%---------------------------------------------------------------------------% % vim: ft=mercury ts=4 sw=4 et wm=0 tw=0 %---------------------------------------------------------------------------% % Copyright (C) 1994-1995, 1997-1999, 2003-2006, 2011 The University of Melbourne. % This file may only be copied under the terms of the GNU Library General % Public License - see the file COPYING.LIB in the Mercury distribution. %---------------------------------------------------------------------------% % % File: queue.m. % Main author: fjh. % Stability: high. % % This file contains a `queue' ADT. % A queue holds a sequence of values, and provides operations % to insert values at the end of the queue (put) and remove them from % the front of the queue (get). % % This implementation is in terms of a pair of lists. % The put and get operations are amortized constant-time. % %---------------------------------------------------------------------------% %---------------------------------------------------------------------------% :- module queue. :- interface. :- import_module list. %---------------------------------------------------------------------------% :- type queue(T). % `init(Queue)' is true iff `Queue' is an empty queue. % :- func init = queue(T). :- pred init(queue(T)::out) is det. % 'queue_equal(Q1, Q2)' is true iff Q1 and Q2 contain the same % elements in the same order. % :- pred equal(queue(T)::in, queue(T)::in) is semidet. % `is_empty(Queue)' is true iff `Queue' is an empty queue. % :- pred is_empty(queue(T)::in) is semidet. % `is_full(Queue)' is intended to be true iff `Queue' is a queue % whose capacity is exhausted. This implementation allows arbitrary-sized % queues, so is_full always fails. % :- pred is_full(queue(T)::in) is semidet. % `put(Elem, Queue0, Queue)' is true iff `Queue' is the queue % which results from appending `Elem' onto the end of `Queue0'. % :- func put(queue(T), T) = queue(T). :- pred put(T::in, queue(T)::in, queue(T)::out) is det. % `put_list(Elems, Queue0, Queue)' is true iff `Queue' is the queue % which results from inserting the items in the list `Elems' into `Queue0'. % :- func put_list(queue(T), list(T)) = queue(T). :- pred put_list(list(T)::in, queue(T)::in, queue(T)::out) is det. % `first(Queue, Elem)' is true iff `Queue' is a non-empty queue % whose first element is `Elem'. % :- pred first(queue(T)::in, T::out) is semidet. % `get(Elem, Queue0, Queue)' is true iff `Queue0' is a non-empty % queue whose first element is `Elem', and `Queue' the queue which results % from removing that element from the front of `Queue0'. % :- pred get(T::out, queue(T)::in, queue(T)::out) is semidet. % `length(Queue, Length)' is true iff `Queue' is a queue % containing `Length' elements. % :- func length(queue(T)) = int. :- pred length(queue(T)::in, int::out) is det. % `list_to_queue(List, Queue)' is true iff `Queue' is a queue % containing the elements of List, with the first element of List at % the head of the queue. % :- func list_to_queue(list(T)) = queue(T). :- pred list_to_queue(list(T)::in, queue(T)::out) is det. % A synonym for list_to_queue/1. % :- func from_list(list(T)) = queue(T). % `to_list(Queue) = List' is the inverse of from_list/1. % :- func to_list(queue(T)) = list(T). % `delete_all(Elem, Queue0, Queue)' is true iff `Queue' is the same % queue as `Queue0' with all occurrences of `Elem' removed from it. % :- func delete_all(queue(T), T) = queue(T). :- pred delete_all(T::in, queue(T)::in, queue(T)::out) is det. % `put_on_front(Queue0, Elem) = Queue' pushes `Elem' on to % the front of `Queue0', giving `Queue'. % :- func put_on_front(queue(T), T) = queue(T). :- pred put_on_front(T::in, queue(T)::in, queue(T)::out) is det. % `put_list_on_front(Queue0, Elems) = Queue' pushes `Elems' % on to the front of `Queue0', giving `Queue' (the N'th member % of `Elems' becomes the N'th member from the front of `Queue'). % :- func put_list_on_front(queue(T), list(T)) = queue(T). :- pred put_list_on_front(list(T)::in, queue(T)::in, queue(T)::out) is det. % `get_from_back(Elem, Queue0, Queue)' removes `Elem' from % the back of `Queue0', giving `Queue'. % :- pred get_from_back(T::out, queue(T)::in, queue(T)::out) is semidet. %---------------------------------------------------------------------------% %---------------------------------------------------------------------------% :- implementation. :- import_module int. %---------------------------------------------------------------------------% % This implementation is in terms of a pair of lists: the list of items % in the queue is given by off_list ++ reverse(on_list). The reason for % the names is that we generally get items off the off_list and put them % on the on_list. We impose the extra constraint that the off_list field % is empty if and only if the queue as a whole is empty. % :- type queue(T) ---> queue( on_list :: list(T), off_list :: list(T) ). %---------------------------------------------------------------------------% queue.init = Q :- queue.init(Q). queue.init(queue([], [])). queue.equal(queue(OnA, OffA), queue(OnB, OffB)) :- QA = OffA ++ list.reverse(OnA), QB = OffB ++ list.reverse(OnB), QA = QB. queue.is_empty(queue(_, [])). queue.is_full(_) :- semidet_fail. queue.put(!.Q, T) = !:Q :- queue.put(T, !Q). queue.put(Elem, queue(On0, Off0), queue(On, Off)) :- ( Off0 = [], On = On0, Off = [Elem] ; Off0 = [_ | _], On = [Elem | On0], Off = Off0 ). queue.put_list(!.Q, Xs) = !:Q :- queue.put_list(Xs, !Q). queue.put_list(Xs, queue(On0, Off0), queue(On, Off)) :- ( Off0 = [], On = On0, Off = Xs ; Off0 = [_ | _], Off = Off0, queue.put_list_2(Xs, On0, On) ). :- pred queue.put_list_2(list(T)::in, list(T)::in, list(T)::out) is det. queue.put_list_2([], On, On). queue.put_list_2([X | Xs], On0, On) :- queue.put_list_2(Xs, [X | On0], On). queue.first(queue(_, [Elem | _]), Elem). queue.get(Elem, queue(On0, [Elem | Off0]), queue(On, Off)) :- ( Off0 = [], list.reverse(On0, Off), On = [] ; Off0 = [_ | _], On = On0, Off = Off0 ). queue.length(Q) = N :- queue.length(Q, N). queue.length(queue(On, Off), Length) :- list.length(On, LengthOn), list.length(Off, LengthOff), Length = LengthOn + LengthOff. queue.list_to_queue(Xs) = Q :- queue.list_to_queue(Xs, Q). queue.list_to_queue(List, queue([], List)). queue.from_list(List) = queue([], List). queue.to_list(queue(On, Off)) = Off ++ list.reverse(On). queue.delete_all(!.Q, T) = !:Q :- queue.delete_all(T, !Q). queue.delete_all(Elem ,queue(On0, Off0), queue(On, Off)) :- list.delete_all(On0, Elem, On1), list.delete_all(Off0, Elem, Off1), ( Off1 = [], list.reverse(On1, Off), On = [] ; Off1 = [_ | _], On = On1, Off = Off1 ). queue.put_on_front(Elem, queue(On, Off), queue(On, [Elem | Off])). queue.put_on_front(!.Queue, Elem) = !:Queue :- queue.put_on_front(Elem, !Queue). queue.put_list_on_front(Elems, queue(On, Off), queue(On, Elems ++ Off)). queue.put_list_on_front(!.Queue, Elems) = !:Queue :- queue.put_list_on_front(Elems, !Queue). queue.get_from_back(Elem, queue(On0, Off0), queue(On, Off)) :- ( % The On list is non-empty and the last element in the queue % is the head of the On list. On0 = [Elem | On], Off = Off0 ; % The On list is empty. On0 = [], ( % The Off list contains a single element. Off0 = [Elem], On = [], Off = [] ; % The Off list contains two or more elements. We split it in two % and take the head of the new On list as Elem. Off0 = [_, _ | _], N = list.length(Off0), list.split_list(N / 2, Off0, Off, RevOn), [Elem | On] = list.reverse(RevOn) ) ). %---------------------------------------------------------------------------% :- end_module queue. %---------------------------------------------------------------------------%