Files
mercury/compiler/prog_io_dcg.m
Julien Fischer 459847a064 Move the univ, maybe, pair and unit types from std_util into their own
Estimated hours taken: 18
Branches: main

Move the univ, maybe, pair and unit types from std_util into their own
modules.  std_util still contains the general purpose higher-order programming
constructs.

library/std_util.m:
	Move univ, maybe, pair and unit (plus any other related types
	and procedures) into their own modules.

library/maybe.m:
	New module.  This contains the maybe and maybe_error types and
	the associated procedures.

library/pair.m:
	New module.  This contains the pair type and associated procedures.

library/unit.m:
	New module. This contains the types unit/0 and unit/1.

library/univ.m:
	New module. This contains the univ type and associated procedures.

library/library.m:
	Add the new modules.

library/private_builtin.m:
	Update the declaration of the type_ctor_info struct for univ.

runtime/mercury.h:
	Update the declaration for the type_ctor_info struct for univ.

runtime/mercury_mcpp.h:
runtime/mercury_hlc_types.h:
	Update the definition of MR_Univ.

runtime/mercury_init.h:
	Fix a comment: ML_type_name is now exported from type_desc.m.

compiler/mlds_to_il.m:
	Update the the name of the module that defines univs (which are
	handled specially by the il code generator.)

library/*.m:
compiler/*.m:
browser/*.m:
mdbcomp/*.m:
profiler/*.m:
deep_profiler/*.m:
	Conform to the above changes.  Import the new modules where they
	are needed; don't import std_util where it isn't needed.

	Fix formatting in lots of modules.  Delete duplicate module
	imports.

tests/*:
	Update the test suite to confrom to the above changes.
2006-03-29 08:09:58 +00:00

535 lines
20 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 1996-2001, 2003-2006 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% File: prog_io_dcg.m.
% Main authors: fjh, zs.
% This module handles the parsing of clauses in Definite Clause Grammar
% notation.
%
% XXX This module performs no error checking.
% XXX It may be an idea to recode this as a state variable transformation:
% roughly Head --> G1, G2, {G3}, G4.
% becomes Head(!DCG) :- G1(!DCG), G2(!DCG), G3, G4(!DCG).
%-----------------------------------------------------------------------------%
:- module parse_tree.prog_io_dcg.
:- interface.
:- import_module mdbcomp.prim_data.
:- import_module parse_tree.prog_data.
:- import_module parse_tree.prog_item.
:- import_module parse_tree.prog_io_util.
:- import_module term.
:- import_module varset.
%-----------------------------------------------------------------------------%
:- pred parse_dcg_clause(module_name::in, varset::in, term::in, term::in,
prog_context::in, maybe_item_and_context::out) is det.
% parse_dcg_pred_goal(GoalTerm, Goal, DCGVarInitial, DCGVarFinal, !Varset):
%
% Parses `GoalTerm' and expands it as a DCG goal.
% `DCGVarInitial' is the first DCG variable,
% and `DCGVarFinal' is the final DCG variable.
%
:- pred parse_dcg_pred_goal(term::in, goal::out, prog_var::out, prog_var::out,
prog_varset::in, prog_varset::out) is det.
:- implementation.
:- import_module parse_tree.prog_io.
:- import_module parse_tree.prog_io_goal.
:- import_module parse_tree.prog_util.
:- import_module parse_tree.prog_out.
:- import_module counter.
:- import_module int.
:- import_module list.
:- import_module map.
:- import_module pair.
:- import_module string.
%-----------------------------------------------------------------------------%
parse_dcg_clause(ModuleName, VarSet0, DCG_Head, DCG_Body, DCG_Context,
Result) :-
varset.coerce(VarSet0, ProgVarSet0),
new_dcg_var(ProgVarSet0, ProgVarSet1, counter.init(0), Counter0,
DCG_0_Var),
parse_dcg_goal(DCG_Body, Body, ProgVarSet1, ProgVarSet, Counter0, _Counter,
DCG_0_Var, DCG_Var),
parse_implicitly_qualified_term(ModuleName, DCG_Head, DCG_Body,
"DCG clause head", HeadResult),
process_dcg_clause(HeadResult, ProgVarSet, DCG_0_Var, DCG_Var, Body, R),
add_context(R, DCG_Context, Result).
%-----------------------------------------------------------------------------%
parse_dcg_pred_goal(GoalTerm, Goal, DCGVar0, DCGVar, !VarSet) :-
new_dcg_var(!VarSet, counter.init(0), Counter0, DCGVar0),
parse_dcg_goal(GoalTerm, Goal, !VarSet, Counter0, _Counter,
DCGVar0, DCGVar).
%-----------------------------------------------------------------------------%
% Used to allocate fresh variables needed for the DCG expansion.
%
:- pred new_dcg_var(prog_varset::in, prog_varset::out,
counter::in, counter::out, prog_var::out) is det.
new_dcg_var(!VarSet, !Counter, DCG_0_Var) :-
counter.allocate(N, !Counter),
string.int_to_string(N, StringN),
string.append("DCG_", StringN, VarName),
varset.new_var(!.VarSet, DCG_0_Var, !:VarSet),
varset.name_var(!.VarSet, DCG_0_Var, VarName, !:VarSet).
%-----------------------------------------------------------------------------%
% Expand a DCG goal.
%
:- pred parse_dcg_goal(term::in, goal::out, prog_varset::in, prog_varset::out,
counter::in, counter::out, prog_var::in, prog_var::out) is det.
parse_dcg_goal(Term, Goal, !VarSet, !Counter, !Var) :-
% First, figure out the context for the goal.
(
Term = term.functor(_, _, Context)
;
Term = term.variable(_),
term.context_init(Context)
),
% Next, parse it.
(
term.coerce(Term, ProgTerm),
sym_name_and_args(ProgTerm, SymName, Args0)
->
% First check for the special cases:
(
SymName = unqualified(Functor),
list.map(term.coerce, Args0, Args1),
parse_dcg_goal_2(Functor, Args1, Context, Goal1,
!VarSet, !Counter, !Var)
->
Goal = Goal1
;
% It's the ordinary case of non-terminal. Create a fresh var
% as the DCG output var from this goal, and append the DCG argument
% pair to the non-terminal's argument list.
new_dcg_var(!VarSet, !Counter, Var),
Args = Args0 ++ [term.variable(!.Var), term.variable(Var)],
Goal = call_expr(SymName, Args, purity_pure) - Context,
!:Var = Var
)
;
% A call to a free variable, or to a number or string.
% Just translate it into a call to call/3 - the typechecker
% will catch calls to numbers and strings.
new_dcg_var(!VarSet, !Counter, Var),
term.coerce(Term, ProgTerm),
Goal = call_expr(unqualified("call"),
[ProgTerm, term.variable(!.Var), term.variable(Var)],
purity_pure) - Context,
!:Var = Var
).
% parse_dcg_goal_2(Functor, Args, Context, Goal, !VarSet, !Counter, !Var):
%
% We use !VarSet to allocate fresh DCG variables; We use !Counter
% to keep track of the number to give to the next DCG variable
% (so that we can give it a semi-meaningful name "DCG_<N>" for use
% in error messages, debugging, etc.). We use !Var to keep track of
% the current DCG variable.
%
% Since (A -> B) has different semantics in standard Prolog
% (A -> B ; fail) than it does in NU-Prolog or Mercury (A -> B ; true),
% for the moment we'll just disallow it.
%
:- pred parse_dcg_goal_2(string::in, list(term)::in, prog_context::in,
goal::out, prog_varset::in, prog_varset::out,
counter::in, counter::out, prog_var::in, prog_var::out) is semidet.
parse_dcg_goal_2("{}", [G0 | Gs], Context, Goal, !VarSet, !Counter, !Var) :-
% Ordinary goal inside { curly braces }.
% The parser treats '{}/N' terms as tuples, so we need
% to undo the parsing of the argument conjunction here.
list_to_conjunction(Context, G0, Gs, G),
parse_goal(G, Goal, !VarSet).
parse_dcg_goal_2("impure", [G], _, Goal, !VarSet, !Counter, !Var) :-
parse_dcg_goal_with_purity(G, purity_impure, Goal, !VarSet,
!Counter, !Var).
parse_dcg_goal_2("semipure", [G], _, Goal, !VarSet, !Counter, !Var) :-
parse_dcg_goal_with_purity(G, purity_semipure, Goal, !VarSet,
!Counter, !Var).
parse_dcg_goal_2("promise_pure", [G], Context, Goal,
!VarSet, !Counter, !Var) :-
parse_dcg_goal(G, Goal0, !VarSet, !Counter, !Var),
Goal = promise_purity_expr(dont_make_implicit_promises, purity_pure, Goal0)
- Context.
parse_dcg_goal_2("promise_semipure", [G], Context, Goal,
!VarSet, !Counter, !Var) :-
parse_dcg_goal(G, Goal0, !VarSet, !Counter, !Var),
Goal = promise_purity_expr(dont_make_implicit_promises, purity_semipure,
Goal0) - Context.
parse_dcg_goal_2("promise_impure", [G], Context, Goal,
!VarSet, !Counter, !Var) :-
parse_dcg_goal(G, Goal0, !VarSet, !Counter, !Var),
Goal = promise_purity_expr(dont_make_implicit_promises, purity_impure,
Goal0) - Context.
parse_dcg_goal_2("promise_pure_implicit", [G], Context, Goal,
!VarSet, !Counter, !Var) :-
parse_dcg_goal(G, Goal0, !VarSet, !Counter, !Var),
Goal = promise_purity_expr(make_implicit_promises, purity_pure, Goal0)
- Context.
parse_dcg_goal_2("promise_semipure_implicit", [G], Context, Goal,
!VarSet, !Counter, !Var) :-
parse_dcg_goal(G, Goal0, !VarSet, !Counter, !Var),
Goal = promise_purity_expr(make_implicit_promises, purity_semipure, Goal0)
- Context.
parse_dcg_goal_2("promise_impure_implicit", [G], Context, Goal,
!VarSet, !Counter, !Var) :-
parse_dcg_goal(G, Goal0, !VarSet, !Counter, !Var),
Goal = promise_purity_expr(make_implicit_promises, purity_impure, Goal0)
- Context.
parse_dcg_goal_2("[]", [], Context, Goal, !VarSet, !Counter, Var0, Var) :-
% Empty list - just unify the input and output DCG args.
new_dcg_var(!VarSet, !Counter, Var),
Goal = unify_expr(term.variable(Var0), term.variable(Var), purity_pure)
- Context.
parse_dcg_goal_2("[|]", [X, Xs], Context, Goal, !VarSet, !Counter,
Var0, Var) :-
% Non-empty list of terminals. Append the DCG output arg as the new tail
% of the list, and unify the result with the DCG input arg.
new_dcg_var(!VarSet, !Counter, Var),
ConsTerm0 = term.functor(term.atom("[|]"), [X, Xs], Context),
term.coerce(ConsTerm0, ConsTerm),
term_list_append_term(ConsTerm, term.variable(Var), Term),
Goal = unify_expr(term.variable(Var0), Term, purity_pure) - Context.
parse_dcg_goal_2("=", [A0], Context, Goal, !VarSet, !Counter, Var, Var) :-
% Call to '='/1 - unify argument with DCG input arg.
term.coerce(A0, A),
Goal = unify_expr(A, term.variable(Var), purity_pure) - Context.
parse_dcg_goal_2(":=", [A0], Context, Goal, !VarSet, !Counter, _Var0, Var) :-
% Call to ':='/1 - unify argument with DCG output arg.
new_dcg_var(!VarSet, !Counter, Var),
term.coerce(A0, A),
Goal = unify_expr(A, term.variable(Var), purity_pure) - Context.
parse_dcg_goal_2("if", [term.functor(term.atom("then"), [Cond0, Then0], _)],
Context, Goal, !VarSet, !Counter, Var0, Var) :-
% If-then (NU-Prolog syntax).
parse_dcg_if_then(Cond0, Then0, Context, SomeVars, StateVars,
Cond, Then, !VarSet, !Counter, Var0, Var),
( Var = Var0 ->
Goal = if_then_else_expr(SomeVars, StateVars, Cond, Then,
true_expr - Context) - Context
;
Unify = unify_expr(term.variable(Var), term.variable(Var0),
purity_pure),
Goal = if_then_else_expr(SomeVars, StateVars, Cond, Then,
Unify - Context) - Context
).
parse_dcg_goal_2(",", [A0, B0], Context, conj_expr(A, B) - Context, !VarSet,
!Counter, !Var) :-
% Conjunction.
parse_dcg_goal(A0, A, !VarSet, !Counter, !Var),
parse_dcg_goal(B0, B, !VarSet, !Counter, !Var).
parse_dcg_goal_2("&", [A0, B0], Context, par_conj_expr(A, B) - Context,
!VarSet, !Counter, !Var) :-
parse_dcg_goal(A0, A, !VarSet, !Counter, !Var),
parse_dcg_goal(B0, B, !VarSet, !Counter, !Var).
parse_dcg_goal_2(";", [A0, B0], Context, Goal, !VarSet, !Counter, Var0, Var) :-
% Disjunction or if-then-else (Prolog syntax).
(
A0 = term.functor(term.atom("->"), [Cond0, Then0], _Context)
->
parse_dcg_if_then_else(Cond0, Then0, B0, Context, Goal,
!VarSet, !Counter, Var0, Var)
;
parse_dcg_goal(A0, A1, !VarSet, !Counter, Var0, VarA),
parse_dcg_goal(B0, B1, !VarSet, !Counter, Var0, VarB),
( VarA = Var0, VarB = Var0 ->
Var = Var0,
Goal = disj_expr(A1, B1) - Context
; VarA = Var0 ->
Var = VarB,
Unify = unify_expr(term.variable(Var), term.variable(VarA),
purity_pure),
append_to_disjunct(A1, Unify, Context, A2),
Goal = disj_expr(A2, B1) - Context
; VarB = Var0 ->
Var = VarA,
Unify = unify_expr(term.variable(Var), term.variable(VarB),
purity_pure),
append_to_disjunct(B1, Unify, Context, B2),
Goal = disj_expr(A1, B2) - Context
;
Var = VarB,
prog_util.rename_in_goal(VarA, VarB, A1, A2),
Goal = disj_expr(A2, B1) - Context
)
).
parse_dcg_goal_2("else", [IF, Else0], _, Goal, !VarSet, !Counter, !Var) :-
% If-then-else (NU-Prolog syntax).
IF = term.functor(term.atom("if"),
[term.functor(term.atom("then"), [Cond0, Then0], _)], Context),
parse_dcg_if_then_else(Cond0, Then0, Else0, Context, Goal,
!VarSet, !Counter, !Var).
parse_dcg_goal_2("not", [A0], Context, not_expr(A) - Context,
!VarSet, !Counter, Var0, Var0) :-
% Negation (NU-Prolog syntax).
parse_dcg_goal(A0, A, !VarSet, !Counter, Var0, _).
parse_dcg_goal_2("\\+", [A0], Context, not_expr(A) - Context,
!VarSet, !Counter, Var0, Var0) :-
% Negation (Prolog syntax).
parse_dcg_goal(A0, A, !VarSet, !Counter, Var0, _).
parse_dcg_goal_2("all", [QVars, A0], Context, GoalExpr - Context,
!VarSet, !Counter, !Var) :-
% Universal quantification.
% Extract any state variables in the quantifier.
parse_quantifier_vars(QVars, StateVars0, Vars0),
list.map(term.coerce_var, StateVars0, StateVars),
list.map(term.coerce_var, Vars0, Vars),
parse_dcg_goal(A0, A @ (GoalExprA - ContextA), !VarSet, !Counter, !Var),
(
Vars = [],
StateVars = [],
GoalExpr = GoalExprA
;
Vars = [],
StateVars = [_ | _],
GoalExpr = all_state_vars_expr(StateVars, A)
;
Vars = [_ | _],
StateVars = [],
GoalExpr = all_expr(Vars, A)
;
Vars = [_ | _],
StateVars = [_ | _],
GoalExpr = all_expr(Vars, all_state_vars_expr(StateVars, A)
- ContextA)
).
parse_dcg_goal_2("some", [QVars, A0], Context, GoalExpr - Context,
!VarSet, !Counter, !Var) :-
% Existential quantification.
% Extract any state variables in the quantifier.
parse_quantifier_vars(QVars, StateVars0, Vars0),
list.map(term.coerce_var, StateVars0, StateVars),
list.map(term.coerce_var, Vars0, Vars),
parse_dcg_goal(A0, A @ (GoalExprA - ContextA), !VarSet, !Counter, !Var),
(
Vars = [],
StateVars = [],
GoalExpr = GoalExprA
;
Vars = [],
StateVars = [_ | _],
GoalExpr = some_state_vars_expr(StateVars, A)
;
Vars = [_ | _],
StateVars = [],
GoalExpr = some_expr(Vars, A)
;
Vars = [_ | _],
StateVars = [_ | _],
GoalExpr = some_expr(Vars, some_state_vars_expr(StateVars, A)
- ContextA)
).
:- pred parse_dcg_goal_with_purity(term::in, purity::in, goal::out,
prog_varset::in, prog_varset::out, counter::in, counter::out,
prog_var::in, prog_var::out) is det.
parse_dcg_goal_with_purity(G, Purity, Goal, !VarSet, !Counter, !Var) :-
parse_dcg_goal(G, Goal1, !VarSet, !Counter, !Var),
( Goal1 = call_expr(Pred, Args, purity_pure) - Context ->
Goal = call_expr(Pred, Args, Purity) - Context
; Goal1 = unify_expr(ProgTerm1, ProgTerm2, purity_pure) - Context ->
Goal = unify_expr(ProgTerm1, ProgTerm2, Purity) - Context
;
% Inappropriate placement of an impurity marker, so we treat
% it like a predicate call. typecheck.m prints out something
% descriptive for these errors.
Goal1 = _ - Context,
purity_name(Purity, PurityString),
term.coerce(G, G1),
Goal = call_expr(unqualified(PurityString), [G1], purity_pure)
- Context
).
:- pred append_to_disjunct(goal::in, goal_expr::in, prog_context::in,
goal::out) is det.
append_to_disjunct(Disjunct0, Goal, Context, Disjunct) :-
( Disjunct0 = disj_expr(A0, B0) - Context2 ->
append_to_disjunct(A0, Goal, Context, A),
append_to_disjunct(B0, Goal, Context, B),
Disjunct = disj_expr(A, B) - Context2
;
Disjunct = conj_expr(Disjunct0, Goal - Context) - Context
).
:- pred parse_some_vars_dcg_goal(term::in, list(prog_var)::out,
list(prog_var)::out, goal::out, prog_varset::in, prog_varset::out,
counter::in, counter::out, prog_var::in, prog_var::out) is det.
parse_some_vars_dcg_goal(A0, SomeVars, StateVars, A, !VarSet, !Counter,
!Var) :-
( A0 = term.functor(term.atom("some"), [QVars0, A1], _Context) ->
term.coerce(QVars0, QVars),
( parse_quantifier_vars(QVars, StateVars0, SomeVars0) ->
SomeVars = SomeVars0,
StateVars = StateVars0
;
% XXX A hack because we do not do error checking in this module.
term.vars(QVars, SomeVars),
StateVars = []
),
A2 = A1
;
SomeVars = [],
StateVars = [],
A2 = A0
),
parse_dcg_goal(A2, A, !VarSet, !Counter, !Var).
% Parse the "if" and the "then" part of an if-then or an if-then-else.
% If the condition is a DCG goal, but then "then" part is not,
% then we need to translate
% ( a -> { b } ; c )
% as
% ( a(DCG_1, DCG_2) ->
% b,
% DCG_3 = DCG_2
% ;
% c(DCG_1, DCG_3)
% )
% rather than
% ( a(DCG_1, DCG_2) ->
% b
% ;
% c(DCG_1, DCG_2)
% )
% so that the implicit quantification of DCG_2 is correct.
%
:- pred parse_dcg_if_then(term::in, term::in, prog_context::in,
list(prog_var)::out, list(prog_var)::out, goal::out, goal::out,
prog_varset::in, prog_varset::out, counter::in, counter::out,
prog_var::in, prog_var::out) is det.
parse_dcg_if_then(Cond0, Then0, Context, SomeVars, StateVars, Cond, Then,
!VarSet, !Counter, Var0, Var) :-
parse_some_vars_dcg_goal(Cond0, SomeVars, StateVars, Cond,
!VarSet, !Counter, Var0, Var1),
parse_dcg_goal(Then0, Then1, !VarSet, !Counter, Var1, Var2),
(
Var0 \= Var1,
Var1 = Var2
->
new_dcg_var(!VarSet, !Counter, Var),
Unify = unify_expr(term.variable(Var), term.variable(Var2),
purity_pure),
Then = conj_expr(Then1, Unify - Context) - Context
;
Then = Then1,
Var = Var2
).
:- pred parse_dcg_if_then_else(term::in, term::in, term::in, prog_context::in,
goal::out, prog_varset::in, prog_varset::out,
counter::in, counter::out, prog_var::in, prog_var::out) is det.
parse_dcg_if_then_else(Cond0, Then0, Else0, Context, Goal,
!VarSet, !Counter, Var0, Var) :-
parse_dcg_if_then(Cond0, Then0, Context, SomeVars, StateVars,
Cond, Then1, !VarSet, !Counter, Var0, VarThen),
parse_dcg_goal(Else0, Else1, !VarSet, !Counter, Var0, VarElse),
( VarThen = Var0, VarElse = Var0 ->
Var = Var0,
Then = Then1,
Else = Else1
; VarThen = Var0 ->
Var = VarElse,
Unify = unify_expr(term.variable(Var), term.variable(VarThen),
purity_pure),
Then = conj_expr(Then1, Unify - Context) - Context,
Else = Else1
; VarElse = Var0 ->
Var = VarThen,
Then = Then1,
Unify = unify_expr(term.variable(Var), term.variable(VarElse),
purity_pure),
Else = conj_expr(Else1, Unify - Context) - Context
;
% We prefer to substitute the then part since it is likely to be
% smaller than the else part, since the else part may have a deeply
% nested chain of if-then-elses.
% parse_dcg_if_then guarantees that if VarThen \= Var0, then the
% then part introduces a new DCG variable (i.e. VarThen does not appear
% in the condition). We therefore don't need to do the substitution
% in the condition.
Var = VarElse,
prog_util.rename_in_goal(VarThen, VarElse, Then1, Then),
Else = Else1
),
Goal = if_then_else_expr(SomeVars, StateVars, Cond, Then, Else) - Context.
% term_list_append_term(ListTerm, Term, Result):
%
% If ListTerm is a term representing a proper list, this predicate
% will append the term Term onto the end of the list.
%
:- pred term_list_append_term(term(T)::in, term(T)::in, term(T)::out)
is semidet.
term_list_append_term(List0, Term, List) :-
( List0 = term.functor(term.atom("[]"), [], _Context) ->
List = Term
;
List0 = term.functor(term.atom("[|]"), [Head, Tail0], Context2),
List = term.functor(term.atom("[|]"), [Head, Tail], Context2),
term_list_append_term(Tail0, Term, Tail)
).
:- pred process_dcg_clause(maybe_functor::in, prog_varset::in, prog_var::in,
prog_var::in, goal::in, maybe1(item)::out) is det.
process_dcg_clause(ok(Name, Args0), VarSet, Var0, Var, Body,
ok(clause(user, VarSet, predicate, Name, Args, Body))) :-
list.map(term.coerce, Args0, Args1),
list.append(Args1, [term.variable(Var0), term.variable(Var)], Args).
process_dcg_clause(error(Message, Term), _, _, _, _, error(Message, Term)).