%-----------------------------------------------------------------------------% % vim: ft=mercury ts=4 sw=4 et %-----------------------------------------------------------------------------% % Copyright (C) 1996-2001, 2003-2006 The University of Melbourne. % This file may only be copied under the terms of the GNU General % Public License - see the file COPYING in the Mercury distribution. %-----------------------------------------------------------------------------% % File: prog_io_dcg.m. % Main authors: fjh, zs. % This module handles the parsing of clauses in Definite Clause Grammar % notation. % % XXX This module performs no error checking. % XXX It may be an idea to recode this as a state variable transformation: % roughly Head --> G1, G2, {G3}, G4. % becomes Head(!DCG) :- G1(!DCG), G2(!DCG), G3, G4(!DCG). %-----------------------------------------------------------------------------% :- module parse_tree.prog_io_dcg. :- interface. :- import_module mdbcomp.prim_data. :- import_module parse_tree.prog_data. :- import_module parse_tree.prog_item. :- import_module parse_tree.prog_io_util. :- import_module term. :- import_module varset. %-----------------------------------------------------------------------------% :- pred parse_dcg_clause(module_name::in, varset::in, term::in, term::in, prog_context::in, maybe_item_and_context::out) is det. % parse_dcg_pred_goal(GoalTerm, Goal, DCGVarInitial, DCGVarFinal, !Varset): % % Parses `GoalTerm' and expands it as a DCG goal. % `DCGVarInitial' is the first DCG variable, % and `DCGVarFinal' is the final DCG variable. % :- pred parse_dcg_pred_goal(term::in, goal::out, prog_var::out, prog_var::out, prog_varset::in, prog_varset::out) is det. :- implementation. :- import_module parse_tree.prog_io. :- import_module parse_tree.prog_io_goal. :- import_module parse_tree.prog_util. :- import_module parse_tree.prog_out. :- import_module counter. :- import_module int. :- import_module list. :- import_module map. :- import_module pair. :- import_module string. %-----------------------------------------------------------------------------% parse_dcg_clause(ModuleName, VarSet0, DCG_Head, DCG_Body, DCG_Context, Result) :- varset.coerce(VarSet0, ProgVarSet0), new_dcg_var(ProgVarSet0, ProgVarSet1, counter.init(0), Counter0, DCG_0_Var), parse_dcg_goal(DCG_Body, Body, ProgVarSet1, ProgVarSet, Counter0, _Counter, DCG_0_Var, DCG_Var), parse_implicitly_qualified_term(ModuleName, DCG_Head, DCG_Body, "DCG clause head", HeadResult), process_dcg_clause(HeadResult, ProgVarSet, DCG_0_Var, DCG_Var, Body, R), add_context(R, DCG_Context, Result). %-----------------------------------------------------------------------------% parse_dcg_pred_goal(GoalTerm, Goal, DCGVar0, DCGVar, !VarSet) :- new_dcg_var(!VarSet, counter.init(0), Counter0, DCGVar0), parse_dcg_goal(GoalTerm, Goal, !VarSet, Counter0, _Counter, DCGVar0, DCGVar). %-----------------------------------------------------------------------------% % Used to allocate fresh variables needed for the DCG expansion. % :- pred new_dcg_var(prog_varset::in, prog_varset::out, counter::in, counter::out, prog_var::out) is det. new_dcg_var(!VarSet, !Counter, DCG_0_Var) :- counter.allocate(N, !Counter), string.int_to_string(N, StringN), string.append("DCG_", StringN, VarName), varset.new_var(!.VarSet, DCG_0_Var, !:VarSet), varset.name_var(!.VarSet, DCG_0_Var, VarName, !:VarSet). %-----------------------------------------------------------------------------% % Expand a DCG goal. % :- pred parse_dcg_goal(term::in, goal::out, prog_varset::in, prog_varset::out, counter::in, counter::out, prog_var::in, prog_var::out) is det. parse_dcg_goal(Term, Goal, !VarSet, !Counter, !Var) :- % First, figure out the context for the goal. ( Term = term.functor(_, _, Context) ; Term = term.variable(_), term.context_init(Context) ), % Next, parse it. ( term.coerce(Term, ProgTerm), sym_name_and_args(ProgTerm, SymName, Args0) -> % First check for the special cases: ( SymName = unqualified(Functor), list.map(term.coerce, Args0, Args1), parse_dcg_goal_2(Functor, Args1, Context, Goal1, !VarSet, !Counter, !Var) -> Goal = Goal1 ; % It's the ordinary case of non-terminal. Create a fresh var % as the DCG output var from this goal, and append the DCG argument % pair to the non-terminal's argument list. new_dcg_var(!VarSet, !Counter, Var), Args = Args0 ++ [term.variable(!.Var), term.variable(Var)], Goal = call_expr(SymName, Args, purity_pure) - Context, !:Var = Var ) ; % A call to a free variable, or to a number or string. % Just translate it into a call to call/3 - the typechecker % will catch calls to numbers and strings. new_dcg_var(!VarSet, !Counter, Var), term.coerce(Term, ProgTerm), Goal = call_expr(unqualified("call"), [ProgTerm, term.variable(!.Var), term.variable(Var)], purity_pure) - Context, !:Var = Var ). % parse_dcg_goal_2(Functor, Args, Context, Goal, !VarSet, !Counter, !Var): % % We use !VarSet to allocate fresh DCG variables; We use !Counter % to keep track of the number to give to the next DCG variable % (so that we can give it a semi-meaningful name "DCG_" for use % in error messages, debugging, etc.). We use !Var to keep track of % the current DCG variable. % % Since (A -> B) has different semantics in standard Prolog % (A -> B ; fail) than it does in NU-Prolog or Mercury (A -> B ; true), % for the moment we'll just disallow it. % :- pred parse_dcg_goal_2(string::in, list(term)::in, prog_context::in, goal::out, prog_varset::in, prog_varset::out, counter::in, counter::out, prog_var::in, prog_var::out) is semidet. parse_dcg_goal_2("{}", [G0 | Gs], Context, Goal, !VarSet, !Counter, !Var) :- % Ordinary goal inside { curly braces }. % The parser treats '{}/N' terms as tuples, so we need % to undo the parsing of the argument conjunction here. list_to_conjunction(Context, G0, Gs, G), parse_goal(G, Goal, !VarSet). parse_dcg_goal_2("impure", [G], _, Goal, !VarSet, !Counter, !Var) :- parse_dcg_goal_with_purity(G, purity_impure, Goal, !VarSet, !Counter, !Var). parse_dcg_goal_2("semipure", [G], _, Goal, !VarSet, !Counter, !Var) :- parse_dcg_goal_with_purity(G, purity_semipure, Goal, !VarSet, !Counter, !Var). parse_dcg_goal_2("promise_pure", [G], Context, Goal, !VarSet, !Counter, !Var) :- parse_dcg_goal(G, Goal0, !VarSet, !Counter, !Var), Goal = promise_purity_expr(dont_make_implicit_promises, purity_pure, Goal0) - Context. parse_dcg_goal_2("promise_semipure", [G], Context, Goal, !VarSet, !Counter, !Var) :- parse_dcg_goal(G, Goal0, !VarSet, !Counter, !Var), Goal = promise_purity_expr(dont_make_implicit_promises, purity_semipure, Goal0) - Context. parse_dcg_goal_2("promise_impure", [G], Context, Goal, !VarSet, !Counter, !Var) :- parse_dcg_goal(G, Goal0, !VarSet, !Counter, !Var), Goal = promise_purity_expr(dont_make_implicit_promises, purity_impure, Goal0) - Context. parse_dcg_goal_2("promise_pure_implicit", [G], Context, Goal, !VarSet, !Counter, !Var) :- parse_dcg_goal(G, Goal0, !VarSet, !Counter, !Var), Goal = promise_purity_expr(make_implicit_promises, purity_pure, Goal0) - Context. parse_dcg_goal_2("promise_semipure_implicit", [G], Context, Goal, !VarSet, !Counter, !Var) :- parse_dcg_goal(G, Goal0, !VarSet, !Counter, !Var), Goal = promise_purity_expr(make_implicit_promises, purity_semipure, Goal0) - Context. parse_dcg_goal_2("promise_impure_implicit", [G], Context, Goal, !VarSet, !Counter, !Var) :- parse_dcg_goal(G, Goal0, !VarSet, !Counter, !Var), Goal = promise_purity_expr(make_implicit_promises, purity_impure, Goal0) - Context. parse_dcg_goal_2("[]", [], Context, Goal, !VarSet, !Counter, Var0, Var) :- % Empty list - just unify the input and output DCG args. new_dcg_var(!VarSet, !Counter, Var), Goal = unify_expr(term.variable(Var0), term.variable(Var), purity_pure) - Context. parse_dcg_goal_2("[|]", [X, Xs], Context, Goal, !VarSet, !Counter, Var0, Var) :- % Non-empty list of terminals. Append the DCG output arg as the new tail % of the list, and unify the result with the DCG input arg. new_dcg_var(!VarSet, !Counter, Var), ConsTerm0 = term.functor(term.atom("[|]"), [X, Xs], Context), term.coerce(ConsTerm0, ConsTerm), term_list_append_term(ConsTerm, term.variable(Var), Term), Goal = unify_expr(term.variable(Var0), Term, purity_pure) - Context. parse_dcg_goal_2("=", [A0], Context, Goal, !VarSet, !Counter, Var, Var) :- % Call to '='/1 - unify argument with DCG input arg. term.coerce(A0, A), Goal = unify_expr(A, term.variable(Var), purity_pure) - Context. parse_dcg_goal_2(":=", [A0], Context, Goal, !VarSet, !Counter, _Var0, Var) :- % Call to ':='/1 - unify argument with DCG output arg. new_dcg_var(!VarSet, !Counter, Var), term.coerce(A0, A), Goal = unify_expr(A, term.variable(Var), purity_pure) - Context. parse_dcg_goal_2("if", [term.functor(term.atom("then"), [Cond0, Then0], _)], Context, Goal, !VarSet, !Counter, Var0, Var) :- % If-then (NU-Prolog syntax). parse_dcg_if_then(Cond0, Then0, Context, SomeVars, StateVars, Cond, Then, !VarSet, !Counter, Var0, Var), ( Var = Var0 -> Goal = if_then_else_expr(SomeVars, StateVars, Cond, Then, true_expr - Context) - Context ; Unify = unify_expr(term.variable(Var), term.variable(Var0), purity_pure), Goal = if_then_else_expr(SomeVars, StateVars, Cond, Then, Unify - Context) - Context ). parse_dcg_goal_2(",", [A0, B0], Context, conj_expr(A, B) - Context, !VarSet, !Counter, !Var) :- % Conjunction. parse_dcg_goal(A0, A, !VarSet, !Counter, !Var), parse_dcg_goal(B0, B, !VarSet, !Counter, !Var). parse_dcg_goal_2("&", [A0, B0], Context, par_conj_expr(A, B) - Context, !VarSet, !Counter, !Var) :- parse_dcg_goal(A0, A, !VarSet, !Counter, !Var), parse_dcg_goal(B0, B, !VarSet, !Counter, !Var). parse_dcg_goal_2(";", [A0, B0], Context, Goal, !VarSet, !Counter, Var0, Var) :- % Disjunction or if-then-else (Prolog syntax). ( A0 = term.functor(term.atom("->"), [Cond0, Then0], _Context) -> parse_dcg_if_then_else(Cond0, Then0, B0, Context, Goal, !VarSet, !Counter, Var0, Var) ; parse_dcg_goal(A0, A1, !VarSet, !Counter, Var0, VarA), parse_dcg_goal(B0, B1, !VarSet, !Counter, Var0, VarB), ( VarA = Var0, VarB = Var0 -> Var = Var0, Goal = disj_expr(A1, B1) - Context ; VarA = Var0 -> Var = VarB, Unify = unify_expr(term.variable(Var), term.variable(VarA), purity_pure), append_to_disjunct(A1, Unify, Context, A2), Goal = disj_expr(A2, B1) - Context ; VarB = Var0 -> Var = VarA, Unify = unify_expr(term.variable(Var), term.variable(VarB), purity_pure), append_to_disjunct(B1, Unify, Context, B2), Goal = disj_expr(A1, B2) - Context ; Var = VarB, prog_util.rename_in_goal(VarA, VarB, A1, A2), Goal = disj_expr(A2, B1) - Context ) ). parse_dcg_goal_2("else", [IF, Else0], _, Goal, !VarSet, !Counter, !Var) :- % If-then-else (NU-Prolog syntax). IF = term.functor(term.atom("if"), [term.functor(term.atom("then"), [Cond0, Then0], _)], Context), parse_dcg_if_then_else(Cond0, Then0, Else0, Context, Goal, !VarSet, !Counter, !Var). parse_dcg_goal_2("not", [A0], Context, not_expr(A) - Context, !VarSet, !Counter, Var0, Var0) :- % Negation (NU-Prolog syntax). parse_dcg_goal(A0, A, !VarSet, !Counter, Var0, _). parse_dcg_goal_2("\\+", [A0], Context, not_expr(A) - Context, !VarSet, !Counter, Var0, Var0) :- % Negation (Prolog syntax). parse_dcg_goal(A0, A, !VarSet, !Counter, Var0, _). parse_dcg_goal_2("all", [QVars, A0], Context, GoalExpr - Context, !VarSet, !Counter, !Var) :- % Universal quantification. % Extract any state variables in the quantifier. parse_quantifier_vars(QVars, StateVars0, Vars0), list.map(term.coerce_var, StateVars0, StateVars), list.map(term.coerce_var, Vars0, Vars), parse_dcg_goal(A0, A @ (GoalExprA - ContextA), !VarSet, !Counter, !Var), ( Vars = [], StateVars = [], GoalExpr = GoalExprA ; Vars = [], StateVars = [_ | _], GoalExpr = all_state_vars_expr(StateVars, A) ; Vars = [_ | _], StateVars = [], GoalExpr = all_expr(Vars, A) ; Vars = [_ | _], StateVars = [_ | _], GoalExpr = all_expr(Vars, all_state_vars_expr(StateVars, A) - ContextA) ). parse_dcg_goal_2("some", [QVars, A0], Context, GoalExpr - Context, !VarSet, !Counter, !Var) :- % Existential quantification. % Extract any state variables in the quantifier. parse_quantifier_vars(QVars, StateVars0, Vars0), list.map(term.coerce_var, StateVars0, StateVars), list.map(term.coerce_var, Vars0, Vars), parse_dcg_goal(A0, A @ (GoalExprA - ContextA), !VarSet, !Counter, !Var), ( Vars = [], StateVars = [], GoalExpr = GoalExprA ; Vars = [], StateVars = [_ | _], GoalExpr = some_state_vars_expr(StateVars, A) ; Vars = [_ | _], StateVars = [], GoalExpr = some_expr(Vars, A) ; Vars = [_ | _], StateVars = [_ | _], GoalExpr = some_expr(Vars, some_state_vars_expr(StateVars, A) - ContextA) ). :- pred parse_dcg_goal_with_purity(term::in, purity::in, goal::out, prog_varset::in, prog_varset::out, counter::in, counter::out, prog_var::in, prog_var::out) is det. parse_dcg_goal_with_purity(G, Purity, Goal, !VarSet, !Counter, !Var) :- parse_dcg_goal(G, Goal1, !VarSet, !Counter, !Var), ( Goal1 = call_expr(Pred, Args, purity_pure) - Context -> Goal = call_expr(Pred, Args, Purity) - Context ; Goal1 = unify_expr(ProgTerm1, ProgTerm2, purity_pure) - Context -> Goal = unify_expr(ProgTerm1, ProgTerm2, Purity) - Context ; % Inappropriate placement of an impurity marker, so we treat % it like a predicate call. typecheck.m prints out something % descriptive for these errors. Goal1 = _ - Context, purity_name(Purity, PurityString), term.coerce(G, G1), Goal = call_expr(unqualified(PurityString), [G1], purity_pure) - Context ). :- pred append_to_disjunct(goal::in, goal_expr::in, prog_context::in, goal::out) is det. append_to_disjunct(Disjunct0, Goal, Context, Disjunct) :- ( Disjunct0 = disj_expr(A0, B0) - Context2 -> append_to_disjunct(A0, Goal, Context, A), append_to_disjunct(B0, Goal, Context, B), Disjunct = disj_expr(A, B) - Context2 ; Disjunct = conj_expr(Disjunct0, Goal - Context) - Context ). :- pred parse_some_vars_dcg_goal(term::in, list(prog_var)::out, list(prog_var)::out, goal::out, prog_varset::in, prog_varset::out, counter::in, counter::out, prog_var::in, prog_var::out) is det. parse_some_vars_dcg_goal(A0, SomeVars, StateVars, A, !VarSet, !Counter, !Var) :- ( A0 = term.functor(term.atom("some"), [QVars0, A1], _Context) -> term.coerce(QVars0, QVars), ( parse_quantifier_vars(QVars, StateVars0, SomeVars0) -> SomeVars = SomeVars0, StateVars = StateVars0 ; % XXX A hack because we do not do error checking in this module. term.vars(QVars, SomeVars), StateVars = [] ), A2 = A1 ; SomeVars = [], StateVars = [], A2 = A0 ), parse_dcg_goal(A2, A, !VarSet, !Counter, !Var). % Parse the "if" and the "then" part of an if-then or an if-then-else. % If the condition is a DCG goal, but then "then" part is not, % then we need to translate % ( a -> { b } ; c ) % as % ( a(DCG_1, DCG_2) -> % b, % DCG_3 = DCG_2 % ; % c(DCG_1, DCG_3) % ) % rather than % ( a(DCG_1, DCG_2) -> % b % ; % c(DCG_1, DCG_2) % ) % so that the implicit quantification of DCG_2 is correct. % :- pred parse_dcg_if_then(term::in, term::in, prog_context::in, list(prog_var)::out, list(prog_var)::out, goal::out, goal::out, prog_varset::in, prog_varset::out, counter::in, counter::out, prog_var::in, prog_var::out) is det. parse_dcg_if_then(Cond0, Then0, Context, SomeVars, StateVars, Cond, Then, !VarSet, !Counter, Var0, Var) :- parse_some_vars_dcg_goal(Cond0, SomeVars, StateVars, Cond, !VarSet, !Counter, Var0, Var1), parse_dcg_goal(Then0, Then1, !VarSet, !Counter, Var1, Var2), ( Var0 \= Var1, Var1 = Var2 -> new_dcg_var(!VarSet, !Counter, Var), Unify = unify_expr(term.variable(Var), term.variable(Var2), purity_pure), Then = conj_expr(Then1, Unify - Context) - Context ; Then = Then1, Var = Var2 ). :- pred parse_dcg_if_then_else(term::in, term::in, term::in, prog_context::in, goal::out, prog_varset::in, prog_varset::out, counter::in, counter::out, prog_var::in, prog_var::out) is det. parse_dcg_if_then_else(Cond0, Then0, Else0, Context, Goal, !VarSet, !Counter, Var0, Var) :- parse_dcg_if_then(Cond0, Then0, Context, SomeVars, StateVars, Cond, Then1, !VarSet, !Counter, Var0, VarThen), parse_dcg_goal(Else0, Else1, !VarSet, !Counter, Var0, VarElse), ( VarThen = Var0, VarElse = Var0 -> Var = Var0, Then = Then1, Else = Else1 ; VarThen = Var0 -> Var = VarElse, Unify = unify_expr(term.variable(Var), term.variable(VarThen), purity_pure), Then = conj_expr(Then1, Unify - Context) - Context, Else = Else1 ; VarElse = Var0 -> Var = VarThen, Then = Then1, Unify = unify_expr(term.variable(Var), term.variable(VarElse), purity_pure), Else = conj_expr(Else1, Unify - Context) - Context ; % We prefer to substitute the then part since it is likely to be % smaller than the else part, since the else part may have a deeply % nested chain of if-then-elses. % parse_dcg_if_then guarantees that if VarThen \= Var0, then the % then part introduces a new DCG variable (i.e. VarThen does not appear % in the condition). We therefore don't need to do the substitution % in the condition. Var = VarElse, prog_util.rename_in_goal(VarThen, VarElse, Then1, Then), Else = Else1 ), Goal = if_then_else_expr(SomeVars, StateVars, Cond, Then, Else) - Context. % term_list_append_term(ListTerm, Term, Result): % % If ListTerm is a term representing a proper list, this predicate % will append the term Term onto the end of the list. % :- pred term_list_append_term(term(T)::in, term(T)::in, term(T)::out) is semidet. term_list_append_term(List0, Term, List) :- ( List0 = term.functor(term.atom("[]"), [], _Context) -> List = Term ; List0 = term.functor(term.atom("[|]"), [Head, Tail0], Context2), List = term.functor(term.atom("[|]"), [Head, Tail], Context2), term_list_append_term(Tail0, Term, Tail) ). :- pred process_dcg_clause(maybe_functor::in, prog_varset::in, prog_var::in, prog_var::in, goal::in, maybe1(item)::out) is det. process_dcg_clause(ok(Name, Args0), VarSet, Var0, Var, Body, ok(clause(user, VarSet, predicate, Name, Args, Body))) :- list.map(term.coerce, Args0, Args1), list.append(Args1, [term.variable(Var0), term.variable(Var)], Args). process_dcg_clause(error(Message, Term), _, _, _, _, error(Message, Term)).