Files
mercury/compiler/add_heap_ops.m
Zoltan Somogyi b2012c0c0e Rename the types 'type', 'inst' and 'mode' to 'mer_type', 'mer_inst'
Estimated hours taken: 8
Branches: main

compiler/*.m:
	Rename the types 'type', 'inst' and 'mode' to 'mer_type', 'mer_inst'
	and 'mer_mode'. This is to avoid the need to parenthesize these type
	names in some contexts, and to prepare for the possibility of a parser
	that considers those words to be reserved words.

	Rename some other uses of those names (e.g. as item types in
	recompilation.m).

	Delete some redundant synonyms (prog_type, mercury_type) for mer_type.

	Change some type names (e.g. mlds__type) and predicate names (e.g.
	deforest__goal) to make them unique even without module qualification.

	Rename the function symbols (e.g. pure, &) that need to be renamed
	to avoid the need to parenthesize them. Make their replacement names
	more expressive.

	Convert some more modules to four space indentation.

	Avoid excessively long lines, such as those resulting from the
	automatic substitution of 'mer_type' for 'type'.
2005-10-24 04:14:34 +00:00

352 lines
14 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 2000-2005 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% Author: fjh.
%
% This module is an HLDS-to-HLDS transformation that inserts code to
% handle heap reclamation on backtracking, by saving and restoring
% the values of the heap pointer.
% The transformation involves adding calls to impure
% predicates defined in library/private_builtin.m, which in turn call
% the MR_mark_hp() and MR_restore_hp() macros defined in
% runtime/mercury_heap.h.
%
% This pass is currently only used for the MLDS back-end.
% For some reason (perhaps efficiency?? or more likely just historical?),
% the LLDS back-end inserts the heap operations as it is generating
% LLDS code, rather than via an HLDS to HLDS transformation.
%
% This module is very similar to add_trail_ops.m.
%
%-----------------------------------------------------------------------------%
% XXX check goal_infos for correctness
%-----------------------------------------------------------------------------%
:- module ml_backend__add_heap_ops.
:- interface.
:- import_module hlds__hlds_module.
:- import_module hlds__hlds_pred.
:- pred add_heap_ops(module_info::in, proc_info::in, proc_info::out) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module check_hlds__type_util.
:- import_module hlds__code_model.
:- import_module hlds__goal_form.
:- import_module hlds__goal_util.
:- import_module hlds__hlds_data.
:- import_module hlds__hlds_goal.
:- import_module hlds__instmap.
:- import_module hlds__quantification.
:- import_module mdbcomp__prim_data.
:- import_module parse_tree__modules.
:- import_module parse_tree__error_util.
:- import_module parse_tree__prog_data.
:- import_module parse_tree__prog_util.
:- import_module assoc_list.
:- import_module bool.
:- import_module list.
:- import_module map.
:- import_module require.
:- import_module set.
:- import_module std_util.
:- import_module string.
:- import_module term.
:- import_module varset.
% As we traverse the goal, we add new variables to hold the saved values
% of the heap pointer. So we need to thread a varset and a vartypes mapping
% through, to record the names and types of the new variables.
%
% We also keep the module_info around, so that we can use the predicate
% table that it contains to lookup the pred_ids for the builtin procedures
% that we insert calls to. We do not update the module_info as we're
% traversing the goal.
:- type heap_ops_info
---> heap_ops_info(
varset :: prog_varset,
var_types :: vartypes,
module_info :: module_info
).
add_heap_ops(ModuleInfo0, !Proc) :-
proc_info_goal(!.Proc, Goal0),
proc_info_varset(!.Proc, VarSet0),
proc_info_vartypes(!.Proc, VarTypes0),
TrailOpsInfo0 = heap_ops_info(VarSet0, VarTypes0, ModuleInfo0),
goal_add_heap_ops(Goal0, Goal, TrailOpsInfo0, TrailOpsInfo),
TrailOpsInfo = heap_ops_info(VarSet, VarTypes, _),
proc_info_set_goal(Goal, !Proc),
proc_info_set_varset(VarSet, !Proc),
proc_info_set_vartypes(VarTypes, !Proc),
% The code below does not maintain the non-local variables,
% so we need to requantify.
% XXX it would be more efficient to maintain them rather than recomputing
% them every time.
requantify_proc(!Proc).
:- pred goal_add_heap_ops(hlds_goal::in, hlds_goal::out,
heap_ops_info::in, heap_ops_info::out) is det.
goal_add_heap_ops(GoalExpr0 - GoalInfo, Goal, !Info) :-
goal_expr_add_heap_ops(GoalExpr0, GoalInfo, Goal, !Info).
:- pred goal_expr_add_heap_ops(hlds_goal_expr::in, hlds_goal_info::in,
hlds_goal::out, heap_ops_info::in, heap_ops_info::out) is det.
goal_expr_add_heap_ops(conj(Goals0), GI, conj(Goals) - GI, !Info) :-
conj_add_heap_ops(Goals0, Goals, !Info).
goal_expr_add_heap_ops(par_conj(Goals0), GI, par_conj(Goals) - GI, !Info) :-
conj_add_heap_ops(Goals0, Goals, !Info).
goal_expr_add_heap_ops(disj([]), GI, disj([]) - GI, !Info).
goal_expr_add_heap_ops(disj(Goals0), GoalInfo, Goal - GoalInfo, !Info) :-
Goals0 = [FirstDisjunct | _],
goal_info_get_context(GoalInfo, Context),
goal_info_get_code_model(GoalInfo, CodeModel),
% If necessary, save the heap pointer so that we can restore it
% on back-tracking. We don't need to do this here if it is a model_det
% or model_semi disjunction and the first disjunct won't allocate any heap
% -- in that case, we delay saving the heap pointer until just before
% the first disjunct that might allocate heap.
(
( CodeModel = model_non
; goal_may_allocate_heap(FirstDisjunct)
)
->
new_saved_hp_var(SavedHeapPointerVar, !Info),
gen_mark_hp(SavedHeapPointerVar, Context, MarkHeapPointerGoal, !Info),
disj_add_heap_ops(Goals0, yes, yes(SavedHeapPointerVar), GoalInfo,
Goals, !Info),
Goal = conj([MarkHeapPointerGoal, disj(Goals) - GoalInfo])
;
disj_add_heap_ops(Goals0, yes, no, GoalInfo, Goals, !Info),
Goal = disj(Goals)
).
goal_expr_add_heap_ops(switch(Var, CanFail, Cases0), GI,
switch(Var, CanFail, Cases) - GI, !Info) :-
cases_add_heap_ops(Cases0, Cases, !Info).
goal_expr_add_heap_ops(not(InnerGoal), OuterGoalInfo, Goal, !Info) :-
%
% We handle negations by converting them into if-then-elses:
% not(G) ===> (if G then fail else true)
%
goal_info_get_context(OuterGoalInfo, Context),
InnerGoal = _ - InnerGoalInfo,
goal_info_get_determinism(InnerGoalInfo, Determinism),
determinism_components(Determinism, _CanFail, NumSolns),
true_goal(Context, True),
fail_goal(Context, Fail),
ModuleInfo = !.Info ^ module_info,
( NumSolns = at_most_zero ->
% The "then" part of the if-then-else will be unreachable, but to
% preserve the invariants that the MLDS back-end relies on, we need to
% make sure that it can't fail. So we use a call to
% `private_builtin__unused' (which will call error/1) rather than
% `fail' for the "then" part.
generate_call("unused", det, [], [], [], ModuleInfo, Context, ThenGoal)
;
ThenGoal = Fail
),
NewOuterGoal = if_then_else([], InnerGoal, ThenGoal, True),
goal_expr_add_heap_ops(NewOuterGoal, OuterGoalInfo, Goal, !Info).
goal_expr_add_heap_ops(scope(Reason, Goal0), GoalInfo,
scope(Reason, Goal) - GoalInfo, !Info) :-
goal_add_heap_ops(Goal0, Goal, !Info).
goal_expr_add_heap_ops(if_then_else(A, Cond0, Then0, Else0), GoalInfo,
Goal - GoalInfo, !Info) :-
goal_add_heap_ops(Cond0, Cond, !Info),
goal_add_heap_ops(Then0, Then, !Info),
goal_add_heap_ops(Else0, Else1, !Info),
% If the condition can allocate heap space, save the heap pointer
% so that we can restore it if the condition fails.
( goal_may_allocate_heap(Cond0) ->
new_saved_hp_var(SavedHeapPointerVar, !Info),
goal_info_get_context(GoalInfo, Context),
gen_mark_hp(SavedHeapPointerVar, Context, MarkHeapPointerGoal, !Info),
% Generate code to restore the heap pointer, and insert that code
% at the start of the Else branch.
gen_restore_hp(SavedHeapPointerVar, Context, RestoreHeapPointerGoal,
!Info),
Else1 = _ - Else1GoalInfo,
Else = conj([RestoreHeapPointerGoal, Else1]) - Else1GoalInfo,
IfThenElse = if_then_else(A, Cond, Then, Else) - GoalInfo,
Goal = conj([MarkHeapPointerGoal, IfThenElse])
;
Goal = if_then_else(A, Cond, Then, Else1)
).
goal_expr_add_heap_ops(Goal @ call(_, _, _, _, _, _), GI, Goal - GI, !Info).
goal_expr_add_heap_ops(Goal @ generic_call(_, _, _, _), GI, Goal - GI, !Info).
goal_expr_add_heap_ops(Goal @ unify(_, _, _, _, _), GI, Goal - GI, !Info).
goal_expr_add_heap_ops(PragmaForeign, GoalInfo, Goal, !Info) :-
PragmaForeign = foreign_proc(_, _, _, _, _, Impl),
( Impl = nondet(_,_,_,_,_,_,_,_,_) ->
% XXX Implementing heap reclamation for nondet pragma foreign_code
% via transformation is difficult, because there's nowhere in the HLDS
% pragma_foreign_code goal where we can insert the heap reclamation
% operations. For now, we don't support this. Instead, we just generate
% a call to a procedure which will at runtime call error/1 with an
% appropriate "Sorry, not implemented" error message.
ModuleInfo = !.Info ^ module_info,
goal_info_get_context(GoalInfo, Context),
generate_call("reclaim_heap_nondet_pragma_foreign_code", erroneous,
[], [], [], ModuleInfo, Context, SorryNotImplementedCode),
Goal = SorryNotImplementedCode
;
Goal = PragmaForeign - GoalInfo
).
goal_expr_add_heap_ops(shorthand(_), _, _, !Info) :-
% These should have been expanded out by now.
unexpected(this_file, "goal_expr_add_heap_ops: unexpected shorthand").
:- pred conj_add_heap_ops(hlds_goals::in, hlds_goals::out,
heap_ops_info::in, heap_ops_info::out) is det.
conj_add_heap_ops(Goals0, Goals, !Info) :-
list__map_foldl(goal_add_heap_ops, Goals0, Goals, !Info).
:- pred disj_add_heap_ops(hlds_goals::in, bool::in, maybe(prog_var)::in,
hlds_goal_info::in, hlds_goals::out,
heap_ops_info::in, heap_ops_info::out) is det.
disj_add_heap_ops([], _, _, _, [], !Info).
disj_add_heap_ops([Goal0 | Goals0], IsFirstBranch, MaybeSavedHeapPointerVar,
DisjGoalInfo, DisjGoals, !Info) :-
goal_add_heap_ops(Goal0, Goal1, !Info),
Goal1 = _ - GoalInfo,
goal_info_get_context(GoalInfo, Context),
% If needed, reset the heap pointer before executing the goal,
% to reclaim heap space allocated in earlier branches.
(
IsFirstBranch = no,
MaybeSavedHeapPointerVar = yes(SavedHeapPointerVar0)
->
gen_restore_hp(SavedHeapPointerVar0, Context, RestoreHeapPointerGoal,
!Info),
conj_list_to_goal([RestoreHeapPointerGoal, Goal1], GoalInfo, Goal)
;
Goal = Goal1
),
% Save the heap pointer, if we haven't already done so, and if this
% disjunct might allocate heap space.
(
MaybeSavedHeapPointerVar = no,
goal_may_allocate_heap(Goal)
->
% Generate code to save the heap pointer.
new_saved_hp_var(SavedHeapPointerVar, !Info),
gen_mark_hp(SavedHeapPointerVar, Context, MarkHeapPointerGoal, !Info),
% Recursively handle the remaining disjuncts.
disj_add_heap_ops(Goals0, no, yes(SavedHeapPointerVar), DisjGoalInfo,
Goals1, !Info),
% Put this disjunct and the remaining disjuncts in a nested
% disjunction, so that the heap pointer variable can scope over
% these disjuncts.
Disj = disj([Goal | Goals1]) - DisjGoalInfo,
DisjGoals = [conj([MarkHeapPointerGoal, Disj]) - DisjGoalInfo]
;
% Just recursively handle the remaining disjuncts.
disj_add_heap_ops(Goals0, no, MaybeSavedHeapPointerVar, DisjGoalInfo,
Goals, !Info),
DisjGoals = [Goal | Goals]
).
:- pred cases_add_heap_ops(list(case)::in, list(case)::out,
heap_ops_info::in, heap_ops_info::out) is det.
cases_add_heap_ops([], [], !Info).
cases_add_heap_ops([Case0 | Cases0], [Case | Cases], !Info) :-
Case0 = case(ConsId, Goal0),
Case = case(ConsId, Goal),
goal_add_heap_ops(Goal0, Goal, !Info),
cases_add_heap_ops(Cases0, Cases, !Info).
%-----------------------------------------------------------------------------%
:- pred gen_mark_hp(prog_var::in, prog_context::in, hlds_goal::out,
heap_ops_info::in, heap_ops_info::out) is det.
gen_mark_hp(SavedHeapPointerVar, Context, MarkHeapPointerGoal, !Info) :-
generate_call("mark_hp", det, [SavedHeapPointerVar], [impure_goal],
[SavedHeapPointerVar - ground_inst], !.Info ^ module_info, Context,
MarkHeapPointerGoal).
:- pred gen_restore_hp(prog_var::in, prog_context::in, hlds_goal::out,
heap_ops_info::in, heap_ops_info::out) is det.
gen_restore_hp(SavedHeapPointerVar, Context, RestoreHeapPointerGoal, !Info) :-
generate_call("restore_hp", det, [SavedHeapPointerVar], [impure_goal],
[], !.Info ^ module_info, Context, RestoreHeapPointerGoal).
:- func ground_inst = mer_inst.
ground_inst = ground(unique, none).
%-----------------------------------------------------------------------------%
:- pred new_saved_hp_var(prog_var::out,
heap_ops_info::in, heap_ops_info::out) is det.
new_saved_hp_var(Var, !Info) :-
new_var("HeapPointer", heap_pointer_type, Var, !Info).
:- pred new_var(string::in, mer_type::in, prog_var::out,
heap_ops_info::in, heap_ops_info::out) is det.
new_var(Name, Type, Var, !Info) :-
VarSet0 = !.Info ^ varset,
VarTypes0 = !.Info ^ var_types,
varset__new_named_var(VarSet0, Name, Var, VarSet),
map__det_insert(VarTypes0, Var, Type, VarTypes),
!:Info = !.Info ^ varset := VarSet,
!:Info = !.Info ^ var_types := VarTypes.
%-----------------------------------------------------------------------------%
:- pred generate_call(string::in, determinism::in, list(prog_var)::in,
list(goal_feature)::in, assoc_list(prog_var, mer_inst)::in,
module_info::in, term__context::in, hlds_goal::out) is det.
generate_call(PredName, Detism, Args, Features, InstMap, ModuleInfo,
Context, CallGoal) :-
mercury_private_builtin_module(BuiltinModule),
goal_util__generate_simple_call(BuiltinModule, PredName, predicate,
only_mode, Detism, Args, Features, InstMap, ModuleInfo,
Context, CallGoal).
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "add_heap_ops.m".
%-----------------------------------------------------------------------------%