in type definitions. compiler/hlds_data.m: Document an existing type better. Rename a cons_tag in sync with its corresponding cons_id. Put some declarations into logical order. compiler/hlds_out.m: Rename a misleadingly-named predicate. compiler/prog_ctgc.m: compiler/term_constr_build.m: Add XXXs for questionable existing code. compiler/add_clause.m: compiler/add_heap_ops.m: compiler/add_pragma.m: compiler/add_pred.m: compiler/add_trail_ops.m: compiler/assertion.m: compiler/bytecode_gen.m: compiler/closure_analysis.m: compiler/code_info.m: compiler/complexity.m: compiler/ctgc_selector.m: compiler/dead_proc_elim.m: compiler/deep_profiling.m: compiler/delay_partial_inst.m: compiler/dependency_graph.m: compiler/det_analysis.m: compiler/det_report.m: compiler/distance_granularity.m: compiler/erl_rtti.m: compiler/erl_unify_gen.m: compiler/export.m: compiler/field_access.m: compiler/foreign.m: compiler/format_call.m: compiler/hhf.m: compiler/higher_order.m: compiler/hlds_code_util.m: compiler/hlds_desc.m: compiler/hlds_goal.m: compiler/implementation_defined_literals.m: compiler/inst_check.m: compiler/inst_graph.m: compiler/inst_match.m: compiler/inst_util.m: compiler/instmap.m: compiler/intermod.m: compiler/interval.m: compiler/lambda.m: compiler/lco.m: compiler/make_tags.m: compiler/mercury_compile.m: compiler/mercury_to_mercury.m: compiler/middle_rec.m: compiler/ml_closure_gen.m: compiler/ml_code_gen.m: compiler/ml_code_util.m: compiler/ml_switch_gen.m: compiler/ml_type_gen.m: compiler/ml_unify_gen.m: compiler/ml_util.m: compiler/mlds_to_c.m: compiler/mlds_to_java.m: compiler/mode_constraints.m: compiler/mode_errors.m: compiler/mode_ordering.m: compiler/mode_util.m: compiler/modecheck_unify.m: compiler/modes.m: compiler/module_qual.m: compiler/polymorphism.m: compiler/prog_ctgc.m: compiler/prog_event.m: compiler/prog_io_util.m: compiler/prog_mode.m: compiler/prog_mutable.m: compiler/prog_out.m: compiler/prog_type.m: compiler/prog_util.m: compiler/purity.m: compiler/qual_info.m: compiler/rbmm.add_rbmm_goal_infos.m: compiler/rbmm.execution_path.m: compiler/rbmm.points_to_analysis.m: compiler/rbmm.region_transformation.m: compiler/recompilation.usage.m: compiler/rtti.m: compiler/rtti_out.m: compiler/rtti_to_mlds.m: compiler/simplify.m: compiler/simplify.m: compiler/special_pred.m: compiler/ssdebug.m: compiler/stack_opt.m: compiler/stm_expand.m: compiler/stratify.m: compiler/structure_reuse.direct.detect_garbagem: compiler/superhomoegenous.m: compiler/switch_detection.m: compiler/switch_gen.m: compiler/switch_util.m: compiler/table_gen.m: compiler/term_constr_build.m: compiler/term_norm.m: compiler/try_expand.m: compiler/type_constraints.m: compiler/type_ctor_info.m: compiler/type_util.m: compiler/typecheck.m: compiler/typecheck_errors.m: compiler/unify_gen.m: compiler/unify_proc.m: compiler/unify_modes.m: compiler/untupling.m: compiler/unused_imports.m: compiler/xml_documentation.m: Minor changes, mostly to ignore the type_ctor in cons_ids in places where it is not needed, take the type_ctor from the cons_id in places where it is more convenient, conform to the new names of some cons_ids, conform to the changes in hlds_out.m, and/or add now-needed imports of builtin_lib_types.m. In some places, the handling previously applied to cons/2 (which included tuples and character constants as well as user-defined function symbols) is now applied only to user-defined function symbols or to user-defined function symbols and tuples, as appropriate, with character constants being handled more like the other kinds of constants. In inst_match.m, rename a whole bunch of predicates to avoid ambiguities. In prog_util.m, remove two predicates that did almost nothing yet were far too easy to misuse. |
||
|
|
5ad9a27793 |
Speed up the compiler's handling of code that constructs large ground terms
Estimated hours taken: 80
Branches: main
Speed up the compiler's handling of code that constructs large ground terms
by specializing the treatment of such code.
This diff reduces the compilation time for training_cars_full.m from 106.9
seconds to 30.3 seconds on alys, my laptop. The time on tools/speedtest
stays pretty much the same.
compiler/hlds_goal.m:
Record the classification of from_ground_term scopes as purely
constructing terms, purely deconstructing them or something other.
Fix an old potential bug: variables inside the construct_how fields
of unifications weren't being renamed along with other variables.
This is a bug if any part of the compiler later looks at those
variables. (I am not sure whether or not this happens.)
compiler/superhomogenous.m:
Provisionally mark newly constructed static terms as being
from_ground_term_construct. Mode checking will either confirm this
or change the scope kind.
compiler/options.m:
compiler/handle_options.m:
Add a new option, from_ground_term_threshold, that allows the user to
set the boundary between ground terms that get scopes and ground terms
do not. I plan to experiment with different settings later.
compiler/modes.m:
Make this classification. For scopes that construct ground terms,
use a specialized algorithm that avoids quadratic behavior.
(It does not access the unify_inst_table, which is where the
factor of N other than the length of the goal list came from.)
The total size of the instmap_deltas, if printed out, still looks like
O(N^2) in size, but due to structure sharing it needs only O(N) memory.
For scopes that construct ground terms, set the determinism information
so that det_analysis.m doesn't have to traverse such scopes.
When handling disjunctions, check whether some nonlocals of the
disjunctions are constructed by from_ground_term_construct scopes.
For any such nonlocals, set their insts to just ground, throwing away
the precise information we have about exactly what function symbols
they and ALL their subterms are bound to. This is HUGE win, since
it allows us avoid spending a lot of time building a huge merge_inst
table, which later passes of the compiler (e.g. equiv_type_hlds) would
then have to spend similarly huge times traversing.
This approach does have a down side. If lots of arms of a disjunction
bind a nonlocal to a large ground term, but a few bind it to a SMALL
ground term, a term below the from_ground_term_threshold, this
optimization won't kick in. That could be one purpose of the new
option. It isn't documented yet; I will seek feedback about its
usefulness first.
compiler/modecheck_unify.m:
Handle the three different kinds of right hand sides separately.
This yields a small speedup, because now we don't test rhs_vars and
rhs_functors (the common right hand sides) for a special case
(goals containing "any" insts) that is applicable only to
rhs_lambda_goals.
compiler/unique_modes.m:
Don't traverse scopes that construct ground terms, since modes.m has
already done everything that needs to be done.
compiler/det_analysis.m:
Don't traverse scopes that construct ground terms, since modes.m has
already done the needed work.
compiler/instmap.m:
Add a new predicate for use by modes.m.
Many predicate names in this module were quite uninformative; give them
informative names.
compiler/polymorphism.m:
If this pass invalidates the from_ground_term_construct invariants,
then mark the relevant scope as from_ground_term_other.
Delete two unused access predicates.
compiler/equiv_type_hlds.m:
Don't traverse scopes that construct ground terms, since modes.m
ensures that their instmap deltas do not contain typed insts, and
thus the scope cannot contain types that need to be expanded.
Convert some predicates to single clauses.
compiler/goal_form.m:
compiler/goal_util.m:
In predicates that test goals for various properties, don't traverse
scopes that construct ground terms when the outcome of the test
is the same for all such scopes.
Convert some predicates to single clauses.
compiler/simplify.m:
Do not look for common structs in from_ground_term_construct scopes,
both because this speeds up the compiler, and because retaining
references to ground terms is in fact a pessimization, not an
optimization. This is because (a) those references need to be stored in
stack slots across calls, and (b) the C code generators ensure that
the cells representing ground terms will be shared as needed.
If all arms of a switch are from_ground_term_construct scopes,
do not merge the instmap_deltas from those arms, since this is
both time-consuming (even after the other changes in this diff)
and extremely unlikely to improve the instmap_delta.
Disable common_struct in from_ground_term_construct scopes,
since for these scopes, it is actually a pessimization.
Do not delete from_ground_term_construct scopes, since many
compiler passes can now use them.
Do some manual deforestation, break up some large predicates,
and give better names to some.
compiler/liveness.m
Special-case the handling from_ground_term_construct scopes. This
allows us to traverse them just once instead of three times, and this
traversal is simpler and faster than any of the three.
In some traversals, we were switching on the goal type twice; once
in e.g. detect_liveness_in_goal_2, and once by calling
goal_expr_has_subgoals. Eliminate the double switching by merging
the relevant predicates. (The double-switching structure was easier
to work with before we had multi-cons-id switches.)
compiler/typecheck.m:
Move a lookup after a test, so we don't have to do it if the test
fails.
Provide a specialized mode for a predicate. This should allow the
compiler to eliminate an argument and a test in the common case.
Note a possible chance for a speedup.
compiler/typecheck_info.m:
Don't apply empty substitutions to the types of a possibly very large
set of variables.
compiler/quantification.m:
Don't quantify from_ground_term_construct scopes. They are created
correctly quantified, and any compiler pass that invalidates that
quantification also removes the from_ground_term_construct mark.
Don't apply empty renamings to a possibly very large set of variables.
Move the code for handling scopes to its own predicate, to avoid
overwhelming the code that handles other kinds of goals. Even from
this, factor out the renaming code, since it is needed only for
some kinds of scopes.
Make some predicate names better reflect what the predicate does.
compiler/pd_cost.m:
For from_ground_term_construct scopes, instead of computing their cost
by adding up the costs of the goals inside, make their cost a constant,
since binding a variable to a static term takes constant time.
compiler/pd_info.m:
Add prefixes on field names to avoid ambiguities.
compiler/add_heap_ops.m:
compiler/add_trail_ops.m:
compiler/closure_analysis.m:
compiler/constraint.m:
compiler/cse_detection.m:
compiler/dead_proc_elim.m:
compiler/deep_profiling.m:
compiler/deforest.m:
compiler/delay_construct.m:
compiler/delay_partial_inst.m:
compiler/dep_par_conj.m:
compiler/distance_granularity.m:
compiler/exception_analysis.m:
compiler/follow_code.m:
compiler/follow_vars.m:
compiler/format_call.m:
compiler/granularity.m:
compiler/higher_order.m:
compiler/implicit_parallelism.m:
compiler/inlining.m:
compiler/interval.m:
compiler/lambda.m:
compiler/lco.m:
compiler/live_vars.m:
compiler/loop_inv.m:
compiler/middle_rec.m:
compiler/mode_util.m:
compiler/parallel_to_plain_conj.m:
compiler/saved_vars.m:
compiler/stm_expand.m:
compiler/store_alloc.m:
compiler/stratify.m:
compiler/structure_reuse.direct.detect_garbage.m:
compiler/structure_reuse.lbu.m:
compiler/structure_sharing.analysis.m:
compiler/switch_detection.analysis.m:
compiler/trail_analysis.m:
compiler/term_pass1.m:
compiler/tupling.m:
compiler/unneeded_code.m:
compiler/untupling.m:
compiler/unused_args.m:
These passes have nothing to do in from_ground_term_construct scopes,
so don't traverse them.
In some modules (e.g. dead_proc_elim), some traversals had to be kept.
In loop_inv.m, replace a code structure that updated accumulators
with functions (which prevented the natural use of state variables),
that in lots of places reconstructed the term it had just
deconstructed, and obscured the identical handling of different kinds
of goals, with a structure based on predicates, state variables and
shared code for different goal types where possible.
In store_alloc.m, avoid some double switching on the same value.
In stratify.m, unneeded_code.m and unused_args.m, rename predicates
to avoid ambiguities.
compiler/goal_path.m:
compiler/goal_util.m:
compiler/implementation_defined_literals.m:
compiler/intermode.m:
compiler/mark_static_terms.m:
compiler/ml_code_gen.m:
compiler/mode_ordering.m:
compiler/ordering_mode_constraints.m:
compiler/prop_mode_constraints.m:
compiler/purity.m:
compiler/rbmm.actual_region_arguments.m:
compiler/rbmm.add_rbmm_goal_infos.m:
compiler/rbmm.condition_renaming.m:
compiler/rbmm.execution_path.m:
compiler/rbmm.region_transformation.m:
compiler/structure_reuse.direct.choose_reuse.m:
compiler/structure_reuse.indirect.m:
compiler/structure_reuse.lfu.m:
compiler/structure_reuse.versions.m:
compiler/term_const_build.m:
compiler/term_traversal.m:
compiler/unused_imports.m:
Mark places where we cannot (yet) special case
from_ground_term_construct scopes.
In structure_reuse.lfu.m, turn nested if-then-elses into a switch in.
compiler/size_prof.m:
Turn from_ground_term_construct scopes into from_ground_term_other
scopes, since in term size profiling grades, we need to attach sizes to
terms.
Give predicates better names.
compiler/*.m:
Minor changes to conform to the changes above.
compiler/make_hlds_passes.m:
With -S, print statistics after the third pass over items, since
this is the time-consuming one.
compiler/mercury_compile.m:
Conform to the new names of some predicates.
When declining to output a HLDS dump because it would be identical to
the previous dump, don't confuse the user either by being silent about
the decision, or by leaving an old dump laying around that could be
mistaken for a new one.
tools/binary:
tools/binary_step:
Bring these tools up to date.
compiler/Mmakefile:
Add an int3s target for use by the new code in the tools. The
Mmakefiles in the other directories with Mercury code already have
such a target.
compiler/notes/allocation.html:
Fix an out-of-date reference.
tests/debugger/polymorphic_ground_term.{m,inp,exp}:
New test case to check whether liveness.m handles typeinfo liveness
of ground terms correctly.
tests/debugger/Mmakefile:
Enable the new test case.
tests/debugger/polymorphic_output.{m,exp}:
Fix tab/space mixup.
|
||
|
|
9ad83d648d |
Convert predicates that used to have one clause for each kind of
Estimated hours taken: 12 Branches: main compiler/*.m: Convert predicates that used to have one clause for each kind of HLDS goal into explicit disjunctions, since this gives the debugger a meaningful name for each argument. In some cases, this exposed arguments that were used by *no* clause. In other cases, it allowed factoring out common code, as well as code that *should* have been common but wasn't. Put the disjuncts in a meaningful order. In too many cases, they were almost random. Merge the resulting predicates into their parents, in places where the Prolog indexing one could get from separate clauses was the only reason for separating those predicates from their parents in the first place. Similarly, merge child predicates handling generic call kinds and such back into the main predicate where this improves clarity. In some cases, this allows putting the extraction of hlds_goal_expr from a hlds_goal into one place, instead of repeating it in lots of places. Give some predicates more descriptive names. In some cases, rationalize argument order. In some cases, rationalize the order of predicates in the module. Replace some uses of booleans with purpose-specific types. Give some fields names, and put type-identifying prefixes on the names of other fields, to make tag files work better. In some cases, reorder fields to them put into related groups. Use more standard and/or more descriptive variable names Use a standard syntax for if-then-else in each module. Follow our style convention for comments. |
||
|
|
cc88711d63 |
Implement true multi-cons_id arm switches, i.e. switches in which we associate
Estimated hours taken: 40
Branches: main
Implement true multi-cons_id arm switches, i.e. switches in which we associate
more than one cons_id with a switch arm. Previously, for switches like this:
(
X = a,
goal1
;
( X = b
; X = c
),
goal2
)
we duplicated goal2. With this diff, goal2 won't be duplicated. We still
duplicate goals when that is necessary, i.e. in cases which the inner
disjunction contains code other than a functor test on the switched-on var,
like this:
(
X = a,
goal1
;
(
X = b,
goalb
;
X = c
goalc
),
goal2
)
For now, true multi-cons_id arm switches are supported only by the LLDS
backend. Supporting them on the MLDS backend is trickier, because some MLDS
target languages (e.g. Java) don't support the concept at all. So when
compiling to MLDS, we still duplicate the goal in switch detection (although
we could delay the duplication to just before code generation, if we wanted.)
compiler/options.m:
Add an internal option that tells switch detection whether to look for
multi-cons_id switch arms.
compiler/handle_options.m:
Set this option based on the back end.
Add a version of the "trans" dump level that doesn't print unification
details.
compiler/hlds_goal.m:
Extend the representation of switch cases to allow more than one
cons_id for a switch arm.
Add a type for representing switches that also includes tag information
(for use by the backends).
compiler/hlds_data.m:
For du types, record whether it is possible to speed up tests for one
cons_id (e.g. cons) by testing for the other (nil) and negating the
result. Recording this information once is faster than having
unify_gen.m trying to compute it from scratch for every single
tag test.
Add a type for representing a cons_id together with its tag.
compiler/hlds_out.m:
Print out the cheaper_tag_test information for types, and possibly
several cons_ids for each switch arm.
Add some utility predicates for describing switch arms in terms of
which cons_ids they are for.
Replace some booleans with purpose-specific types.
Make hlds_out honor is documentation, and not print out detailed
information about unifications (e.g. uniqueness and static allocation)
unless the right character ('u') is present in the control string.
compiler/add_type.m:
Fill in the information about cheaper tag tests when adding a du type.
compiler/switch_detection.m:
Extend the switch detection algorithm to detect multi-cons_id switch
arms.
When entering a switch arm, update the instmap to reflect that the
switched-on variable can now be bound only to the cons_ids that this
switch arm is for. We now need to do this, because if the arm contains
another switch on the same variable, computing the can_fail field of
that switch correctly requires us to know this information.
(Obviously, an arm for a single cons_id is unlikely to have switch on
the same variable, and for arms for several cons_ids, we previously
duplicated the arm and left the unification with the cons_id in each
copy, and this unification allowed the correct handling of any later
switches. However, the code of a multi-cons_id switch arm obviously
cannot have a unification with each cons_id in it, which is why
we now need to get the binding information from the switch itself.)
Replace some booleans with purpose-specific types, and give some
predicates better names.
compiler/instmap.m:
Provide predicates for recording that a switched-on variable has
one of several given cons_ids, for use at the starts of switch arms.
Give some predicates better names.
compiler/modes.m:
Provide predicates for updating the mode_info at the start of a
multi-cons_id switch arm.
compiler/det_report.m:
Handle multi-cons_id switch arms.
Update the instmap when entering each switch arm, since this is needed
to provide good (i.e. non-misleading) error messages when one switch on
a variable exists inside another switch on the same variable.
Since updating the instmap requires updating the module_info (since
the new inst may require a new entry in an inst table), thread the
det_info through as updateable state.
Replace some multi-clause predicate definitions with single clauses,
to make it easier to print the arguments in mdb.
Fix some misleading variable names.
compiler/det_analysis.m:
Update the instmap when entering each switch arm and thread the
det_info through as updateable state, since the predicates we call
in det_report.m require this.
compiler/det_util.m:
Handle multi-cons_id switch arms.
Rationalize the argument order of some access predicates.
compiler/switch_util.m:
Change the parts of this module that deal with string and tag switches
to optionally convert each arm to an arbitrary representation of the
arm. In the LLDS backend, the conversion process generated code for
the arm, and the arm's representation is the label at the start of
this code. This way, we can duplicate the label without duplicating
the code.
Add a new part of this module that associates each cons_id with its
tag, and (during the same pass) checks whether all the cons_ids are
integers, and if so what are min and max of these integers (needed
for dense switches). This scan is needed because the old way of making
this test had single-cons_id switch arms as one of its basic
assumptions, and doing it while adding tags to each case reduces
the number of traversals required.
Give better names to some predicates.
compiler/switch_case.m:
New module to handle the tasks associated with managing multi-cons_id
switch arms, including representing them for switch_util.m.
compiler/ll_backend.m:
Include the new module.
compiler/notes/compiler_design.html:
Note the new module.
compiler/llds.m:
Change the computed goto instruction to take a list of maybe labels
instead of a list of labels, with any missing labels meaning "not
reached".
compiler/string_switch.m:
compiler/tag_switch.m:
Reorganize the way these modules work. We can't generate the code of
each arm in place anymore, since it is now possible for more than one
cons_id to call for the execution of the same code. Instead, in
string_switch.m, we generate the codes of all the arms all at once,
and construct the hash index afterwards. (This approach simplifies
the code significantly.)
In tag switches (unlike string switches), we can get locality benefits
if the code testing for a cons_id is close to the code for that
cons_id, so we still try to put them next to each other when such
a locality benefit is available.
In both modules, the new approach uses a utility predicate in
switch_case.m to actually generate the code of each switch arm,
eliminating several copies the same code in the old versions of these
modules.
In tag_switch.m, don't create a local label that simply jumps to the
code address do_not_reached. Previously, we had to do this for
positions in jump tables that corresponded to cons_ids that the switch
variable could not be bound to. With the change to llds.m, we now
simply generate a "no" instead.
compiler/lookup_switch.m:
Get the info about int switch limits from our caller; don't compute it
here.
Give some variables better names.
compiler/dense_switch.m:
Generate the codes of the cases all at once, then assemble the table,
duplicate the labels as needed. This separation of concerns allows
significant simplifications.
Pack up all the information shared between the predicate that detects
whether a dense switch is appropriate and the predicate that actually
generates the dense switch.
Move some utility predicates to switch_util.
compiler/switch_gen.m:
Delete the code for tagging cons_ids, since that functionality is now
in switch_util.m.
The old version of this module could call the code generator to produce
(i.e. materialize) the switched-on variable repeatedly. We now produce
the variable once, and do the switch on the resulting rval.
compiler/unify_gen.m:
Use the information about cheaper tag tests in the type constructor's
entry in the HLDS type table, instead of trying to recompute it
every time.
Provide the predicates switch_gen.m now needs to perform tag tests
on rvals, as opposed to variables, and against possible more than one
cons_id.
Allow the caller to provide the tag corresponding to the cons_id(s)
in tag tests, since when we are generating code for switches, the
required computations have already been done.
Factor out some code to make all this possible.
Give better names to some predicates.
compiler/code_info.m:
Provide some utility predicates for the new code in other modules.
Give better names to some existing predicates.
compiler/hlds_code_util.m:
Rationalize the argument order of some predicates.
Replace some multi-clause predicate definitions with single clauses,
to make it easier to print the arguments in mdb.
compiler/accumulator.m:
compiler/add_heap_ops.m:
compiler/add_pragma.m:
compiler/add_trail_ops.m:
compiler/assertion.m:
compiler/build_mode_constraints.m:
compiler/check_typeclass.m:
compiler/closure_analysis.m:
compiler/code_util.m:
compiler/constraint.m:
compiler/cse_detection.m:
compiler/dead_proc_elim.m:
compiler/deep_profiling.m:
compiler/deforest.m:
compiler/delay_construct.m:
compiler/delay_partial_inst.m:
compiler/dep_par_conj.m:
compiler/distance_granularity.m:
compiler/dupproc.m:
compiler/equiv_type_hlds.m:
compiler/erl_code_gen.m:
compiler/exception_analysis.m:
compiler/export.m:
compiler/follow_code.m:
compiler/follow_vars.m:
compiler/foreign.m:
compiler/format_call.m:
compiler/frameopt.m:
compiler/goal_form.m:
compiler/goal_path.m:
compiler/goal_util.m:
compiler/granularity.m:
compiler/hhf.m:
compiler/higher_order.m:
compiler/implicit_parallelism.m:
compiler/inlining.m:
compiler/inst_check.m:
compiler/intermod.m:
compiler/interval.m:
compiler/lambda.m:
compiler/lambda.m:
compiler/lambda.m:
compiler/lco.m:
compiler/live_vars.m:
compiler/livemap.m:
compiler/liveness.m:
compiler/llds_out.m:
compiler/llds_to_x86_64.m:
compiler/loop_inv.m:
compiler/make_hlds_warn.m:
compiler/mark_static_terms.m:
compiler/middle_rec.m:
compiler/ml_tag_switch.m:
compiler/ml_type_gen.m:
compiler/ml_unify_gen.m:
compiler/mode_constraints.m:
compiler/mode_errors.m:
compiler/mode_util.m:
compiler/opt_debug.m:
compiler/opt_util.m:
compiler/pd_cost.m:
compiler/pd_into.m:
compiler/pd_util.m:
compiler/peephole.m:
compiler/polymorphism.m:
compiler/post_term_analysis.m:
compiler/post_typecheck.m:
compiler/purity.m:
compiler/quantification.m:
compiler/rbmm.actual_region_arguments.m:
compiler/rbmm.add_rbmm_goal_infos.m:
compiler/rbmm.condition_renaming.m:
compiler/rbmm.execution_paths.m:
compiler/rbmm.points_to_analysis.m:
compiler/rbmm.region_transformation.m:
compiler/recompilation.usage.m:
compiler/saved_vars.m:
compiler/simplify.m:
compiler/size_prof.m:
compiler/ssdebug.m:
compiler/store_alloc.m:
compiler/stratify.m:
compiler/structure_reuse.direct.choose_reuse.m:
compiler/structure_reuse.indirect.m:
compiler/structure_reuse.lbu.m:
compiler/structure_reuse.lfu.m:
compiler/structure_reuse.versions.m:
compiler/structure_sharing.analysis.m:
compiler/table_gen.m:
compiler/tabling_analysis.m:
compiler/term_constr_build.m:
compiler/term_norm.m:
compiler/term_pass1.m:
compiler/term_traversal.m:
compiler/trailing_analysis.m:
compiler/transform_llds.m:
compiler/tupling.m:
compiler/type_ctor_info.m:
compiler/type_util.m:
compiler/unify_proc.m:
compiler/unique_modes.m:
compiler/unneeded_code.m:
compiler/untupling.m:
compiler/unused_args.m:
compiler/unused_imports.m:
compiler/xml_documentation.m:
Make the changes necessary to conform to the changes above, principally
to handle multi-cons_id arm switches.
compiler/ml_string_switch.m:
Make the changes necessary to conform to the changes above, principally
to handle multi-cons_id arm switches.
Give some predicates better names.
compiler/dependency_graph.m:
Make the changes necessary to conform to the changes above, principally
to handle multi-cons_id arm switches. Change the order of arguments
of some predicates to make this easier.
compiler/bytecode.m:
compiler/bytecode_data.m:
compiler/bytecode_gen.m:
Make the changes necessary to conform to the changes above, principally
to handle multi-cons_id arm switches. (The bytecode interpreter
has not been updated.)
compiler/prog_rep.m:
mdbcomp/program_representation.m:
Change the byte sequence representation of goals to allow switch arms
with more than one cons_id. compiler/prog_rep.m now writes out the
updated representation, while mdbcomp/program_representation.m reads in
the updated representation.
deep_profiler/mdbprof_procrep.m:
Conform to the updated program representation.
tools/binary:
Fix a bug: if the -D option was given, the stage 2 directory wasn't
being initialized.
Abort if users try to give that option more than once.
compiler/Mercury.options:
Work around bug #32 in Mantis.
|
||
|
|
672f77c4ec |
Add a new compiler option. --inform-ite-instead-of-switch.
Estimated hours taken: 20 Branches: main Add a new compiler option. --inform-ite-instead-of-switch. If this is enabled, the compiler will generate informational messages about if-then-elses that it thinks should be converted to switches for the sake of program reliability. Act on the output generated by this option. compiler/simplify.m: Implement the new option. Fix an old bug that could cause us to generate warnings about code that was OK in one duplicated copy but not in another (where a switch arm's code is duplicated due to the case being selected for more than one cons_id). compiler/options.m: Add the new option. Add a way to test for the bug fix in simplify. doc/user_guide.texi: Document the new option. NEWS: Mention the new option. library/*.m: mdbcomp/*.m: browser/*.m: compiler/*.m: deep_profiler/*.m: Convert if-then-elses to switches at most of the sites suggested by the new option. At the remaining sites, switching to switches would have nontrivial downsides. This typically happens with the switched-on type has many functors, and we treat one or two specially (e.g. cons/2 in the cons_id type). Perform misc cleanups in the vicinity of the if-then-else to switch conversions. In a few cases, improve the error messages generated. compiler/accumulator.m: compiler/hlds_goal.m: (Rename and) move insts for particular kinds of goal from accumulator.m to hlds_goal.m, to allow them to be used in other modules. Using these insts allowed us to eliminate some if-then-elses entirely. compiler/exprn_aux.m: Instead of fixing some if-then-elses, delete the predicates containing them, since they aren't used, and (as pointed out by the new option) would need considerable other fixing if they were ever needed again. compiler/lp_rational.m: Add prefixes to the names of the function symbols on some types, since without those prefixes, it was hard to figure out what type the switch corresponding to an old if-then-else was switching on. tests/invalid/reserve_tag.err_exp: Expect a new, improved error message. |
||
|
|
168f531867 |
Add new fields to the goal_info structure for region based memory management.
Estimated hours taken: 4 Branches: main Add new fields to the goal_info structure for region based memory management. The fields are currently unused, but (a) Quan will add the code to fill them in, and then (b) I will modify the code generator to use the filled in fields. compiler/hlds_goal.m: Make the change described above. Group all the procedures that access goal_info components together. Some of the getters were predicates while some were functions, so this diff changes them all to be functions. (The setters remain predicates.) compiler/*.m: Trivial changes to conform to the change in hlds_goal.m. In simplify.m, break up a huge (800+ line) predicate into smaller pieces. |
||
|
|
b56885be93 |
Fix a bug that caused bootchecks with --optimize-constructor-last-call to fail.
Estimated hours taken: 12 Branches: main Fix a bug that caused bootchecks with --optimize-constructor-last-call to fail. The problem was not in lco.m, but in follow_code.m. In some cases, (specifically, the LCMC version of insert_2 in sparse_bitset.m), follow_code.m moved an impure goal (store_at_ref) into the arms of an if-then-else without marking those arms, or the if-then-else, as impure. The next pass, simplify, then deleted the entire if-then-else, since it had no outputs. (The store_at_ref that originally appeared after the if-then-else was the only consumer of its only output.) The fix is to get follow_code.m to make branched control structures such as if-then-elses, as well as their arms, semipure or impure if a goal being moved into them is semipure or impure, or if they came from an semipure or impure conjunction. Improve the optimization of the LCMC version of sparse_bitset.insert_2, which had a foreign_proc invocation of bits_per_int in it: replace such invocations with a unification of the bits_per_int constant if not cross compiling. Add a new option, --optimize-constructor-last-call-null. When set, LCMC will assign NULLs to the fields not yet filled in, to avoid any junk happens to be there from being followed by the garbage collector's mark phase. This diff also makes several other changes that helped me to track down the bug above. compiler/follow_code.m: Make the fix described above. Delete all the provisions for --prev-code; it won't be implemented. Don't export a predicate that is not now used anywhere else. compiler/simplify.m: Make the optimization described above. compiler/lco.m: Make sure that the LCMC specialized procedure is a predicate, not a function: having a function with the mode LCMC_insert_2(in, in) = in looks wrong. To avoid name collisions when a function and a predicate with the same name and arity have LCMC applied to them, include the predicate vs function status of the original procedure included in the name of the new procedure. Update the sym_name of calls to LCMC variants, not just the pred_id, because without that, the HLDS dump looks misleading. compiler/pred_table.m: Don't have optimizations like LCMC insert new predicates at the front of the list of predicates. Maintain the list of predicates in the module as a two part list, to allow efficient addition of new pred_ids at the (logical) end without using O(N^2) algorithms. Having predicates in chronological order makes it easier to look at HLDS dumps and .c files. compiler/hlds_module.m: Make module_info_predids return a module_info that is physically updated though logically unchanged. compiler/options.m: Add --optimize-constructor-last-call-null. Make the options --dump-hlds-pred-id, --debug-opt-pred-id and --debug-opt-pred-name into accumulating options, to allow the user to specify more than one predicate to be dumped (e.g. insert_2 and its LCMC variant). Delete --prev-code. doc/user_guide.texi: Document the changes in options.m. compiler/code_info.m: Record the value of --optimize-constructor-last-call-null in the code_info, to avoid lookup at every cell construction. compiler/unify_gen.m: compiler/var_locn.m: When deciding whether a cell can be static or not, make sure that we never make static a cell that has some fields initialized with dummy zeros, to be filled in for real later. compiler/hlds_out.m: For goals that are semipure or impure, note this fact. This info was lost when I changed the representation of impurity from markers to a field. mdbcomp/prim_data.m: Rename some ambiguous function symbols. compiler/intermod.m: compiler/trans_opt.m: Rename the main predicates (and some function symbols) of these modules to avoid ambiguity and to make them more expressive. compiler/llds.m: Don't print line numbers for foreign_code fragments if the user has specified --no-line-numbers. compiler/make.dependencies.m: compiler/mercury_to_mercury.m: compiler/recompilation.usage.m: Don't use io.write to write out information to files we may need to parse again, because this is vulnerable to changes to the names of function symbols (e.g. the one to mdbcomp/prim_data.m). The compiler still contains some uses of io.write, but they are for debugging. I added an item to the todo list of the one exception, ilasm.m. compiler/recompilation.m: Rename a misleading function symbol name. compiler/parse_tree.m: Don't import recompilation.m here. It is not needed (all the components of parse_tree that need recompilation.m already import it themselves), and deleting the import avoids recompiling almost everything when recompilation.m changes. compiler/*.m: Conform to the changes above. compiler/*.m: browser/*.m: slice/*.m: Conform to the change to mdbcomp. library/sparse_bitset.m: Use some better variable names. |
||
|
|
ba93a52fe7 |
This diff changes a few types from being defined as equivalent to a pair
Estimated hours taken: 10 Branches: main This diff changes a few types from being defined as equivalent to a pair to being discriminated union types with their own function symbol. This was motivated by an error message (one of many, but the one that broke the camel's back) about "-" being used in an ambiguous manner. It will reduce the number of such messages in the future, and will make compiler data structures easier to inspect in the debugger. The most important type changed by far is hlds_goal, whose function symbol is now "hlds_goal". Second and third in importance are llds.instruction (function symbol "llds_instr") and prog_item.m's item_and_context (function symbol "item_and_context"). There are some others as well. In several places, I rearranged predicates to factor the deconstruction of goals into hlds_goal_expr and hlds_goal_into out of each clause into a single point. In many places, I changed variable names that used "Goal" to refer to just hlds_goal_exprs to use "GoalExpr" instead. I also changed variable names that used "Item" to refer to item_and_contexts to use "ItemAndContext" instead. This should make reading such code less confusing. I renamed some function symbols and predicates to avoid ambiguities. I only made one algorithmic change (at least intentionally). In assertion.m, comparing two goals for equality now ignores goal_infos for all kinds of goals, whereas previously it ignored them for most kinds of goals, but for shorthand goals it was insisting on them being equal. This seemed to me to be a bug. Pete, can you confirm this? |
||
|
|
b4c3bb1387 |
Clean up in unused module imports in the Mercury system detected
Estimated hours taken: 3 Branches: main Clean up in unused module imports in the Mercury system detected by --warn-unused-imports. analysis/*.m: browser/*.m: deep_profiler/*.m: compiler/*.m: library/*.m: mdbcomp/*.m: profiler/*.m: slice/*.m: Remove unused module imports. Fix some minor departures from our coding standards. analysis/Mercury.options: browser/Mercury.options: deep_profiler/Mercury.options: compiler/Mercury.options: library/Mercury.options: mdbcomp/Mercury.options: profiler/Mercury.options: slice/Mercury.options: Set --no-warn-unused-imports for those modules that are used as packages or otherwise break --warn-unused-imports, e.g. because they contain predicates with both foreign and Mercury clauses and some of the imports only depend on the latter. |
||
|
|
863874df85 |
Document my recent change implementing coverage testing.
Estimated hours taken: 6 Branches: main Document my recent change implementing coverage testing. At the same time, eliminate the old hack that allowed a file containing a list of file names to be considered a trace count file. We haven't needed it since the addition of mtc_union, and it can lead to incomprensible error messages. (The presence of the old hack made documenting coverage testing harder.) In the process, fix the tools code for rerunning failed test cases only. doc/user_guide.texi: Document my recent change implementing coverage testing, and the elimination of the old hack. mdbcomp/trace_counts.m: Modify the predicates for reading in trace count files along the lines above. mdbcomp/slice_and_dice.m: Modify the predicates for reading in slices and dices along the lines above. Rename some function symbols to avoid ambiguities. compiler/tupling.m: slice/mcov.m: slice/mtc_diff.m: slice/mtc_union.m: trace/mercury_trace_declarative.c: Conform to the changes above. slice/mcov.m: Fix the usage message, which referred to this program by its old name mct. Allow the output to be restricted to a set of named modules only. This is to make testing easier. slice/mtc_diff.m: Rename the long form of the -o option from --out to --output-file, to make it consistent with the other programs. tests/run_one_test: tools/bootcheck: Modify the algorithm we use to gather trace counts for the Mercury compiler from both passed and failed test cases to run mtc_union periodically instead of gathering all the trace counts file and keeping them to the end (which takes far too much disk space). Fix an old bug: gather trace counts from executions of the Mercury compiler only. tests/debugger/Mmakefile: tests/debugger/dice.passes: Modify the dice test case to compute the union of the trace counts for the passed versions of this test case to use mtc_union to create dice.passes, instead of having dice.passes statically contain the list of the names of the passed trace count files (since that capability is deleted by this diff). tools/bootcheck: tests/Mmake.common: Fix the code for rerunning failed tests only. mdbcomp/prim_data.m: Eliminate some ambiguities in predicate names. compiler/*.m: Conform to the change to prim_data.m. compiler/error_util.m: Add reading files as a phase in error messages. compiler/mercury_compile.m: Use the new facilities in error_util for printing an error message. |
||
|
|
aeeedd2c13 |
Standardize formatting of comments at the beginning of modules.
compiler/*.m: Standardize formatting of comments at the beginning of modules. |
||
|
|
9d23d8e2e7 |
Implement the trace goal construct we discussed, for now for the LLDS backends
Estimated hours taken: 70
Branches: main
Implement the trace goal construct we discussed, for now for the LLDS backends
only.
Since the syntax of trace goals is non-trivial, useful feedback on syntax
errors inside trace goal attributes is essential. With the previous setup, this
wasn't possible, since the code that turned terms into parse tree goals turned
*all* terms into goals; it couldn't recognize any errors, sweeping them under
the rug as calls. This diff changes that. Now, if this code recognizes a
keyword that indicates a particular construct, it insists on the rest of the
code following the syntax required for that construct, and returns error
messages if it doesn't.
We handle the trace goal attributes that specify state variables to be threaded
through the trace goal (either the I/O state or a mutable variable) in
add_clause.m, at the point at which we transform the list of items to the HLDS.
We handle the compile-time condition on trace goals in the invocation of
simplify at the end of semantics analysis, by eliminating the goal if the
compile-time condition isn't met. We handle run-time conditions on trace goals
partially in the same invocation of simplify: we transform trace goals with
runtime conditions into an if-then-else with the trace goal as the then part
and `true' as the else part, the condition being a foreign_proc that is handled
specially by the code generator, that special handling being to replace
the actual code of the foreign_proc (which is a dummy) with the evaluation of
the runtime condition.
Since these changes require significant changes to some of our key data
structures, I took the liberty of doing some renaming of function symbols
at the same time to avoid using ambiguities with respect to language keywords.
library/ops.m:
Add "trace" as an operator.
compiler/prog_data.m:
Define data types to represent the various attributes of trace goals.
Rename some function symbols to avoid ambiguities.
compiler/prog_item.m:
Extend the parse tree representation of goals with a trace goal.
compiler/mercury_to_mercury.m:
Output the new kind of goal and its components.
compiler/hlds_goal.m:
Extend the HLDS representation of scopes with a scope_reason
representing trace goals.
Add a mechanism (an extra argument in foreign_procs) to allow
the representation of goals that evaluate runtime trace conditions.
Since this requires modifying all code that traverses the HLDS,
do some renames that were long overdue: rename not as negation,
rename call as plain_call, and rename foreign_proc as
call_foreign_proc. These renames all avoid using language keywords
as function symbols.
Change the way we record goals' purities. Instead of optional features
to indicate impure or semipure, which is error-prone, use a plain
field in the goal_info, accessed in the usual way.
Add a way to represent that a goal contains a trace goal, and should
therefore be treated as if it were impure when considering whether to
optimize it away.
Reformat some comments describing function symbols.
compiler/hlds_out.m:
Output the new construct in the HLDS.
compiler/prog_io_util.m:
Generalize the maybe[123] types to allow the representation of more
than one error message. Add functions to extract the error messages.
Add a maybe4 type. Rename the function symbols of these types to
avoid massive ambiguity.
Change the order of some predicates to bring related predicates
next to each other.
compiler/prog_io.m:
compiler/prog_io_dcg.m:
compiler/prog_io_goal.m:
compiler/prog_io_pragma.m:
Rework these modules almost completely to find and accumulate syntax
errors as terms are being parsed. In some cases, this allowed us to
replace "XXX this is a hack" markers with meaningful error-reporting
code.
In prog_io_goal.m, add code for parsing trace goals.
In a bunch of places, update obsolete coding practices, such as using
nested chains of closures instead of simple sequential code, and
using A0 and A to refer to values of different types (terms and goals
respectively). Use more meaningful variable names.
Break up some too-large predicates.
compiler/superhomogeneous.m:
Find and accumulate syntax errors as terms are being parsed.
compiler/add_clause.m:
Add code to transform trace goals from the parse tree to the HLDS.
This is where the IO state and mutable variable attributes of trace
goals are handled.
Eliminate the practice of using the naming scheme Body0 and Body
to refer to values of different types (prog_item.goal and hlds_goal
respectively).
Use error_util for some error messages.
library/private_builtin.m:
Add the predicates referred to by the transformation in add_clause.m.
compiler/goal_util.m:
Rename a predicate to avoid ambiguity.
compiler/typecheck.m:
Do not print error messages about missing clauses if some errors have
been detected previously.
compiler/purity.m:
Instead of just computing purity, compute (and record) also whether
a goal contains a trace goal. However, treat trace goals as pure.
compiler/mode_info.m:
Add trace goals as a reason for locking variables.
Rename some function symbols to avoid ambiguity.
compiler/modes.m:
When analyzing trace goal scopes, lock the scope's nonlocal variables
to prevent them from being further instantiated.
compiler/det_analysis.m:
Insist on the code in trace goal scopes being det or cc_multi.
compiler/det_report.m:
Generate the error message if the code in a trace goal scope isn't det
or cc_multi.
compiler/simplify.m:
At the end of the front end, eliminate trace goal scopes if their
compile-time condition is false. Transform trace goals with runtime
conditions as described at the top.
Treat goals that contain trace goals as if they were impure when
considering whether to optimize them away.
compiler/mercury_compile.m:
Tell simplify when it is being invoked at the end of the front end.
Rename a predicate to avoid ambiguity.
compiler/trace_params.m:
Provide the predicates simplify.m need to be able to evaluate the trace
goal conditions regarding trace levels.
compiler/trace.m:
compiler/trace_gen.m:
Rename the trace module as trace_gen, since "trace" is now an operator.
Rename some predicates exported by the module, now that it is no longer
possible to preface calls with "trace." as a module qualifier.
compiler/notes/compiler_design.html:
Document this name change.
compiler/options.m:
Rename the trace option as trace_level internally, since "trace"
is now an operator. The user-visible name remains the same.
Add the new --trace-flag option.
Delete an obsolete option.
compiler/handle_options.m:
Rename the function symbols of the grade_component type,
since "trace" is now an operator.
compiler/llds.m:
Extend the LLDS with a mechanism to refer to C global variables.
For now, these are used to refer to C globals that will be created
by mkinit to represent the initial values of the environment variables
referred to by trace goals.
compiler/commit_gen.m:
Check that no trace goal with a runtime condition survives to code
generation; they should have been transformed by simplify.m.
compiler/code_gen.m:
Tell commit_gen.m what kind of scope it is generating code for.
compiler/pragma_c_gen.m:
Generate code for runtime conditions when handling the foreign_procs
created by simplify.m.
compiler/code_info.m:
Allow pragma_c_gen.m to record what environment variables it has
generated references to.
compiler/proc_gen.m:
Record the set of environment variables a procedure refers to
in the LLDS procedure header, for efficient access by llds_out.m.
compiler/llds_out.m:
Handle the new LLDS construct, and tell mkinit which environment
variables need C globals created for them.
compiler/pd_util.m:
Rename some predicates to avoid ambiguity.
compiler/*.m:
Conform to the changes above, mainly the renames of function symbols
and predicates, the changed signatures of some predicates, and the new
handling of purity.
util/mkinit.c:
Generate the definitions and the initializations of any C globals
representing the initial status (set or not set) of environment
variables needed by trace goals.
library/assoc_list.m:
Add some predicates that are useful in prog_io*.m.
library/term_io.m:
Minor cleanup.
tests/hard_coded/trace_goal_{1,2}.{m,exp}:
New test cases to test the new construct, identical except for whether
the trace goal is enabled at compile time.
tests/hard_coded/trace_goal_env_{1,2}.{m,exp}:
New test cases to test the new construct, identical except for whether
the trace goal is enabled at run time.
tests/hard_coded/Mercury.options:
tests/hard_coded/Mmakefile:
Enable the new test cases.
tests/invalid/*.err_exp:
Update the expected output for the new versions of the error messages
now being generated.
|
||
|
|
fb9f78b784 |
Fix a bug reported by Peter Hawkins. The bug was that an predicate without
Estimated hours taken: 3
Branches: main
Fix a bug reported by Peter Hawkins. The bug was that an predicate without
a declared determinism but whose inferred determinism was invalid for its
tabling declaration led to a compiler abort.
compiler/det_analysis.m:
Fix the main cause of the bug, which was that the check for the
compatibility of evaluation method and determinism was performed
only for predicates with declared determinisms, not those without.
Centralize the printing of determinism error messages, and sort
the messages first.
compiler/hlds_pred.m:
Fix the other half of the bug: the predicate that checked the
compatibility of evaluation method and determinism was too liberal
with minimal model predicates, letting through determinisms that the
tabling transformation cannot (yet) support.
compiler/det_report.m:
Fix the formatting of the error message.
compiler/prog_data.m:
Rename the function symbols of the type "determinism", to avoid
conflicts with language keywords.
compiler/*.m:
Conform to the change to prog_data.m.
tests/invalid/hawkins_mm_fail_reset.{m,err_exp}:
New test case for the bug being fixed.
tests/invalid/Mmakefile:
Enable the new test case.
tests/invalid/loopcheck.err_exp:
Expect the new format of the improved error message.
|
||
|
|
459847a064 |
Move the univ, maybe, pair and unit types from std_util into their own
Estimated hours taken: 18 Branches: main Move the univ, maybe, pair and unit types from std_util into their own modules. std_util still contains the general purpose higher-order programming constructs. library/std_util.m: Move univ, maybe, pair and unit (plus any other related types and procedures) into their own modules. library/maybe.m: New module. This contains the maybe and maybe_error types and the associated procedures. library/pair.m: New module. This contains the pair type and associated procedures. library/unit.m: New module. This contains the types unit/0 and unit/1. library/univ.m: New module. This contains the univ type and associated procedures. library/library.m: Add the new modules. library/private_builtin.m: Update the declaration of the type_ctor_info struct for univ. runtime/mercury.h: Update the declaration for the type_ctor_info struct for univ. runtime/mercury_mcpp.h: runtime/mercury_hlc_types.h: Update the definition of MR_Univ. runtime/mercury_init.h: Fix a comment: ML_type_name is now exported from type_desc.m. compiler/mlds_to_il.m: Update the the name of the module that defines univs (which are handled specially by the il code generator.) library/*.m: compiler/*.m: browser/*.m: mdbcomp/*.m: profiler/*.m: deep_profiler/*.m: Conform to the above changes. Import the new modules where they are needed; don't import std_util where it isn't needed. Fix formatting in lots of modules. Delete duplicate module imports. tests/*: Update the test suite to confrom to the above changes. |
||
|
|
12deb40264 |
Rename all the get access predicates in these modules that don't
Estimated hours taken: 0.1 Branches: main compiler/hlds_clauses.m: compiler/hlds_pred.m: Rename all the get access predicates in these modules that don't already have put "get" in their name. (The names of the set access predicates were OK already.) compiler/*.m: Conform to the above. All this was done by this sed script: s/clauses_info_varset/clauses_info_get_varset/ s/clauses_info_explicit_vartypes/clauses_info_get_explicit_vartypes/ s/clauses_info_vartypes/clauses_info_get_vartypes/ s/clauses_info_headvars/clauses_info_get_headvars/ s/clauses_info_clauses_rep/clauses_info_get_clauses_rep/ s/clauses_info_rtti_varmaps/clauses_info_get_rtti_varmaps/ s/pred_info_import_status/pred_info_get_import_status/ s/pred_info_arg_types/pred_info_get_arg_types/ s/pred_info_typevarset/pred_info_get_typevarset/ s/pred_info_tvar_kinds/pred_info_get_tvar_kinds/ s/pred_info_procedures/pred_info_get_procedures/ s/proc_info_context/proc_info_get_context/ s/proc_info_varset/proc_info_get_varset/ s/proc_info_vartypes/proc_info_get_vartypes/ s/proc_info_headvars/proc_info_get_headvars/ s/proc_info_inst_varset/proc_info_get_inst_varset/ s/proc_info_maybe_declared_argmodes/proc_info_get_maybe_declared_argmodes/ s/proc_info_argmodes/proc_info_get_argmodes/ s/proc_info_maybe_arglives/proc_info_get_maybe_arglives/ s/proc_info_declared_determinism/proc_info_get_declared_determinism/ s/proc_info_inferred_determinism/proc_info_get_inferred_determinism/ s/proc_info_goal/proc_info_get_goal/ s/proc_info_can_process/proc_info_get_can_process/ s/proc_info_rtti_varmaps/proc_info_get_rtti_varmaps/ s/proc_info_eval_method/proc_info_get_eval_method/ s/proc_info_is_address_taken/proc_info_get_is_address_taken/ s/proc_info_stack_slots/proc_info_get_stack_slots/ s/proc_info_liveness_info/proc_info_get_liveness_info/ s/proc_info_context/proc_info_get_context/ s/proc_info_context/proc_info_get_context/ s/proc_info_context/proc_info_get_context/ s/proc_info_context/proc_info_get_context/ s/proc_info_context/proc_info_get_context/ s/proc_info_context/proc_info_get_context/ s/proc_info_context/proc_info_get_context/ |
||
|
|
3ebda6545f |
Move the stuff currently in hlds_pred.m that deals with clauses into a new
Estimated hours taken: 1.5 Branches: main Move the stuff currently in hlds_pred.m that deals with clauses into a new module, hlds_clauses.m. Move the stuff currently in hlds_pred.m that deals with RTTI into a new module, hlds_rtti.m. Move the stuff currently in hlds_module.m that deals with predicate tables into a new module, pred_table.m. These changes make hlds_pred.m and hlds_module.m much more cohesive, but there are no changes in algorithms. compiler/hlds_clauses.m: compiler/hlds_rtti.m: compiler/pred_table.m: New modules as described above. In some cases, fix mixleading or ambiguous predicate names in the process, and convert a few predicates to functions. compiler/hlds_pred.m: compiler/hlds_module.m: Delete the stuff moved to other modules. compiler/*.m: In modules that need the functionality moved a new module, import the new module. It is rare for all the new modules to be needed, and many modules don't need any of the new modules at all. (For example, of the 200+ modules that import hlds_module.m, only about 40 need pred_table.m.) Conform to the few minor changes to e.g. predicate names. compiler/notes/compiler_design.html: Document the new modules. |
||
|
|
be5b71861b |
Convert almost all the compiler modules to use . instead of __ as
Estimated hours taken: 6 Branches: main compiler/*.m: Convert almost all the compiler modules to use . instead of __ as the module qualifier. In some cases, change the names of predicates and types to make them meaningful without the module qualifier. In particular, most of the types that used to be referred to with an "mlds__" prefix have been changed to have a "mlds_" prefix instead of changing the prefix to "mlds.". There are no algorithmic changes. |
||
|
|
5b8f96f61d |
Prepare for an extension of promise_equivalent_solutions that will allow us
Estimated hours taken: 5 Branches: main Prepare for an extension of promise_equivalent_solutions that will allow us to better handle values of user-defined types. The problem is that currently, the deconstruction of a value of such a type can be followed only by code that cannot fail, otherwise the cc_multi deconstruction is not in the required single-solution context. If the following code is naturally semidet, this can be worked around by turning it into det code returning a maybe and testing the maybe outside the promise_equivalent_solutions, but this is inefficient, and in any case it does not generalize to nondet code without even more horrendous inefficiency and inconvenience. (You have to create a nondet closure and call it outside the promise_equivalent_solutions.) The solution I came up with is something is to have a construct that contains - a list of deconstructions on types with user-defined equality, - a goal, and - the list of outputs of that goal. The idea is that this would be transformed into a conjunction of the first and second items, and wrapped inside a special kind of conj that provides a scope for the implicit promise, which is that the set of solutions of the goal in the second item doesn't depend on what concrete terms the deconstructions in the first item return out of the set of concrete terms they *could* return. The deconstructions in the first item would be marked to tell determinism analysis to effectively ignore the fact that they involve user-defined equality. The actual addition of that construct is left for a future change, after we agree on the syntax. compiler/hlds_goal.m: Generalize the existing promise_equivalent_solutions scope to a promise_solutions scope with a flag that says whether in the source code it was originally the existing "promise_equivalent_solutions" construct or the new construct (which doesn't exist yet, but is indicated by the symbol "same_solutions" for now). Replace the conj and par_conj hlds_goal_exprs with a single goal expression: conj with an additional argument which is either plain_conj or parallel_conj. This was part of an earlier design in which a third kind of disjunction took the role now assigned to the new kind of promise_solutions scope, but turned out to be a good idea anyway, since in many places the compiler does treat the two kinds of conjunctions the same. This part of the change is responsible for the fact that this change results in a net *reduction* of about 40 lines. Move the most frequently used kinds of goal expressions to the front of the type declaration to allow the compiler to make better decisions about tag allocation. Add the goal marker we will add to the deconstructions in the first item. Replace the true_goal and fail_goal predicates with functions to make them easier to use, and rename their variants that take a context argument to avoid unnecessary ambiguity. compiler/*.m: Conform to the change in hlds_goal.m. Misc changes to make code more robust, e.g. replacing semidet predicates on goal expressions with functions returning bool. Misc cleanups, e.g. removal of unnecessary module qualifications that made lines too long, renaming predicates whose names include "disj" if they are also used to process parallel conjunctions (since in both parallel conjunctions and in disjunctions the goals are independent), and turning semidet predicates that switch on goal expressions into bool functions (to make similar changes more rebust in the future). |
||
|
|
45fdb6c451 |
Use expect/3 in place of require/2 throughout most of the
Estimated hours taken: 4 Branches: main compiler/*.m: Use expect/3 in place of require/2 throughout most of the compiler. Use unexpected/2 (or sorry/2) in place of error/1 in more places. Fix more dodgy assertion error messages. s/map(prog_var, mer_type)/vartypes/ where the latter is meant. |
||
|
|
21685c9e22 |
Improve the error messages generated for determinism errors involving committed
Estimated hours taken: 6
Branches: main
Improve the error messages generated for determinism errors involving committed
choice contexts. Previously, we printed a message to the effect that e.g.
a cc pred is called in context that requires all solutions, but we didn't say
*why* the context requires all solutions. We now keep track of all the goals
to the right that could fail, since it is these goals that may reject the first
solution of a committed choice goal.
The motivation for this diff was the fact that I found that locating the
failing goal can be very difficult if the conjunction to the right is
a couple of hundred lines long. This would have been a nontrivial problem,
since (a) unifications involving values of user-defined types are committed
choice goals, and (b) we can expect uses of user-defined types to increase.
compiler/det_analysis.m:
Keep track of goals to the right of the current goal that could fail,
and include them in the error representation if required.
compiler/det_report.m:
Include the list of failing goals to the right in the representations
of determinism errors involving committed committed choice goals.
Convert the last part of this module that wasn't using error_util
to use error_util. Make most parts of this module just construct
error message specifications; print those specifications (using
error_util) in only a few places.
compiler/hlds_out.m:
Add a function for use by the new code in det_report.m.
compiler/error_util.m:
Add a function for use by the new code in det_report.m.
compiler/error_util.m:
compiler/compiler_util.m:
Error_util is still changing reasonably often, and yet it is
included in lots of modules, most of which need only a few simple
non-parse-tree-related predicates from it (e.g. unexpected).
Move those predicates to a new module, compiler_util.m. This also
eliminates some undesirable dependencies from libs to parse_tree.
compiler/libs.m:
Include compiler_util.m.
compiler/notes/compiler_design.html:
Document compiler_util.m, and fix the documentation of some other
modules.
compiler/*.m:
Import compiler_util instead of or in addition to error_util.
To make this easier, consistently use . instead of __ for module
qualifying module names.
tests/invalid/det_errors_cc.{m,err_exp}:
Add this new test case to test the error messages for cc contexts.
tests/invalid/det_errors_deet.{m,err_exp}:
Add this new test case to test the error messages for unifications
inside function symbols.
tests/invalid/Mmakefile:
Add the new test cases.
tests/invalid/det_errors.err_exp:
tests/invalid/magicbox.err_exp:
Change the expected output to conform to the change in det_report.m,
which is now more consistent.
|
||
|
|
f9fe8dcf61 |
Improve the error messages generated for determinism errors involving committed
Estimated hours taken: 8
Branches: main
Improve the error messages generated for determinism errors involving committed
choice contexts. Previously, we printed a message to the effect that e.g.
a cc pred is called in context that requires all solutions, but we didn't say
*why* the context requires all solutions. We now keep track of all the goals
to the right that could fail, since it is these goals that may reject the first
solution of a committed choice goal.
The motivation for this diff was the fact that I found that locating the
failing goal can be very difficult if the conjunction to the right is
a couple of hundred lines long. This would have been a nontrivial problem,
since (a) unifications involving values of user-defined types are committed
choice goals, and (b) we can expect uses of user-defined types to increase.
compiler/det_analysis.m:
Keep track of goals to the right of the current goal that could fail,
and include them in the error representation if required.
compiler/det_report.m:
Include the list of failing goals to the right in the representations
of determinism errors involving committed committed choice goals.
Convert the last part of this module that wasn't using error_util
to use error_util. Make most parts of this module just construct
error message specifications; print those specifications (using
error_util) in only a few places.
compiler/hlds_out.m:
Add a function for use by the new code in det_report.m.
compiler/error_util.m:
Add a function for use by the new code in det_report.m.
compiler/error_util.m:
compiler/compiler_util.m:
Error_util is still changing reasonably often, and yet it is
included in lots of modules, most of which need only a few simple
non-parse-tree-related predicates from it (e.g. unexpected).
Move those predicates to a new module, compiler_util.m. This also
eliminates some undesirable dependencies from libs to parse_tree.
compiler/libs.m:
Include compiler_util.m.
compiler/notes/compiler_design.html:
Document compiler_util.m, and fix the documentation of some other
modules.
compiler/*.m:
Import compiler_util instead of or in addition to error_util.
To make this easier, consistently use . instead of __ for module
qualifying module names.
tests/invalid/det_errors_cc.{m,err_exp}:
Add this new test case to test the error messages for cc contexts.
tests/invalid/det_errors_deet.{m,err_exp}:
Add this new test case to test the error messages for unifications
inside function symbols.
tests/invalid/Mmakefile:
Add the new test cases.
tests/invalid/det_errors.err_exp:
tests/invalid/magicbox.err_exp:
Change the expected output to conform to the change in det_report.m,
which is now more consistent.
|
||
|
|
b2012c0c0e |
Rename the types 'type', 'inst' and 'mode' to 'mer_type', 'mer_inst'
Estimated hours taken: 8 Branches: main compiler/*.m: Rename the types 'type', 'inst' and 'mode' to 'mer_type', 'mer_inst' and 'mer_mode'. This is to avoid the need to parenthesize these type names in some contexts, and to prepare for the possibility of a parser that considers those words to be reserved words. Rename some other uses of those names (e.g. as item types in recompilation.m). Delete some redundant synonyms (prog_type, mercury_type) for mer_type. Change some type names (e.g. mlds__type) and predicate names (e.g. deforest__goal) to make them unique even without module qualification. Rename the function symbols (e.g. pure, &) that need to be renamed to avoid the need to parenthesize them. Make their replacement names more expressive. Convert some more modules to four space indentation. Avoid excessively long lines, such as those resulting from the automatic substitution of 'mer_type' for 'type'. |
||
|
|
ff13f1380f |
Convert these modules to four-space indentation.
Estimated hours taken: 0.3 Branches: main compiler/add_heap_ops.m: compiler/add_trail_ops.m: compiler/ml_unify_gen.m: Convert these modules to four-space indentation. |
||
|
|
8b8b3b7d3f |
Replace the some() HLDS goal with a more general scope() goal, which can be
Estimated hours taken: 12
Branches: main
Replace the some() HLDS goal with a more general scope() goal, which can be
used not just for existential quantification but also for other purposes.
The main such purposes are new goal types that allow the programmer
to annotate arbitrary goals, and not just whole procedure bodies, with the
equivalents of promise_pure/promise_semipure and promise_only_solution:
promise_pure ( <impure/semipure goal> )
promise_semipure ( <impure goal> )
promise_equivalent_solutions [OutVar1, OutVar2] (
<cc_multi/cc_nondet goal that computed OutVar1 & OutVar2>
)
Both are intended to be helpful in writing constraint solvers, as well as in
other situations.
doc/reference_manual.texi:
Document the new constructs.
library/ops.m:
Add the keywords of the new constructs to the list of operators.
Since they work similarly to the "some" operator, they have the same
precedence.
compiler/hlds_goal.m:
Replace the some(Vars, SubGoal) HLDS construct, with its optional
keep_this_commit attribute, with the new scope(Reason, SubGoal)
construct. The Reason argument may say that this scope is an
existential quantification, but it can also say that it represents
a purity promise, the introduction of a single-solution context
with promise_equivalent_solutions, or a decision by a compiler pass.
It can also say that the scope represents a set of goals that all arise
from the unraveling of a unification between a variable and a ground
term. This was intended to speed up mode checking by significantly
reducing the number of delays and wakeups, but the cost of the scopes
themselves turned out to be bigger than the gain in modechecking speed.
Update the goal_path_step type to refer to scope goals instead of just
existential quantification.
compiler/prog_data.m:
Add new function symbols to the type we use to represent goals in items
to stand for the new Mercury constructs.
compiler/prog_io_goal.m:
Add code to read in the new language constructs.
compiler/prog_io_util.m:
Add a utility predicate for use by the new code in prog_io_goal.m.
compiler/make_hlds.m:
Convert the item representation of the new constructs to the HLDS
representation.
Document how the from_ground_term scope reason would work, but do not
enable the code.
compiler/purity.m:
When checking the purity of goals, respect the new promise_pure and
promise_semipure scopes. Generate warnings if such scopes are
redundant.
compiler/det_analysis.m:
Make the insides of promise_equivalent_solutions goals single solution
contexts.
compiler/det_report.m:
Provide mechanisms for reporting inappropriate usage of
promise_equivalent_solutions goals.
compiler/instmap.m:
Add a utility predicate for use by one of the modules above.
compiler/deep_profiling.m:
Use one of the new scope reasons to prevent simplify from optimizing
away commits of goals that have been made impure, instead of the old
keep_this_commit goal feature.
compiler/modes.m:
Handle from_ground_term scopes when present; for now, they won't be
present, since make_hlds isn't creating them.
compiler/options.m:
Add two new compiler options, for use by implementors only, to allow
finer control over the amount of output one gets with --debug-modes.
(I used them when debugging the performance of the from_ground_term
scope reason.) The options are --debug-modes-minimal and
--debug-modes-verbose.
compiler/handle_options.m:
Make the options that are meaningful only in the presence of
--debug-modes imply --debug-modes, since this allows more convenient
(shorter) invocations.
compiler/mode_debug.m:
Respect the new options when deciding how much data to print
when debugging of the mode checking process is enabled.
compiler/switch_detect.m:
Rename a predicate to make it differ from another predicate by more
than just its arity.
compiler/passes_aux.m:
Bring this module up to date with our current style guidelines,
by using state variable syntax where appropriate.
compiler/*.m:
Minor changes to conform to the change in the HLDS and/or parse tree
goal type.
mdbcomp/program_representation.m:
Rename the some goal to the scope goal, and the same for path steps,
to keep them in sync with the HLDS.
browser/declarative_tree.m:
Conform to the change in goal representations.
tests/hard_coded/promise_equivalent_solutions_test.{m,exp}:
A new test case to test the handling of the
promise_equivalent_solutions construct.
tests/hard_coded/Mmakefile:
Enable the new test.
tests/hard_coded/purity/promise_pure_test.{m,exp}:
A new test case to test the handling of the promise_pure and
promise_semipure constructs.
tests/hard_coded/purity/Mmakefile:
Enable the new test.
tests/invalid/promise_equivalent_solutions.{m,err_exp}:
A new test case to test the error messages for improper use of the
promise_pure and promise_semipure constructs.
tests/invalid/Mmakefile:
Enable the new test.
|
||
|
|
c08ca7fbc8 |
Import only one module per line in the modules of the compiler
Estimated hours taken: 3 Branches: main compiler/*.m: Import only one module per line in the modules of the compiler where my previous diff did not already do so. Misc other cleanups. Where relevant, use the new mechanism in tree.m. compiler/tree.m: Fix a performance problem I noticed while update :- import_module items. Instead of supplying a function to convert lists of trees to a tree, make the tree data structure able to hold a list of subtrees directly. This reduces the number of times where we have to convert list of trees to trees that are sticks just to stay within the old definition of what a tree is. |
||
|
|
59d2d4a573 |
This adds a module mdbcomp__trace_counts that reads in the
Estimated hours taken: 17 Branches: main This adds a module mdbcomp__trace_counts that reads in the .mercury_trace_counts files produced by the compiler's trace mechanism. The format of said files was slightly changed. As the new module is to be used by the compiler and the debugger, it is placed in the mdbcomp module. This required bringing some types from the compiler into a new module within mdbcomp. browser/trace_counts.m: New module for reading execution trace summaries. browser/prim_data.m: New module holding types and predicates moved in from the compiler. Types: pred_or_func, sym_name, module_name, proc_label, special_pred_id, trace_port Predicates: string_to_sym_name, insert_module_qualifier The mode field of proc_label is now an int instead of a proc_id to avoid pulling proc_id into mdbcomp. browser/mdbcomp.m: Add trace_counts and prim_data to the mdbcomp module. browser/declarative_execution.m: Renamed mdb's definition of module_name to flat_module_name to avoid conflicts with the definition in mdbcomp__prim_data. runtime/mercury_trace_base.c: In the format of .mercury_trace_counts, write module and predicate names now use quoted atom syntax so that names with spaces and non-printable characters can be machine-parsed. browser/: compiler/: Many changes to account for movement of types, and the change to proc_label. |
||
|
|
e854a5f9d9 |
Major improvements to tabling, of two types.
Estimated hours taken: 32
Branches: main
Major improvements to tabling, of two types. The first is the implementation
of the loopcheck and memo forms of tabling for model_non procedures, and the
second is a start on the implementation of a new method of implementing
minimal model tabling, one that has the potential for a proper fix of the
problem that we currently merely detect with the pneg stack (the detection
is followed by a runtime abort). Since this new method relies on giving each
own generator its own stack, the grade component denoting it is "mmos"
(minimal model own stack). The true name of the existing method is changed
from "mm" to "mmsc" (minimal model stack copy). The grade component "mm"
is now a shorthand for "mmsc"; when the new method works, "mm" will be changed
to be a shorthand for "mmos".
configure.in:
scripts/canonical_grade.sh-subr:
scripts/init_grade_options.sh-subr:
scripts/parse_grade_options.sh-subr:
scripts/final_grade_options.sh-subr:
compiler/options.m:
Handle the new way of handling minimal model grades.
scripts/mgnuc.in:
compiler/compile_target_code.m:
Conform to the changes in minimal model grade options.
compiler/table_gen.m:
Implement the transformations required by the loopcheck and memo
tabling of model_non procedures, and the minimal model own stack
transformation.
The new implementation transformations use foreign_procs with extra
args, since there is no point in implementing them both that way and
with separate calls to library predicates. This required making the
choice of which method to use at the top level of each transformation.
Fix an oversight that hasn't caused problems yet but may in the future:
mark goals wrapping the original goals as not impure for determinism
computations.
compiler/handle_options.m:
Handle the new arrangement of the options for minimal model tabling.
Detect simultaneous calls for both forms of minimal model tabling,
and generate an error message. Allow for more than one error message
generated at once; report them all once rather than separately.
compiler/globals.m:
Add a mechanism to allow a fix a problem detected by the changes
to handle_options: the fact that we currently may generate a usage
message more than once for invocations with more than one error.
compiler/mercury_compile.m:
compiler/make.program_target.m:
compiler/make.util.m:
Use the new mechanism in handle_options to avoid generating duplicate
usage messages.
compiler/error_util.m:
Add a utility predicate for use by handle_options.
compiler/hlds_pred.m:
Allow memo tabling for model_non predicates, and handle own stack
tabling.
compiler/hlds_out.m:
Print information about the modes of the arguments of foreign_procs,
since this is useful in debugging transformations such as tabling
that generate them.
compiler/prog_data.m:
compiler/layout_out.m:
compiler/prog_out.m:
runtime/mercury_stack_layout.h:
Mention the new evaluation method.
compiler/goal_util.m:
Change the predicates for creating calls and foreign_procs to allow
more than one goal feature to be attached to the new goal. table_gen.m
now uses this capability.
compiler/add_heap_ops.m:
compiler/add_trail_ops.m:
compiler/polymorphism.m:
compiler/simplify.m:
compiler/size_prof.m:
compiler/typecheck.m:
compiler/unify_proc.m:
Conform to the changes in goal_util.
compiler/code_info.m:
compiler/make_hlds.m:
compiler/modules.m:
compiler/prog_io_pragma.m:
Conform to the new the options controlling minimal model
tabling.
compiler/prog_util.m:
Add a utility predicate for use by table_gen.m.
library/std_util.m:
Conform to the changes in the macros for minimal model tabling grades.
library/table_builtin.m:
Add the types and predicates required by the new transformations.
Delete an obsolete comment.
runtime/mercury_grade.h:
Handle the new minimal model grade component.
runtime/mercury_conf_param.h:
List macros controlling minimal model grades.
runtime/mercury_tabling.[ch]:
Define the types needed by the new transformations,
Implement the performance-critical predicates that need to be
hand-written for memo tabling of model_non predicates.
Add utility predicates for debugging.
runtime/mercury_tabling_preds.h:
Add the implementations of the predicates required by the new
transformations.
runtime/mercury_mm_own_stacks.[ch]:
This new module contains the first draft of the implementation
of the own stack implementation of minimal model tabling.
runtime/mercury_imp.h:
Include the new file if the grade needs it.
runtime/Mmakefile:
Mention the new files, and sort the lists of filenames.
runtime/mercury_tabling_macros.h:
Add a macro for allocating answer blocks without requiring them to be
pointed to directly by trie nodes.
runtime/mercury_minimal_model.[ch]:
The structure type holding answer lists is now in mercury_tabling.h,
since it is now also needed by memo tabling of model_non predicates.
It no longer has a field for an answer num, because while it is ok
to require a separate grade for debugging minimal model tabling,
it is not ok to require a separate grade for debugging memo tabling
of model_non predicates. Instead of printing the answer numbers,
print the answers themselves when we need to identify solutions
for debugging.
Change function names, macro names, error messages etc where this is
useful to distinguish the two kinds of minimal model tabling.
Fix some oversights wrt transient registers.
runtime/mercury_context.[ch]:
runtime/mercury_engine.[ch]:
runtime/mercury_memory.[ch]:
runtime/mercury_wrapper.[ch]:
With own stack tabling, each subgoal has its own context, so record
the identity of the subgoal owning a context in the context itself.
The main computation's context is the exception: it has no owner.
Record not just the main context, but also the contexts of subgoals
in the engine.
Add variables for holding the sizes of the det and nondet stacks
of the contexts of subgoals (which should in general be smaller
than the sizes of the corresponding stacks of the main context),
and initialize them as needed.
Initialize the variables holding the sizes of the gen, cut and pneg
stacks, even in grades where the stacks are not used, for safety.
Fix some out-of-date documentation, and conform to our coding
guidelines.
runtime/mercury_memory_zones.[ch]:
Add a function to test whether a pointer is in a zone, to help
debugging.
runtime/mercury_debug.[ch]:
Add some functions to help debugging in the presence of multiple
contexts, and factor out some common code to help with this.
Delete the obsolete, unused function MR_printdetslot_as_label.
runtime/mercury_context.h:
runtime/mercury_bootstrap.h:
Move a bootstrapping #define from mercury_context.h to
mercury_bootstrap.h.
runtime/mercury_context.h:
runtime/mercury_bootstrap.h:
Move a bootstrapping #define from mercury_context.h to
mercury_bootstrap.h.
runtime/mercury_types.h:
Add some more forward declarations of type names.
runtime/mercury_dlist.[ch]:
Rename a field to avoid assignments that dereference NULL.
runtime/mercury_debug.c:
runtime/mercury_memory.c:
runtime/mercury_ml_expand_body.h:
runtime/mercury_stack_trace.c:
runtime/mercury_stacks.[ch]:
trace/mercury_trace_util.c
Update uses of the macros that control minimal model tabling.
runtime/mercury_stack_trace.c:
Provide a mechanism to allow stack traces to be suppressed entirely.
The intention is that by using this mechanism, by the testing system
won't have to provide separate .exp files for hlc grades, nondebug
LLDS grades and debug LLDS grades, as we do currently. The mechanism
is the environment variable MERCURY_SUPPRESS_STACK_TRACE.
tools/bootcheck:
tools/test_mercury:
Specify MERCURY_SUPPRESS_STACK_TRACE.
trace/mercury_trace.c:
When performing retries across tabled calls, handle memo tabled
model_non predicates, for which the call table tip variable holds
a record with a back pointer to a trie node, instead of the trie node
itself.
trace/mercury_trace_internal.c:
When printing tables, handle memo tabled model_non predicates. Delete
the code now moved to runtime/mercury_tabling.c.
Add functions for printing the data structures for own stack minimal
model tabling.
tests/debugger/print_table.{m,inp,exp}:
Update this test case to also test the printing of tables for
memo tabled model_non predicates.
tests/debugger/retry.{m,inp,exp}:
Update this test case to also test retries across memo tabled
model_non predicates.
tests/tabling/loopcheck_nondet.{m,exp}:
tests/tabling/loopcheck_nondet_non_loop.{m,exp}:
New test cases to test loopcheck tabled model_non predicates.
One test case has a loop to detect, one doesn't.
tests/tabling/memo_non.{m,exp}:
tests/tabling/tc_memo.{m,exp}:
tests/tabling/tc_memo2.{m,exp}:
New test cases to test memo tabled model_non predicates.
One test case has a loop to detect, one has a need for minimal model
tabling to detect, and the third doesn't have either.
tests/tabling/Mmakefile:
Add the new test cases, and reenable the existing tc_loop test case.
Rename some make variables and targets to make them better reflect
their meaning.
tests/tabling/test_mercury:
Conform to the change in the name of the make target.
|
||
|
|
885fd4a387 |
Remove almost all dependencies by the modules of parse_tree.m on the modules
Estimated hours taken: 12 Branches: main Remove almost all dependencies by the modules of parse_tree.m on the modules of hlds.m. The only such dependencies remaining now are on type_util.m. compiler/hlds_data.m: compiler/prog_data.m: Move the cons_id type from hlds_data to prog_data, since several parts of the parse tree data structure depend on it (particularly insts). Remove the need to import HLDS modules in prog_data.m by making the cons_ids that refer to procedure ids refer to them via a new type that contains shrouded pred_ids and proc_ids. Since pred_ids and proc_ids are abstract types in hlds_data, add predicates to hlds_data to shroud and unshroud them. Also move some other types, e.g. mode_id and class_id, from hlds_data to prog_data. compiler/hlds_data.m: compiler/prog_util.m: Move predicates for manipulating cons_ids from hlds_data to prog_util. compiler/inst.m: compiler/prog_data.m: Move the contents of inst.m to prog_data.m, since that is where it belongs, and since doing so eliminates a circular dependency. The separation doesn't serve any purpose any more, since we don't need to import hlds_data.m anymore to get access to the cons_id type. compiler/mode_util.m: compiler/prog_mode.m: compiler/parse_tree.m: Move the predicates in mode_util that don't depend on the HLDS to a new module prog_mode, which is part of parse_tree.m. compiler/notes/compiler_design.m: Mention prog_mode.m, and delete the mention of inst.m. compiler/mercury_to_mercury.m: compiler/hlds_out.m: Move the predicates that depend on HLDS out of mercury_to_mercury.m to hlds_out.m. Export from mercury_to_mercury.m the predicates needed by the moved predicates. compiler/hlds_out.m: compiler/prog_out.m: Move predicates for printing parts of the parse tree out of hlds_out.m to prog_out.m, since mercury_to_mercury.m needs to use them. compiler/purity.m: compiler/prog_out.m: Move predicates for printing purities from purity.m, which is part of check_hlds.m, to prog_out.m, since mercury_to_mercury.m needs to use them. compiler/passes_aux.m: compiler/prog_out.m: Move some utility predicates (e.g. for printing progress messages) from passes_aux.m to prog_out.m, since some predicates in submodules of parse_tree.m need to use them. compiler/foreign.m: compiler/prog_data.m: Move some types from foreign.m to prog_data.m to allow the elimination of some dependencies on foreign.m from submodules of parse_tree.m. compiler/*.m: Conform to the changes above, mostly by updating lists of imported modules and module qualifications. In some cases, also do some local cleanups such as converting predicate declarations to predmode syntax and fixing white space. |
||
|
|
7bf0cd03af |
Reduce the overhead of all forms of tabling by eliminating in many cases
Estimated hours taken: 32
Branches: main
Reduce the overhead of all forms of tabling by eliminating in many cases
the overhead of transferring data across the C/Mercury boundary. These
involve lots of control transfers as well as assignments to and from
Mercury abstract machine registers, which are not real machine registers
on x86 machines. Benchmarking in Uppsala revealed this overhead to be
a real problem.
The way we do that is by changing the tabling transformation so that instead
of generating sequences of calls to predicates from library/table_builtin.m,
we generate sequences of calls to C macros from runtime/mercury_tabling_pred.h,
and emit the resulting code string as the body of a foreign_proc goal.
(The old transformation is still available via a new option,
--no-tabling-via-extra-args.)
Since the number of inputs and outputs of the resulting C code sequences
are not always fixed (they can depend on the number of input or output
arguments of predicate being transformed), implementing this required
adding to foreign_procs a new field that allows the specification of extra
arguments to be passed to and from the given foreign code fragment. For now,
this mechanism is implemented only by the C backends, since it is needed
only by the C backends. (We don't support yet tabling on other backends.)
To simplify the new implementation of the field on foreign_procs, consolidate
three existing fields into one. Each of these fields was a list with one
element per argument, so turning them into a single list with a combined record
per argument should also improve reliability, since it reduces the likelyhood
of updates leaving the data structure inconsistent.
The goal paths of components of a tabled predicate depend on whether
-no-tabling-via-extra-args was specified. To enable the expected outputs
of the debugger test cases testing tabling, we add a new mdb command,
goal_paths, that controls whether goal paths are printed by the debugger
at events, and turn off the printing of events in the relevant test cases.
Also, prepare for a future change to optimize the trie structure for
user-defined types by handling type_infos (and once we support them,
typeclass_infos) specially.
compiler/table_gen.m:
Change the tabling transformation along the lines described above.
To allow us to factor out as much of the new code as possible,
we change the meaning of the call_table_tip variable for minimal
model subgoals: instead of the trie node at the end of the answer
table, it is not now the subgoal reachable from it. This change
has no effect as yet, because we use call_table_tip variables
only to perform resets across retries in the debugger, and we
don't do retries across calls to minimal model tabled predicates.
Put predicates into logical groups.
library/table_builtin.m:
runtime/mercury_tabling_preds.h:
When the new transformations in table_gen.m generate foreign_procs
with variable numbers of arguments, the interfaces of those
foreign_procs often do not match the interfaces of the existing
library predicates at their core: they frequently have one more
or one fewer argument. To prevent any possible confusion, in such
cases we add a new variant of the predicate. These predicates
have the suffix _shortcut in their name. Their implementations
are dummy macros that do nothing; they serve merely as placeholders
before or after which the macros that actually do the work are
inserted.
Move the definitions of the lookup, save and restore predicates
into mercury_tabling_preds.h. Make the naming scheme of their
arguments more regular.
runtime/mercury_minimal_model.c:
runtime/mercury_tabling_preds.h:
Move the definition of a predicate from mercury_minimal_model.c
to mercury_tabling_preds.h, since the compiler now needs to be
able to generate an inlined version of it.
compiler/hlds_goal.m:
Replace the three existing fields describing the arguments of
foreign_procs with one, and add a new field describing the extra
arguments that may be inserted by table_gen.m.
Add utility predicates for processing the arguments of foreign_procs.
Change the order of some existing groups of declarations make it
more logical.
compiler/hlds_pred.m:
runtime/mercury_stack_layout.h:
Extend the data structures recording the structure of tabling tries
to allow the representation of trie steps for type_infos and
typeclass_infos.
runtime/mercury_tabling_macros.c:
Fix a bug regarding the tabling of typeclass_infos, which is now
required for a clean compile.
compiler/pragma_c_gen.m:
compiler/ml_code_gen.m:
Modify the generation of code for foreign_procs to handle extra
arguments, and to conform to the new data structures for foreign_proc
arguments.
compiler/llds.m:
The tabling transformations can now generate significantly sized
foreign_procs bodies, which the LLDS code generator translates to
pragma_c instructions. Duplicating these by jump optimization
may lose more by worsening locality than it gains in avoiding jumps,
so we add an extra field to pragma_c instructions that tells jumpopt
not to duplicate code sequences containing such pragma_cs.
compiler/jumpopt.m:
Respect the new flag on pragma_cs.
compiler/goal_util.m:
Add a predicate to create foreign_procs with specified contents,
modelled on the existing predicate to create calls.
Change the order of the arguments of that existing predicate
to make it more logical.
compiler/polymorphism.m:
Conform to the new definition of foreign_procs. Try to simplify
the mechanism for generating the type_info and typeclass_info
arguments of foreign_proc goals, but it is not clear that this
code is even ever executed.
compiler/aditi_builtin_ops.m:
compiler/assertion.m:
compiler/bytecode_gen.m:
compiler/clause_to_proc.m:
compiler/code_gen.m:
compiler/code_info.m:
compiler/code_util.m:
compiler/constraint.m:
compiler/deep_profiling.m:
compiler/deforest.m:
compiler/delay_construct.m:
compiler/dependency_graph.m:
compiler/det_analysis.m:
compiler/det_report.m:
compiler/dnf.m:
compiler/dupelim.m:
compiler/equiv_type_hlds.m:
compiler/exprn_aux.m:
compiler/follow_code.m:
compiler/follow_vars.m:
compiler/frameopt.m:
compiler/goal_form.m:
compiler/goal_path.m:
compiler/higher_order.m:
compiler/higher_order.m:
compiler/hlds_module.m:
compiler/hlds_out.m:
compiler/inlining.m:
compiler/ite_gen.m:
compiler/layout_out.m:
compiler/livemap.m:
compiler/liveness.m:
compiler/llds_out.m:
compiler/loop_inv.m:
compiler/magic.m:
compiler/make_hlds.m:
compiler/mark_static_terms.m:
compiler/middle_rec.m:
compiler/modes.m:
compiler/modules.m:
compiler/opt_debug.m:
compiler/pd_cost.m:
compiler/prog_rep.m:
compiler/purity.m:
compiler/quantification.m:
compiler/reassign.m:
compiler/rl_exprn.m:
compiler/saved_vars.m:
compiler/simplify.m:
compiler/size_prof.m:
compiler/store_alloc.m:
compiler/stratify.m:
compiler/switch_detection.m:
compiler/term_pass1.m:
compiler/term_traversal.m:
compiler/termination.m:
compiler/trace.m:
compiler/typecheck.m:
compiler/unify_proc.m:
compiler/unique_modes.m:
compiler/unneeed_code.m:
compiler/unused_args.m:
compiler/use_local_vars.m:
Conform to the new definition of foreign_procs, pragma_cs and/or
table trie steps, or to changed argument orders.
compiler/add_heap_ops.m:
compiler/add_trail_ops.m:
compiler/cse_detection.m:
compiler/dead_proc_elim.m:
compiler/equiv_type.m:
compiler/intermod.m:
compiler/lambda.m:
compiler/lco.m:
compiler/module_util.m:
compiler/opt_util.m:
compiler/stack_opt.m:
compiler/trans_opt.m:
Conform to the new definition of foreign_procs.
Bring these modules up to date with our current code style guidelines,
using predmode declarations, state variable syntax and unification
expressions as appropriate.
compiler/mercury_compile.m:
Conform to the changed argument order of a predicate in trans_opt.m.
compiler/options.m:
Add the --no-tabling-via-extra-args option, but leave the
documentation commented out since the option is for developers only.
doc/user_guide.texi:
Document --no-tabling-via-extra-args option, though leave the
documentation commented out since the option is for developers only.
doc/user_guide.texi:
doc/mdb_categories:
Document the new goal_paths mdb command.
trace/mercury_trace_internals.c:
Implement the new goal_paths mdb command.
tests/debugger/completion.exp:
Conform to the presence of the goal_paths mdb command.
tests/debugger/mdb_command_test.inp:
Test the existence of documentation for the goal_paths mdb command.
tests/debugger/print_table.{inp,exp*}:
tests/debugger/retry.{inp,exp*}:
Use the goal_paths command to avoid having the expected output
depend on the presence or absence of --tabling-via-extra-args.
tests/tabling/table_foreign_output.{m,exp}:
Add a new test case to test the save/restore of arguments of foreign
types.
tests/tabling/Mmakefile:
Enable the new test case.
tests/tabling/test_tabling:
Make this script more robust.
Add an option for testing only the standard model forms of tabling.
|
||
|
|
5d6fd3bd6f |
Reduce the dependence of earlier parts of the compiler on the later ones.
Estimated hours taken: 4 Branches: main Reduce the dependence of earlier parts of the compiler on the later ones. Unnecessary import_module declarations in top level modules such as hlds.m cause unnecessary recompilations when adding new types in later modules, such as submodules of ll_backend.m. This change reduces the number of such unnecessary imports. There are no changes in algorithms, only functionality being moved around. compiler/code_model.m: Change this module from being a submodule of backend_libs.m to being a submodule of hlds.m, since nothing in it is dependent on any backend. compiler/arg_info.m: compiler/code_util.m: Change arg_info.m from being a submodule of ll_backend.m to being a submodule of hlds.m, since most of it is applicable to all current and foreseeable backends. Move the one exported predicate that is ll_backend dependent, and its support predicates, to code_util.m. compiler/backend_libs.m: compiler/ll_backend.m: compiler/hlds.m: Update include_module declarations in accordance with the above. compiler/prog_data.m: compiler/term_util.m: Instead of defining two separate types for holding argument size and termination information, one including HLDS-specific information (in term_util.m) and one not (in prog_data.m), use a polymorphic type defined in prog_data.m and two monomorphic instances. compiler/termination.m: compiler/mercury_to_mercury.m: Change the predicates for writing out argument size and termination information to handle the polymorphic type (we don't need special handling of the monomorphic versions), and move them from termination.m to mercury_to_mercury.m, since this allows us to avoid some undesirable dependencies. compiler/base_typeclass_info.m: compiler/hlds_code_util.m: Move the predicate make_instance_string from base_typeclass_info.m to hlds_code_util.m, again because it allows us to remove some undesirable dependencies. compiler/top_level.m: compiler/backend_libs.m: compiler/check_hlds.m: compiler/hlds.m: compiler/ll_backend.m: compiler/parse_tree.m: compiler/transform_hlds.m: Delete some import_module declarations of other top level modules in these top level modules. Some imports were totally unnecessary. Some imports were useful in only a small minority of submodules; those submodules now import the necessary top level modules directly. Move remaining import_module declarations to the implementation section where this is feasible. Where we still need to import modules we ideally shouldn't, note why. compiler/*.m: Update imports of code_util and arg_info. In some cases, import top level modules no longer imported by the parent module. In some cases, delete unnecessary imports. |
||
|
|
8693e293a2 |
This diff makes hlds_pred.m and many callers of its predicates easier to read
Estimated hours taken: 4 Branches: main This diff makes hlds_pred.m and many callers of its predicates easier to read and to maintain, but contains no changes in algorithms whatsoever. compiler/hlds_pred.m: Bring this module into line with our current coding standards. Use predmode declarations, functions, and state variable syntax when appropriate. Reorder arguments of predicates where necessary for the use of state variable syntax, and where this improves readability. Replace old-style lambdas with new-style lambdas or with partially applied named procedures. Standardize indentation. compiler/*.m: Conform to the changes in hlds_pred.m. This mostly means using the new argument orders of predicates exported by hlds_pred.m. Where this is now conveniently possible, change predicates to use state variable notation. In some modules, using state variable notation required changing the orders of arguments in the module's top predicate. compiler/passes_aux.m: Change the order of arguments in the calls this module makes to allow the callees to use state variable notation. Convert this module to state variable notation too. |
||
|
|
1790c3b505 |
When generating calls, specify whether the call is to a predicate or
Estimated hours taken: 1 Branches: main compiler/goal_util.m: compiler/hlds_module.m: When generating calls, specify whether the call is to a predicate or function. compiler/goal_util.m: compiler/unify_proc.m: Move a predicate that generates unsafe casts from unify_proc to goal_util, since polymorphism may also want to use it someday. compiler/add_heap_ops.m: compiler/add_trail_ops.m: compiler/aditi_builtin_ops.m: compiler/deep_profiling.m: compiler/det_analysis.m: compiler/higher_order.m: compiler/polymorphism.m: compiler/simplify.m: compiler/table_gen.m: compiler/type_ctor_info.m: compiler/type_util.m: compiler/typecheck.m: Trivial diffs to conform to the changes above. |
||
|
|
d3e315ffd2 |
Move functionality that is not part of the LLDS backend from
Estimated hours taken: 1 Branches: main compiler/code_util.m: compiler/goal_form.m: compiler/hlds_code_util.m: Move functionality that is not part of the LLDS backend from ll_backend__code_util to hlds__goal_form and to hlds__hlds_code_util. Turn some predicates into functions. compiler/*.m: Conform to the changes above. |
||
|
|
9551640f55 |
Import only one compiler module per line. Sort the blocks of imports.
Estimated hours taken: 2 Branches: main compiler/*.m: Import only one compiler module per line. Sort the blocks of imports. This makes it easier to merge in changes. In a couple of places, remove unnecessary imports. |
||
|
|
54255f93e7 |
Make the Prolog term comparison operators (@<, @=<, @>, @>=)
Estimated hours taken: 32 Branches: main Make the Prolog term comparison operators (@<, @=<, @>, @>=) builtin since they're often useful and calling compare/3 can look a little awkward. Simplification now applies the following transformations on the new builtin operators: X @< Y ---> some [R] (compare(R, X, Y), R = (<)) X @=< Y ---> some [R] (compare(R, X, Y), R \= (>)) X @> Y ---> some [R] (compare(R, X, Y), R = (>)) X @>= Y ---> some [R] (compare(R, X, Y), R \= (<)) compiler/add_heap_ops.m: compiler/add_trail_ops.m: compiler/table_gen.m: Added `only_mode' argument to calls to goal_util__generate_simple_call which now has an extra parameter. compiler/goal_util.m: Added a new parameter, ModeNo, to goal_util__generate_simple_call. ModeNo is either - `only_mode' in which case the predicate in question is expected to have exactly one mode or - `mode_no(N)' in which case mode number N (counting from 0) is used. The inequality transformation uses this to handle calls to compare/3 with unique arguments (even though the builtin inequality modes don't yet handle ui arguments...) compiler/simplify.m: simplify__goal_2 for calls now makes a decision as to whether to call simplify__call_goal or simplify__inequality_goal. The bulk of simplify__goal_2 is now in simplify__call_goal. The inequality transformation is handled in simplify__inequality_goal. compiler/type_util.m: Added comparison_result_type constant. compiler/NEWS: Mention these changes. library/builtin.m: Added the inequalities as built-ins. Added the function ordering/2. library/prolog.m: Removed the definitions for @< etc. |
||
|
|
189b9215ae |
This diff implements stack slot optimization for the LLDS back end based on
Estimated hours taken: 400
Branches: main
This diff implements stack slot optimization for the LLDS back end based on
the idea that after a unification such as A = f(B, C, D), saving the
variable A on the stack indirectly also saves the values of B, C and D.
Figuring out what subset of {B,C,D} to access via A and what subset to access
via their own stack slots is a tricky optimization problem. The algorithm we
use to solve it is described in the paper "Using the heap to eliminate stack
accesses" by Zoltan Somogyi and Peter Stuckey, available in ~zs/rep/stackslot.
That paper also describes (and has examples of) the source-to-source
transformation that implements the optimization.
The optimization needs to know what variables are flushed at call sites
and at program points that establish resume points (e.g. entries to
disjunctions and if-then-elses). We already had code to compute this
information in live_vars.m, but this code was being invoked too late.
This diff modifies live_vars.m to allow it to be invoked both by the stack
slot optimization transformation and by the code generator, and allows its
function to be tailored to the requirements of each invocation.
The information computed by live_vars.m is specific to the LLDS back end,
since the MLDS back ends do not (yet) have the same control over stack
frame layout. We therefore store this information in a new back end specific
field in goal_infos. For uniformity, we make all the other existing back end
specific fields in goal_infos, as well as the similarly back end specific
store map field of goal_exprs, subfields of this new field. This happens
to significantly reduce the sizes of goal_infos.
To allow a more meaningful comparison of the gains produced by the new
optimization, do not save any variables across erroneous calls even if
the new optimization is not enabled.
compiler/stack_opt.m:
New module containing the code that performs the transformation
to optimize stack slot usage.
compiler/matching.m:
New module containing an algorithm for maximal matching in bipartite
graphs, specialized for the graphs needed by stack_opt.m.
compiler/mercury_compile.m:
Invoke the new optimization if the options ask for it.
compiler/stack_alloc.m:
New module containing code that is shared between the old,
non-optimizing stack slot allocation system and the new, optimizing
stack slot allocation system, and the code for actually allocating
stack slots in the absence of optimization.
Live_vars.m used to have two tasks: find out what variables need to be
saved on the stack, and allocating those variables to stack slots.
Live_vars.m now does only the first task; stack_alloc.m now does
the second, using code that used to be in live_vars.m.
compiler/trace_params:
Add a new function to test the trace level, which returns yes if we
want to preserve the values of the input headvars.
compiler/notes/compiler_design.html:
Document the new modules (as well as trace_params.m, which wasn't
documented earlier).
compiler/live_vars.m:
Delete the code that is now in stack_alloc.m and graph_colour.m.
Separate out the kinds of stack uses due to nondeterminism: the stack
slots used by nondet calls, and the stack slots used by resumption
points, in order to allow the reuse of stack slots used by resumption
points after execution has left their scope. This should allow the
same stack slots to be used by different variables in the resumption
point at the start of an else branch and nondet calls in the then
branch, since the resumption point of the else branch is not in effect
when the then branch is executed.
If the new option --opt-no-return-calls is set, then say that we do not
need to save any values across erroneous calls.
Use type classes to allow the information generated by this module
to be recorded in the way required by its invoker.
Package up the data structures being passed around readonly into a
single tuple.
compiler/store_alloc.m:
Allow this module to be invoked by stack_opt.m without invoking the
follow_vars transformation, since applying follow_vars before the form
of the HLDS code is otherwise final can be a pessimization.
Make the module_info a part of the record containing the readonly data
passed around during the traversal.
compiler/common.m:
Do not delete or move around unifications created by stack_opt.m.
compiler/call_gen.m:
compiler/code_info.m:
compiler/continuation_info.m:
compiler/var_locn.m:
Allow the code generator to delete its last record of the location
of a value when generating code to make an erroneous call, if the new
--opt-no-return-calls option is set.
compiler/code_gen.m:
Use a more useful algorithm to create the messages/comments that
we put into incr_sp instructions, e.g. by distinguishing between
predicates and functions. This is to allow the new scripts in the
tool directory to gather statistics about the effect of the
optimization on stack frame sizes.
library/exception.m:
Make a hand-written incr_sp follow the new pattern.
compiler/arg_info.m:
Add predicates to figure out the set of input, output and unused
arguments of a procedure in several different circumstances.
Previously, variants of these predicates were repeated in several
places.
compiler/goal_util.m:
Export some previously private utility predicates.
compiler/handle_options.m:
Turn off stack slot optimizations when debugging, unless
--trace-optimized is set.
Add a new dump format useful for debugging --optimize-saved-vars.
compiler/hlds_llds.m:
New module for handling all the stuff specific to the LLDS back end
in HLDS goal_infos.
compiler/hlds_goal.m:
Move all the relevant stuff into the new back end specific field
in goal_infos.
compiler/notes/allocation.html:
Update the documentation of store maps to reflect their movement
into a subfield of goal_infos.
compiler/*.m:
Minor changes to accomodate the placement of all back end specific
information about goals from goal_exprs and individual fields of
goal_infos into a new field in goal_infos that gathers together
all back end specific information.
compiler/use_local_vars.m:
Look for sequences in which several instructions use a fake register
or stack slot as a base register pointing to a cell, and make those
instructions use a local variable instead.
Without this, a key assumption of the stack slot optimization,
that accessing a field in a cell costs only one load or store
instruction, would be much less likely to be true. (With this
optimization, the assumption will be false only if the C compiler's
code generator runs out of registers in a basic block, which for
the code we generate should be unlikely even on x86s.)
compiler/options.m:
Make the old option --optimize-saved-vars ask for both the old stack
slot optimization (implemented by saved_vars.m) that only eliminates
the storing of constants in stack slots, and the new optimization.
Add two new options --optimize-saved-vars-{const,cell} to turn on
the two optimizations separately.
Add a bunch of options to specify the parameters of the new
optimizations, both in stack_opt.m and use_local_vars.m. These are
for implementors only; they are deliberately not documented.
Add a new option, --opt-no-return-cells, that governs whether we avoid
saving variables on the stack at calls that cannot return, either by
succeeding or by failing. This is for implementors only, and thus
deliberately documented only in comments. It is enabled by default.
compiler/optimize.m:
Transmit the value of a new option to use_local_vars.m.
doc/user_guide.texi:
Update the documentation of --optimize-saved-vars.
library/tree234.m:
Undo a previous change of mine that effectively applied this
optimization by hand. That change complicated the code, and now
the compiler can do the optimization automatically.
tools/extract_incr_sp:
A new script for extracting stack frame sizes and messages from
stack increment operations in the C code for LLDS grades.
tools/frame_sizes:
A new script that uses extract_incr_sp to extract information about
stack frame sizes from the C files saved from a stage 2 directory
by makebatch and summarizes the resulting information.
tools/avg_frame_size:
A new script that computes average stack frame sizes from the files
created by frame_sizes.
tools/compare_frame_sizes:
A new script that compares the stack frame size information
extracted from two different stage 2 directories by frame_sizes,
reporting on both average stack frame sizes and on specific procedures
that have different stack frame sizes in the two versions.
|
||
|
|
7597790760 |
Use sub-modules to structure the modules in the Mercury compiler directory.
The main aim of this change is to make the overall, high-level structure of the compiler clearer, and to encourage better encapsulation of the major components. compiler/libs.m: compiler/backend_libs.m: compiler/parse_tree.m: compiler/hlds.m: compiler/check_hlds.m: compiler/transform_hlds.m: compiler/bytecode_backend.m: compiler/aditi_backend.m: compiler/ml_backend.m: compiler/ll_backend.m: compiler/top_level.m: New files. One module for each of the major components of the Mercury compiler. These modules contain (as separate sub-modules) all the other modules in the Mercury compiler, except gcc.m and mlds_to_gcc.m. Mmakefile: compiler/Mmakefile: Handle the fact that the top-level module is now `top_level', not `mercury_compile' (since `mercury_compile' is a sub-module of `top_level'). compiler/Mmakefile: Update settings of *FLAGS-<modulename> to use the appropriate nested module names. compiler/recompilation_check.m: compiler/recompilation_version.m: compiler/recompilation_usage.m: compiler/recompilation.check.m: compiler/recompilation.version.m: compiler/recompilation.version.m: Convert the `recompilation_*' modules into sub-modules of the `recompilation' module. compiler/*.m: compiler/*.pp: Module-qualify the module names in `:- module', `:- import_module', and `:- use_module' declarations. compiler/base_type_info.m: compiler/base_type_layout.m: Deleted these unused empty modules. compiler/prog_data.m: compiler/globals.m: Move the `foreign_language' type from prog_data to globals. compiler/mlds.m: compiler/ml_util.m: compiler/mlds_to_il.m: Import `globals', for `foreign_language'. Mmake.common.in: trace/Mmakefile: runtime/Mmakefile: Rename the %.check.c targets as %.check_hdr.c, to avoid conflicts with compiler/recompilation.check.c. |
||
|
|
7622e889e0 |
Define the `heap_pointer' type in private_builtin.m as a new builtin
Estimated hours taken: 2 Branches: main Define the `heap_pointer' type in private_builtin.m as a new builtin type with representation MR_TYPECTOR_REP_HP, rather than as equivalent to `c_pointer'. This is needed so that the accurate garbage collector can tell saved heap pointer values apart from other c_pointer values, which it needs to do in order to handle saved heap pointer values. library/private_builtin.m: runtime/mercury.h: runtime/mercury.c: Define the type_ctor_info etc. for the heap_pointer type. compiler/type_util.m: Add a new function `heap_pointer_type'. compiler/add_heap_ops.m: Use `heap_pointer_type' from type_util.m. |
||
|
|
6c6082a3ac |
Avoid saving and restoring the heap pointer across goals which
Estimated hours taken: 2 Branches: main compiler/add_heap_ops.m: Avoid saving and restoring the heap pointer across goals which are known not to allocate any heap space. |
||
|
|
95acb0d8a2 |
Implement heap reclamation on failure for the MLDS back-end.
Branches: main Estimated hours taken: 8 Implement heap reclamation on failure for the MLDS back-end. library/private_builtin.m: Add impure procedures for saving and restoring the heap pointer. compiler/add_heap_ops.m: New file, similar to add_trail_ops.m. An HLDS->HLDS transformation to add heap reclamation operations. compiler/mercury_compile.m: Call the new pass. compiler/notes/compiler_design.html: Mention the new pass. compiler/add_trail_ops.m: compiler/table_gen.m: compiler/goal_util.m: Abstract out the common code from `generate_call' in table_gen.m, add_trail_ops.m, and add_heap_ops.m, and put it in a new procedure `generate_simple_goal' in goal_util.m. compiler/add_heap_ops.m: compiler/add_trail_ops.m: Apply a review suggestion from Peter Ross: when putting code in places that should not be reachable, insert code that calls private_builtin__unused (which calls error/1) rather than just inserting `true'. |