Files
mercury/library/queue.m
Julien Fischer 74e3d35ae9 Fixes for library documentation.
library/pretty_printer.m:
library/getopt_io.m:
library/getopt.m:
	Fix typos.

library/array.m:
library/list.m:
library/queue.m:
library/version_array.m:
	s/Nth/N'th/ etc.
2015-01-14 13:49:44 +11:00

277 lines
8.3 KiB
Mathematica

%---------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et wm=0 tw=0
%---------------------------------------------------------------------------%
% Copyright (C) 1994-1995, 1997-1999, 2003-2006, 2011 The University of Melbourne.
% This file may only be copied under the terms of the GNU Library General
% Public License - see the file COPYING.LIB in the Mercury distribution.
%---------------------------------------------------------------------------%
%
% File: queue.m.
% Main author: fjh.
% Stability: high.
%
% This file contains a `queue' ADT.
% A queue holds a sequence of values, and provides operations
% to insert values at the end of the queue (put) and remove them from
% the front of the queue (get).
%
% This implementation is in terms of a pair of lists.
% The put and get operations are amortized constant-time.
%
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- module queue.
:- interface.
:- import_module list.
%---------------------------------------------------------------------------%
:- type queue(T).
% `init(Queue)' is true iff `Queue' is an empty queue.
%
:- func init = queue(T).
:- pred init(queue(T)::out) is det.
% 'queue_equal(Q1, Q2)' is true iff Q1 and Q2 contain the same
% elements in the same order.
%
:- pred equal(queue(T)::in, queue(T)::in) is semidet.
% `is_empty(Queue)' is true iff `Queue' is an empty queue.
%
:- pred is_empty(queue(T)::in) is semidet.
% `is_full(Queue)' is intended to be true iff `Queue' is a queue
% whose capacity is exhausted. This implementation allows arbitrary-sized
% queues, so is_full always fails.
%
:- pred is_full(queue(T)::in) is semidet.
% `put(Elem, Queue0, Queue)' is true iff `Queue' is the queue
% which results from appending `Elem' onto the end of `Queue0'.
%
:- func put(queue(T), T) = queue(T).
:- pred put(T::in, queue(T)::in, queue(T)::out) is det.
% `put_list(Elems, Queue0, Queue)' is true iff `Queue' is the queue
% which results from inserting the items in the list `Elems' into `Queue0'.
%
:- func put_list(queue(T), list(T)) = queue(T).
:- pred put_list(list(T)::in, queue(T)::in, queue(T)::out) is det.
% `first(Queue, Elem)' is true iff `Queue' is a non-empty queue
% whose first element is `Elem'.
%
:- pred first(queue(T)::in, T::out) is semidet.
% `get(Elem, Queue0, Queue)' is true iff `Queue0' is a non-empty
% queue whose first element is `Elem', and `Queue' the queue which results
% from removing that element from the front of `Queue0'.
%
:- pred get(T::out, queue(T)::in, queue(T)::out) is semidet.
% `length(Queue, Length)' is true iff `Queue' is a queue
% containing `Length' elements.
%
:- func length(queue(T)) = int.
:- pred length(queue(T)::in, int::out) is det.
% `list_to_queue(List, Queue)' is true iff `Queue' is a queue
% containing the elements of List, with the first element of List at
% the head of the queue.
%
:- func list_to_queue(list(T)) = queue(T).
:- pred list_to_queue(list(T)::in, queue(T)::out) is det.
% A synonym for list_to_queue/1.
%
:- func from_list(list(T)) = queue(T).
% `to_list(Queue) = List' is the inverse of from_list/1.
%
:- func to_list(queue(T)) = list(T).
% `delete_all(Elem, Queue0, Queue)' is true iff `Queue' is the same
% queue as `Queue0' with all occurrences of `Elem' removed from it.
%
:- func delete_all(queue(T), T) = queue(T).
:- pred delete_all(T::in, queue(T)::in, queue(T)::out) is det.
% `put_on_front(Queue0, Elem) = Queue' pushes `Elem' on to
% the front of `Queue0', giving `Queue'.
%
:- func put_on_front(queue(T), T) = queue(T).
:- pred put_on_front(T::in, queue(T)::in, queue(T)::out) is det.
% `put_list_on_front(Queue0, Elems) = Queue' pushes `Elems'
% on to the front of `Queue0', giving `Queue' (the N'th member
% of `Elems' becomes the N'th member from the front of `Queue').
%
:- func put_list_on_front(queue(T), list(T)) = queue(T).
:- pred put_list_on_front(list(T)::in, queue(T)::in, queue(T)::out)
is det.
% `get_from_back(Elem, Queue0, Queue)' removes `Elem' from
% the back of `Queue0', giving `Queue'.
%
:- pred get_from_back(T::out, queue(T)::in, queue(T)::out) is semidet.
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- implementation.
:- import_module int.
%---------------------------------------------------------------------------%
% This implementation is in terms of a pair of lists: the list of items
% in the queue is given by off_list ++ reverse(on_list). The reason for
% the names is that we generally get items off the off_list and put them
% on the on_list. We impose the extra constraint that the off_list field
% is empty if and only if the queue as a whole is empty.
%
:- type queue(T)
---> queue(
on_list :: list(T),
off_list :: list(T)
).
%---------------------------------------------------------------------------%
queue.init = Q :-
queue.init(Q).
queue.init(queue([], [])).
queue.equal(queue(OnA, OffA), queue(OnB, OffB)) :-
QA = OffA ++ list.reverse(OnA),
QB = OffB ++ list.reverse(OnB),
QA = QB.
queue.is_empty(queue(_, [])).
queue.is_full(_) :-
semidet_fail.
queue.put(!.Q, T) = !:Q :-
queue.put(T, !Q).
queue.put(Elem, queue(On0, Off0), queue(On, Off)) :-
(
Off0 = [],
On = On0,
Off = [Elem]
;
Off0 = [_ | _],
On = [Elem | On0],
Off = Off0
).
queue.put_list(!.Q, Xs) = !:Q :-
queue.put_list(Xs, !Q).
queue.put_list(Xs, queue(On0, Off0), queue(On, Off)) :-
(
Off0 = [],
On = On0,
Off = Xs
;
Off0 = [_ | _],
Off = Off0,
queue.put_list_2(Xs, On0, On)
).
:- pred queue.put_list_2(list(T)::in, list(T)::in, list(T)::out) is det.
queue.put_list_2([], On, On).
queue.put_list_2([X | Xs], On0, On) :-
queue.put_list_2(Xs, [X | On0], On).
queue.first(queue(_, [Elem | _]), Elem).
queue.get(Elem, queue(On0, [Elem | Off0]), queue(On, Off)) :-
(
Off0 = [],
list.reverse(On0, Off),
On = []
;
Off0 = [_ | _],
On = On0,
Off = Off0
).
queue.length(Q) = N :-
queue.length(Q, N).
queue.length(queue(On, Off), Length) :-
list.length(On, LengthOn),
list.length(Off, LengthOff),
Length = LengthOn + LengthOff.
queue.list_to_queue(Xs) = Q :-
queue.list_to_queue(Xs, Q).
queue.list_to_queue(List, queue([], List)).
queue.from_list(List) = queue([], List).
queue.to_list(queue(On, Off)) = Off ++ list.reverse(On).
queue.delete_all(!.Q, T) = !:Q :-
queue.delete_all(T, !Q).
queue.delete_all(Elem ,queue(On0, Off0), queue(On, Off)) :-
list.delete_all(On0, Elem, On1),
list.delete_all(Off0, Elem, Off1),
(
Off1 = [],
list.reverse(On1, Off),
On = []
;
Off1 = [_ | _],
On = On1,
Off = Off1
).
queue.put_on_front(Elem, queue(On, Off), queue(On, [Elem | Off])).
queue.put_on_front(!.Queue, Elem) = !:Queue :-
queue.put_on_front(Elem, !Queue).
queue.put_list_on_front(Elems, queue(On, Off), queue(On, Elems ++ Off)).
queue.put_list_on_front(!.Queue, Elems) = !:Queue :-
queue.put_list_on_front(Elems, !Queue).
queue.get_from_back(Elem, queue(On0, Off0), queue(On, Off)) :-
(
% The On list is non-empty and the last element in the queue
% is the head of the On list.
On0 = [Elem | On],
Off = Off0
;
% The On list is empty.
On0 = [],
(
% The Off list contains a single element.
Off0 = [Elem],
On = [],
Off = []
;
% The Off list contains two or more elements. We split it in two
% and take the head of the new On list as Elem.
Off0 = [_, _ | _],
N = list.length(Off0),
list.split_list(N / 2, Off0, Off, RevOn),
[Elem | On] = list.reverse(RevOn)
)
).
%---------------------------------------------------------------------------%
:- end_module queue.
%---------------------------------------------------------------------------%