Files
mercury/compiler/add_heap_ops.m
Zoltan Somogyi 5b8f96f61d Prepare for an extension of promise_equivalent_solutions that will allow us
Estimated hours taken: 5
Branches: main

Prepare for an extension of promise_equivalent_solutions that will allow us
to better handle values of user-defined types. The problem is that currently,
the deconstruction of a value of such a type can be followed only by code that
cannot fail, otherwise the cc_multi deconstruction is not in the required
single-solution context. If the following code is naturally semidet, this
can be worked around by turning it into det code returning a maybe and testing
the maybe outside the promise_equivalent_solutions, but this is inefficient,
and in any case it does not generalize to nondet code without even more
horrendous inefficiency and inconvenience. (You have to create a nondet closure
and call it outside the promise_equivalent_solutions.)

The solution I came up with is something is to have a construct that contains

	- a list of deconstructions on types with user-defined equality,
	- a goal, and
	- the list of outputs of that goal.

The idea is that this would be transformed into a conjunction of the first and
second items, and wrapped inside a special kind of conj that provides a scope
for the implicit promise, which is that the set of solutions of the goal in
the second item doesn't depend on what concrete terms the deconstructions
in the first item return out of the set of concrete terms they *could* return.
The deconstructions in the first item would be marked to tell determinism
analysis to effectively ignore the fact that they involve user-defined
equality.

The actual addition of that construct is left for a future change, after we
agree on the syntax.

compiler/hlds_goal.m:
	Generalize the existing promise_equivalent_solutions scope to a
	promise_solutions scope with a flag that says whether in the source
	code it was originally the existing "promise_equivalent_solutions"
	construct or the new construct (which doesn't exist yet, but is
	indicated by the symbol "same_solutions" for now).

	Replace the conj and par_conj hlds_goal_exprs with a single goal
	expression: conj with an additional argument which is either plain_conj
	or parallel_conj. This was part of an earlier design in which a third
	kind of disjunction took the role now assigned to the new kind of
	promise_solutions scope, but turned out to be a good idea anyway,
	since in many places the compiler does treat the two kinds of
	conjunctions the same. This part of the change is responsible for the
	fact that this change results in a net *reduction* of about 40 lines.

	Move the most frequently used kinds of goal expressions to the front
	of the type declaration to allow the compiler to make better decisions
	about tag allocation.

	Add the goal marker we will add to the deconstructions in the first
	item.

	Replace the true_goal and fail_goal predicates with functions to make
	them easier to use, and rename their variants that take a context
	argument to avoid unnecessary ambiguity.

compiler/*.m:
	Conform to the change in hlds_goal.m.

	Misc changes to make code more robust, e.g. replacing semidet
	predicates on goal expressions with functions returning bool.

	Misc cleanups, e.g. removal of unnecessary module qualifications
	that made lines too long, renaming predicates whose names include
	"disj" if they are also used to process parallel conjunctions (since in
	both parallel conjunctions and in disjunctions the goals are
	independent), and turning semidet predicates that switch on goal
	expressions into bool functions (to make similar changes more rebust
	in the future).
2006-02-24 05:49:43 +00:00

352 lines
14 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 2000-2006 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% File: add_heap_ops.m.
% Author: fjh.
% This module is an HLDS-to-HLDS transformation that inserts code to
% handle heap reclamation on backtracking, by saving and restoring
% the values of the heap pointer.
% The transformation involves adding calls to impure
% predicates defined in library/private_builtin.m, which in turn call
% the MR_mark_hp() and MR_restore_hp() macros defined in
% runtime/mercury_heap.h.
%
% This pass is currently only used for the MLDS back-end.
% For some reason (perhaps efficiency?? or more likely just historical?),
% the LLDS back-end inserts the heap operations as it is generating
% LLDS code, rather than via an HLDS to HLDS transformation.
%
% This module is very similar to add_trail_ops.m.
%-----------------------------------------------------------------------------%
% XXX check goal_infos for correctness
%-----------------------------------------------------------------------------%
:- module ml_backend__add_heap_ops.
:- interface.
:- import_module hlds.hlds_module.
:- import_module hlds.hlds_pred.
:- pred add_heap_ops(module_info::in, proc_info::in, proc_info::out) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module hlds.code_model.
:- import_module hlds.goal_form.
:- import_module hlds.goal_util.
:- import_module hlds.hlds_data.
:- import_module hlds.hlds_goal.
:- import_module hlds.instmap.
:- import_module hlds.quantification.
:- import_module libs.compiler_util.
:- import_module mdbcomp.prim_data.
:- import_module parse_tree.modules.
:- import_module parse_tree.prog_data.
:- import_module parse_tree.prog_type.
:- import_module parse_tree.prog_util.
:- import_module assoc_list.
:- import_module bool.
:- import_module list.
:- import_module map.
:- import_module set.
:- import_module std_util.
:- import_module string.
:- import_module term.
:- import_module varset.
% As we traverse the goal, we add new variables to hold the saved values
% of the heap pointer. So we need to thread a varset and a vartypes mapping
% through, to record the names and types of the new variables.
%
% We also keep the module_info around, so that we can use the predicate
% table that it contains to lookup the pred_ids for the builtin procedures
% that we insert calls to. We do not update the module_info as we're
% traversing the goal.
%
:- type heap_ops_info
---> heap_ops_info(
varset :: prog_varset,
var_types :: vartypes,
module_info :: module_info
).
add_heap_ops(ModuleInfo0, !Proc) :-
proc_info_goal(!.Proc, Goal0),
proc_info_varset(!.Proc, VarSet0),
proc_info_vartypes(!.Proc, VarTypes0),
TrailOpsInfo0 = heap_ops_info(VarSet0, VarTypes0, ModuleInfo0),
goal_add_heap_ops(Goal0, Goal, TrailOpsInfo0, TrailOpsInfo),
TrailOpsInfo = heap_ops_info(VarSet, VarTypes, _),
proc_info_set_goal(Goal, !Proc),
proc_info_set_varset(VarSet, !Proc),
proc_info_set_vartypes(VarTypes, !Proc),
% The code below does not maintain the non-local variables,
% so we need to requantify.
% XXX it would be more efficient to maintain them rather than recomputing
% them every time.
requantify_proc(!Proc).
:- pred goal_add_heap_ops(hlds_goal::in, hlds_goal::out,
heap_ops_info::in, heap_ops_info::out) is det.
goal_add_heap_ops(GoalExpr0 - GoalInfo, Goal, !Info) :-
goal_expr_add_heap_ops(GoalExpr0, GoalInfo, Goal, !Info).
:- pred goal_expr_add_heap_ops(hlds_goal_expr::in, hlds_goal_info::in,
hlds_goal::out, heap_ops_info::in, heap_ops_info::out) is det.
goal_expr_add_heap_ops(conj(ConjType, Goals0), GI, conj(ConjType, Goals) - GI,
!Info) :-
conj_add_heap_ops(Goals0, Goals, !Info).
goal_expr_add_heap_ops(disj([]), GI, disj([]) - GI, !Info).
goal_expr_add_heap_ops(disj(Goals0), GoalInfo, Goal - GoalInfo, !Info) :-
Goals0 = [FirstDisjunct | _],
goal_info_get_context(GoalInfo, Context),
goal_info_get_code_model(GoalInfo, CodeModel),
% If necessary, save the heap pointer so that we can restore it
% on back-tracking. We don't need to do this here if it is a model_det
% or model_semi disjunction and the first disjunct won't allocate any heap
% -- in that case, we delay saving the heap pointer until just before
% the first disjunct that might allocate heap.
(
( CodeModel = model_non
; goal_may_allocate_heap(FirstDisjunct)
)
->
new_saved_hp_var(SavedHeapPointerVar, !Info),
gen_mark_hp(SavedHeapPointerVar, Context, MarkHeapPointerGoal, !Info),
disj_add_heap_ops(Goals0, yes, yes(SavedHeapPointerVar), GoalInfo,
Goals, !Info),
Goal = conj(plain_conj, [MarkHeapPointerGoal, disj(Goals) - GoalInfo])
;
disj_add_heap_ops(Goals0, yes, no, GoalInfo, Goals, !Info),
Goal = disj(Goals)
).
goal_expr_add_heap_ops(switch(Var, CanFail, Cases0), GI,
switch(Var, CanFail, Cases) - GI, !Info) :-
cases_add_heap_ops(Cases0, Cases, !Info).
goal_expr_add_heap_ops(not(InnerGoal), OuterGoalInfo, Goal, !Info) :-
%
% We handle negations by converting them into if-then-elses:
% not(G) ===> (if G then fail else true)
%
goal_info_get_context(OuterGoalInfo, Context),
InnerGoal = _ - InnerGoalInfo,
goal_info_get_determinism(InnerGoalInfo, Determinism),
determinism_components(Determinism, _CanFail, NumSolns),
True = true_goal_with_context(Context),
Fail = fail_goal_with_context(Context),
ModuleInfo = !.Info ^ module_info,
( NumSolns = at_most_zero ->
% The "then" part of the if-then-else will be unreachable, but to
% preserve the invariants that the MLDS back-end relies on, we need to
% make sure that it can't fail. So we use a call to
% `private_builtin__unused' (which will call error/1) rather than
% `fail' for the "then" part.
generate_call("unused", det, [], [], [], ModuleInfo, Context, ThenGoal)
;
ThenGoal = Fail
),
NewOuterGoal = if_then_else([], InnerGoal, ThenGoal, True),
goal_expr_add_heap_ops(NewOuterGoal, OuterGoalInfo, Goal, !Info).
goal_expr_add_heap_ops(scope(Reason, Goal0), GoalInfo,
scope(Reason, Goal) - GoalInfo, !Info) :-
goal_add_heap_ops(Goal0, Goal, !Info).
goal_expr_add_heap_ops(if_then_else(A, Cond0, Then0, Else0), GoalInfo,
Goal - GoalInfo, !Info) :-
goal_add_heap_ops(Cond0, Cond, !Info),
goal_add_heap_ops(Then0, Then, !Info),
goal_add_heap_ops(Else0, Else1, !Info),
% If the condition can allocate heap space, save the heap pointer
% so that we can restore it if the condition fails.
( goal_may_allocate_heap(Cond0) ->
new_saved_hp_var(SavedHeapPointerVar, !Info),
goal_info_get_context(GoalInfo, Context),
gen_mark_hp(SavedHeapPointerVar, Context, MarkHeapPointerGoal, !Info),
% Generate code to restore the heap pointer, and insert that code
% at the start of the Else branch.
gen_restore_hp(SavedHeapPointerVar, Context, RestoreHeapPointerGoal,
!Info),
Else1 = _ - Else1GoalInfo,
Else = conj(plain_conj, [RestoreHeapPointerGoal, Else1])
- Else1GoalInfo,
IfThenElse = if_then_else(A, Cond, Then, Else) - GoalInfo,
Goal = conj(plain_conj, [MarkHeapPointerGoal, IfThenElse])
;
Goal = if_then_else(A, Cond, Then, Else1)
).
goal_expr_add_heap_ops(Goal @ call(_, _, _, _, _, _), GI, Goal - GI, !Info).
goal_expr_add_heap_ops(Goal @ generic_call(_, _, _, _), GI, Goal - GI, !Info).
goal_expr_add_heap_ops(Goal @ unify(_, _, _, _, _), GI, Goal - GI, !Info).
goal_expr_add_heap_ops(PragmaForeign, GoalInfo, Goal, !Info) :-
PragmaForeign = foreign_proc(_, _, _, _, _, Impl),
( Impl = nondet(_,_,_,_,_,_,_,_,_) ->
% XXX Implementing heap reclamation for nondet pragma foreign_code
% via transformation is difficult, because there's nowhere in the HLDS
% pragma_foreign_code goal where we can insert the heap reclamation
% operations. For now, we don't support this. Instead, we just generate
% a call to a procedure which will at runtime call error/1 with an
% appropriate "Sorry, not implemented" error message.
ModuleInfo = !.Info ^ module_info,
goal_info_get_context(GoalInfo, Context),
generate_call("reclaim_heap_nondet_pragma_foreign_code", erroneous,
[], [], [], ModuleInfo, Context, SorryNotImplementedCode),
Goal = SorryNotImplementedCode
;
Goal = PragmaForeign - GoalInfo
).
goal_expr_add_heap_ops(shorthand(_), _, _, !Info) :-
% These should have been expanded out by now.
unexpected(this_file, "goal_expr_add_heap_ops: unexpected shorthand").
:- pred conj_add_heap_ops(hlds_goals::in, hlds_goals::out,
heap_ops_info::in, heap_ops_info::out) is det.
conj_add_heap_ops(Goals0, Goals, !Info) :-
list__map_foldl(goal_add_heap_ops, Goals0, Goals, !Info).
:- pred disj_add_heap_ops(hlds_goals::in, bool::in, maybe(prog_var)::in,
hlds_goal_info::in, hlds_goals::out,
heap_ops_info::in, heap_ops_info::out) is det.
disj_add_heap_ops([], _, _, _, [], !Info).
disj_add_heap_ops([Goal0 | Goals0], IsFirstBranch, MaybeSavedHeapPointerVar,
DisjGoalInfo, DisjGoals, !Info) :-
goal_add_heap_ops(Goal0, Goal1, !Info),
Goal1 = _ - GoalInfo,
goal_info_get_context(GoalInfo, Context),
% If needed, reset the heap pointer before executing the goal,
% to reclaim heap space allocated in earlier branches.
(
IsFirstBranch = no,
MaybeSavedHeapPointerVar = yes(SavedHeapPointerVar0)
->
gen_restore_hp(SavedHeapPointerVar0, Context, RestoreHeapPointerGoal,
!Info),
conj_list_to_goal([RestoreHeapPointerGoal, Goal1], GoalInfo, Goal)
;
Goal = Goal1
),
% Save the heap pointer, if we haven't already done so, and if this
% disjunct might allocate heap space.
(
MaybeSavedHeapPointerVar = no,
goal_may_allocate_heap(Goal)
->
% Generate code to save the heap pointer.
new_saved_hp_var(SavedHeapPointerVar, !Info),
gen_mark_hp(SavedHeapPointerVar, Context, MarkHeapPointerGoal, !Info),
% Recursively handle the remaining disjuncts.
disj_add_heap_ops(Goals0, no, yes(SavedHeapPointerVar), DisjGoalInfo,
Goals1, !Info),
% Put this disjunct and the remaining disjuncts in a nested
% disjunction, so that the heap pointer variable can scope over
% these disjuncts.
Disj = disj([Goal | Goals1]) - DisjGoalInfo,
DisjGoals = [conj(plain_conj, [MarkHeapPointerGoal, Disj])
- DisjGoalInfo]
;
% Just recursively handle the remaining disjuncts.
disj_add_heap_ops(Goals0, no, MaybeSavedHeapPointerVar, DisjGoalInfo,
Goals, !Info),
DisjGoals = [Goal | Goals]
).
:- pred cases_add_heap_ops(list(case)::in, list(case)::out,
heap_ops_info::in, heap_ops_info::out) is det.
cases_add_heap_ops([], [], !Info).
cases_add_heap_ops([Case0 | Cases0], [Case | Cases], !Info) :-
Case0 = case(ConsId, Goal0),
Case = case(ConsId, Goal),
goal_add_heap_ops(Goal0, Goal, !Info),
cases_add_heap_ops(Cases0, Cases, !Info).
%-----------------------------------------------------------------------------%
:- pred gen_mark_hp(prog_var::in, prog_context::in, hlds_goal::out,
heap_ops_info::in, heap_ops_info::out) is det.
gen_mark_hp(SavedHeapPointerVar, Context, MarkHeapPointerGoal, !Info) :-
generate_call("mark_hp", det, [SavedHeapPointerVar], [impure_goal],
[SavedHeapPointerVar - ground_inst], !.Info ^ module_info, Context,
MarkHeapPointerGoal).
:- pred gen_restore_hp(prog_var::in, prog_context::in, hlds_goal::out,
heap_ops_info::in, heap_ops_info::out) is det.
gen_restore_hp(SavedHeapPointerVar, Context, RestoreHeapPointerGoal, !Info) :-
generate_call("restore_hp", det, [SavedHeapPointerVar], [impure_goal],
[], !.Info ^ module_info, Context, RestoreHeapPointerGoal).
:- func ground_inst = mer_inst.
ground_inst = ground(unique, none).
%-----------------------------------------------------------------------------%
:- pred new_saved_hp_var(prog_var::out,
heap_ops_info::in, heap_ops_info::out) is det.
new_saved_hp_var(Var, !Info) :-
new_var("HeapPointer", heap_pointer_type, Var, !Info).
:- pred new_var(string::in, mer_type::in, prog_var::out,
heap_ops_info::in, heap_ops_info::out) is det.
new_var(Name, Type, Var, !Info) :-
VarSet0 = !.Info ^ varset,
VarTypes0 = !.Info ^ var_types,
varset__new_named_var(VarSet0, Name, Var, VarSet),
map__det_insert(VarTypes0, Var, Type, VarTypes),
!:Info = !.Info ^ varset := VarSet,
!:Info = !.Info ^ var_types := VarTypes.
%-----------------------------------------------------------------------------%
:- pred generate_call(string::in, determinism::in, list(prog_var)::in,
list(goal_feature)::in, assoc_list(prog_var, mer_inst)::in,
module_info::in, term__context::in, hlds_goal::out) is det.
generate_call(PredName, Detism, Args, Features, InstMap, ModuleInfo,
Context, CallGoal) :-
mercury_private_builtin_module(BuiltinModule),
goal_util__generate_simple_call(BuiltinModule, PredName, predicate,
only_mode, Detism, Args, Features, InstMap, ModuleInfo,
Context, CallGoal).
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "add_heap_ops.m".
%-----------------------------------------------------------------------------%