Files
mercury/compiler/unify_proc.m
Thomas Conway 5c955626f2 These changes make var' and term' polymorphic.
Estimated hours taken: 20

These changes make `var' and `term' polymorphic. This allows us to make
variables and terms representing types of a different type to those
representing program terms and those representing insts.

These changes do not *fix* any existing problems (for instance
there was a messy conflation of program variables and inst variables,
and where necessary I've just called varset__init(InstVarSet) with
an XXX comment).

NEWS:
	Mention the changes to the standard library.

library/term.m:
	Make term, var and var_supply polymorphic.
	Add new predicates:
		term__generic_term/1
		term__coerce/2
		term__coerce_var/2
		term__coerce_var_supply/2

library/varset.m:
	Make varset polymorphic.
	Add the new predicate:
		varset__coerce/2

compiler/prog_data.m:
	Introduce type equivalences for the different kinds of
	vars, terms, and varsets that we use (tvar and tvarset
	were already there but have been changed to use the
	polymorphic var and term).

	Also change the various kinds of items to use the appropriate
	kinds of var/varset.

compiler/*.m:
	Thousands of boring changes to make the compiler type correct
	with the different types for type, program and inst vars and
	varsets.
1998-11-20 04:10:36 +00:00

1124 lines
38 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1994-1998 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% unify_proc.m:
%
% This module encapsulates access to the proc_requests table,
% and constructs the clauses for out-of-line complicated
% unification procedures.
% It also generates the code for other compiler-generated type-specific
% predicates such as compare/3.
%
% During mode analysis, we notice each different complicated unification
% that occurs. For each one we add a new mode to the out-of-line
% unification predicate for that type, and we record in the `proc_requests'
% table that we need to eventually modecheck that mode of the unification
% procedure.
%
% After we've done mode analysis for all the ordinary predicates, we then
% do mode analysis for the out-of-line unification procedures. Note that
% unification procedures may call other unification procedures which have
% not yet been encountered, causing new entries to be added to the
% proc_requests table. We store the entries in a queue and continue the
% process until the queue is empty.
%
% The same queuing mechanism is also used for procedures created by
% mode inference during mode analysis and unique mode analysis.
%
% Currently if the same complicated unification procedure is called by
% different modules, each module will end up with a copy of the code for
% that procedure. In the long run it would be desireable to either delay
% generation of complicated unification procedures until link time (like
% Cfront does with C++ templates) or to have a smart linker which could
% merge duplicate definitions (like Borland C++). However the amount of
% code duplication involved is probably very small, so it's definitely not
% worth worrying about right now.
% XXX What about complicated unification of an abstract type in a partially
% instantiated mode? Currently we don't implement it correctly. Probably
% it should be disallowed, but we should issue a proper error message.
%-----------------------------------------------------------------------------%
:- module unify_proc.
:- interface.
:- import_module hlds_module, hlds_pred, hlds_goal, hlds_data.
:- import_module mode_info, prog_data, special_pred.
:- import_module bool, std_util, io, list.
:- type proc_requests.
:- type unify_proc_id == pair(type_id, uni_mode).
% Initialize the proc_requests table.
:- pred unify_proc__init_requests(proc_requests).
:- mode unify_proc__init_requests(out) is det.
% Add a new request for a unification procedure to the
% proc_requests table.
:- pred unify_proc__request_unify(unify_proc_id, determinism, prog_context,
module_info, module_info).
:- mode unify_proc__request_unify(in, in, in, in, out) is det.
% Add a new request for a procedure (not necessarily a unification)
% to the request queue. Return the procedure's newly allocated
% proc_id. (This is used by unique_modes.m.)
:- pred unify_proc__request_proc(pred_id, list(mode), maybe(list(is_live)),
maybe(determinism), prog_context,
module_info, proc_id, module_info).
:- mode unify_proc__request_proc(in, in, in, in, in, in, out, out) is det.
% Do mode analysis of the queued procedures.
% If the first argument is `unique_mode_check',
% then also go on and do full determinism analysis and unique mode
% analysis on them as well.
% The pred_table arguments are used to store copies of the
% procedure bodies before unique mode analysis, so that
% we can restore them before doing the next analysis pass.
:- pred modecheck_queued_procs(how_to_check_goal, pred_table, module_info,
pred_table, module_info, bool,
io__state, io__state).
:- mode modecheck_queued_procs(in, in, in, out, out, out, di, uo) is det.
% Given the type and mode of a unification, look up the
% mode number for the unification proc.
:- pred unify_proc__lookup_mode_num(module_info, type_id, uni_mode,
determinism, proc_id).
:- mode unify_proc__lookup_mode_num(in, in, in, in, out) is det.
% Generate the clauses for one of the compiler-generated
% special predicates (compare/3, index/3, unify, etc.)
:- pred unify_proc__generate_clause_info(special_pred_id, type,
hlds_type_body, prog_context, module_info,
clauses_info).
:- mode unify_proc__generate_clause_info(in, in, in, in, in, out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module tree, map, queue, int, string, require.
:- import_module code_util, code_info, type_util.
:- import_module mercury_to_mercury, hlds_out.
:- import_module make_hlds, prog_util, prog_out, inst_match.
:- import_module quantification, clause_to_proc, term, varset.
:- import_module globals, options, modes, mode_util, (inst).
:- import_module switch_detection, cse_detection, det_analysis, unique_modes.
% We keep track of all the complicated unification procs we need
% by storing them in the proc_requests structure.
% For each unify_proc_id (i.e. type & mode), we store the proc_id
% (mode number) of the unification procedure which corresponds to
% that mode.
:- type unify_req_map == map(unify_proc_id, proc_id).
:- type req_queue == queue(pred_proc_id).
:- type proc_requests --->
proc_requests(
unify_req_map, % the assignment of proc_id
% numbers to unify_proc_ids
req_queue % queue of procs we still need
% to generate code for
).
%-----------------------------------------------------------------------------%
unify_proc__init_requests(Requests) :-
map__init(UnifyReqMap),
queue__init(ReqQueue),
Requests = proc_requests(UnifyReqMap, ReqQueue).
%-----------------------------------------------------------------------------%
% Boring access predicates
:- pred unify_proc__get_unify_req_map(proc_requests, unify_req_map).
:- mode unify_proc__get_unify_req_map(in, out) is det.
:- pred unify_proc__get_req_queue(proc_requests, req_queue).
:- mode unify_proc__get_req_queue(in, out) is det.
:- pred unify_proc__set_unify_req_map(proc_requests, unify_req_map,
proc_requests).
:- mode unify_proc__set_unify_req_map(in, in, out) is det.
:- pred unify_proc__set_req_queue(proc_requests, req_queue, proc_requests).
:- mode unify_proc__set_req_queue(in, in, out) is det.
unify_proc__get_unify_req_map(proc_requests(UnifyReqMap, _), UnifyReqMap).
unify_proc__get_req_queue(proc_requests(_, ReqQueue), ReqQueue).
unify_proc__set_unify_req_map(proc_requests(_, B), UnifyReqMap,
proc_requests(UnifyReqMap, B)).
unify_proc__set_req_queue(proc_requests(A, _), ReqQueue,
proc_requests(A, ReqQueue)).
%-----------------------------------------------------------------------------%
unify_proc__lookup_mode_num(ModuleInfo, TypeId, UniMode, Det, Num) :-
( unify_proc__search_mode_num(ModuleInfo, TypeId, UniMode, Det, Num1) ->
Num = Num1
;
error("unify_proc.m: unify_proc__search_num failed")
).
:- pred unify_proc__search_mode_num(module_info, type_id, uni_mode, determinism,
proc_id).
:- mode unify_proc__search_mode_num(in, in, in, in, out) is semidet.
% Given the type, mode, and determinism of a unification, look up the
% mode number for the unification proc.
% We handle semidet unifications with mode (in, in) specially - they
% are always mode zero. Similarly for unifications of `any' insts.
% (It should be safe to use the `in, in' mode for any insts, since
% we assume that `ground' and `any' have the same representation.)
% For unreachable unifications, we also use mode zero.
unify_proc__search_mode_num(ModuleInfo, TypeId, UniMode, Determinism, ProcId) :-
UniMode = (XInitial - YInitial -> _Final),
(
Determinism = semidet,
inst_is_ground_or_any(ModuleInfo, XInitial),
inst_is_ground_or_any(ModuleInfo, YInitial)
->
hlds_pred__in_in_unification_proc_id(ProcId)
;
XInitial = not_reached
->
hlds_pred__in_in_unification_proc_id(ProcId)
;
YInitial = not_reached
->
hlds_pred__in_in_unification_proc_id(ProcId)
;
module_info_get_proc_requests(ModuleInfo, Requests),
unify_proc__get_unify_req_map(Requests, UnifyReqMap),
map__search(UnifyReqMap, TypeId - UniMode, ProcId)
).
%-----------------------------------------------------------------------------%
unify_proc__request_unify(UnifyId, Determinism, Context, ModuleInfo0,
ModuleInfo) :-
%
% check if this unification has already been requested, or
% if the proc is hand defined.
%
UnifyId = TypeId - UnifyMode,
(
(
unify_proc__search_mode_num(ModuleInfo0, TypeId,
UnifyMode, Determinism, _)
;
type_id_is_hand_defined(TypeId)
)
->
ModuleInfo = ModuleInfo0
;
%
% lookup the pred_id for the unification procedure
% that we are going to generate
%
module_info_get_special_pred_map(ModuleInfo0, SpecialPredMap),
map__lookup(SpecialPredMap, unify - TypeId, PredId),
% convert from `uni_mode' to `list(mode)'
UnifyMode = ((X_Initial - Y_Initial) -> (X_Final - Y_Final)),
ArgModes = [(X_Initial -> X_Final), (Y_Initial -> Y_Final)],
ArgLives = no, % XXX ArgLives should be part of the UnifyId
unify_proc__request_proc(PredId, ArgModes, ArgLives,
yes(Determinism), Context, ModuleInfo0,
ProcId, ModuleInfo1),
%
% save the proc_id for this unify_proc_id
%
module_info_get_proc_requests(ModuleInfo1, Requests0),
unify_proc__get_unify_req_map(Requests0, UnifyReqMap0),
map__set(UnifyReqMap0, UnifyId, ProcId, UnifyReqMap),
unify_proc__set_unify_req_map(Requests0, UnifyReqMap, Requests),
module_info_set_proc_requests(ModuleInfo1, Requests,
ModuleInfo)
).
unify_proc__request_proc(PredId, ArgModes, ArgLives, MaybeDet, Context,
ModuleInfo0, ProcId, ModuleInfo) :-
%
% create a new proc_info for this procedure
%
module_info_preds(ModuleInfo0, Preds0),
map__lookup(Preds0, PredId, PredInfo0),
list__length(ArgModes, Arity),
DeclaredArgModes = no,
module_info_globals(ModuleInfo0, Globals),
globals__get_args_method(Globals, ArgsMethod),
add_new_proc(PredInfo0, Arity, ArgModes, DeclaredArgModes,
ArgLives, MaybeDet, Context, ArgsMethod, PredInfo1, ProcId),
%
% copy the clauses for the procedure from the pred_info to the
% proc_info, and mark the procedure as one that cannot
% be processed yet
%
pred_info_procedures(PredInfo1, Procs1),
pred_info_clauses_info(PredInfo1, ClausesInfo),
map__lookup(Procs1, ProcId, ProcInfo0),
proc_info_set_can_process(ProcInfo0, no, ProcInfo1),
copy_clauses_to_proc(ProcId, ClausesInfo, ProcInfo1, ProcInfo2),
map__det_update(Procs1, ProcId, ProcInfo2, Procs2),
pred_info_set_procedures(PredInfo1, Procs2, PredInfo2),
map__det_update(Preds0, PredId, PredInfo2, Preds2),
module_info_set_preds(ModuleInfo0, Preds2, ModuleInfo2),
%
% insert the pred_proc_id into the request queue
%
module_info_get_proc_requests(ModuleInfo2, Requests0),
unify_proc__get_req_queue(Requests0, ReqQueue0),
queue__put(ReqQueue0, proc(PredId, ProcId), ReqQueue),
unify_proc__set_req_queue(Requests0, ReqQueue, Requests),
module_info_set_proc_requests(ModuleInfo2, Requests, ModuleInfo).
%-----------------------------------------------------------------------------%
% XXX these belong in modes.m
modecheck_queued_procs(HowToCheckGoal, OldPredTable0, ModuleInfo0,
OldPredTable, ModuleInfo, Changed) -->
{ module_info_get_proc_requests(ModuleInfo0, Requests0) },
{ unify_proc__get_req_queue(Requests0, RequestQueue0) },
(
{ queue__get(RequestQueue0, PredProcId, RequestQueue1) }
->
{ unify_proc__set_req_queue(Requests0, RequestQueue1,
Requests1) },
{ module_info_set_proc_requests(ModuleInfo0, Requests1,
ModuleInfo1) },
%
% Check that the procedure is valid (i.e. type-correct),
% before we attempt to do mode analysis on it.
% This check is necessary to avoid internal errors
% caused by doing mode analysis on type-incorrect code.
% XXX inefficient! This is O(N*M).
%
{ PredProcId = proc(PredId, _ProcId) },
{ module_info_predids(ModuleInfo1, ValidPredIds) },
( { list__member(PredId, ValidPredIds) } ->
queued_proc_progress_message(PredProcId,
HowToCheckGoal, ModuleInfo1),
modecheck_queued_proc(HowToCheckGoal, PredProcId,
OldPredTable0, ModuleInfo1,
OldPredTable2, ModuleInfo2, Changed1)
;
{ OldPredTable2 = OldPredTable0 },
{ ModuleInfo2 = ModuleInfo1 },
{ Changed1 = no }
),
modecheck_queued_procs(HowToCheckGoal, OldPredTable2,
ModuleInfo2, OldPredTable, ModuleInfo, Changed2),
{ bool__or(Changed1, Changed2, Changed) }
;
{ OldPredTable = OldPredTable0 },
{ ModuleInfo = ModuleInfo0 },
{ Changed = no }
).
:- pred queued_proc_progress_message(pred_proc_id, how_to_check_goal,
module_info, io__state, io__state).
:- mode queued_proc_progress_message(in, in, in, di, uo) is det.
queued_proc_progress_message(PredProcId, HowToCheckGoal, ModuleInfo) -->
globals__io_lookup_bool_option(very_verbose,
VeryVerbose),
( { VeryVerbose = yes } ->
%
% print progress message
%
( { HowToCheckGoal = check_unique_modes(_) } ->
io__write_string(
"% Analyzing modes, determinism, and unique-modes for\n% ")
;
io__write_string("% Mode-analyzing ")
),
{ PredProcId = proc(PredId, ProcId) },
hlds_out__write_pred_proc_id(ModuleInfo, PredId, ProcId),
io__write_string("\n")
/*****
{ mode_list_get_initial_insts(Modes, ModuleInfo1,
InitialInsts) },
io__write_string("% Initial insts: `"),
{ varset__init(InstVarSet) },
mercury_output_inst_list(InitialInsts, InstVarSet),
io__write_string("'\n")
*****/
;
[]
).
:- pred modecheck_queued_proc(how_to_check_goal, pred_proc_id, pred_table,
module_info, pred_table, module_info, bool,
io__state, io__state).
:- mode modecheck_queued_proc(in, in, in, in, out, out, out, di, uo) is det.
modecheck_queued_proc(HowToCheckGoal, PredProcId, OldPredTable0, ModuleInfo0,
OldPredTable, ModuleInfo, Changed) -->
{
%
% mark the procedure as ready to be processed
%
PredProcId = proc(PredId, ProcId),
module_info_preds(ModuleInfo0, Preds0),
map__lookup(Preds0, PredId, PredInfo0),
pred_info_procedures(PredInfo0, Procs0),
map__lookup(Procs0, ProcId, ProcInfo0),
proc_info_set_can_process(ProcInfo0, yes, ProcInfo1),
map__det_update(Procs0, ProcId, ProcInfo1, Procs1),
pred_info_set_procedures(PredInfo0, Procs1, PredInfo1),
map__det_update(Preds0, PredId, PredInfo1, Preds1),
module_info_set_preds(ModuleInfo0, Preds1, ModuleInfo1)
},
%
% modecheck the procedure
%
modecheck_proc(ProcId, PredId, ModuleInfo1, ModuleInfo2, NumErrors,
Changed1),
(
{ NumErrors \= 0 }
->
io__set_exit_status(1),
{ OldPredTable = OldPredTable0 },
{ ModuleInfo = ModuleInfo2 },
{ Changed = Changed1 }
;
( { HowToCheckGoal = check_unique_modes(_) } ->
{ detect_switches_in_proc(ProcId, PredId,
ModuleInfo2, ModuleInfo3) },
detect_cse_in_proc(ProcId, PredId,
ModuleInfo3, ModuleInfo4),
determinism_check_proc(ProcId, PredId,
ModuleInfo4, ModuleInfo5),
{ save_proc_info(ProcId, PredId, ModuleInfo5,
OldPredTable0, OldPredTable) },
unique_modes__check_proc(ProcId, PredId,
ModuleInfo5, ModuleInfo,
Changed2),
{ bool__or(Changed1, Changed2, Changed) }
;
{ OldPredTable = OldPredTable0 },
{ ModuleInfo = ModuleInfo2 },
{ Changed = Changed1 }
)
).
%
% save a copy of the proc info for the specified procedure in OldProcTable0,
% giving OldProcTable.
%
:- pred save_proc_info(proc_id, pred_id, module_info, pred_table, pred_table).
:- mode save_proc_info(in, in, in, in, out) is det.
save_proc_info(ProcId, PredId, ModuleInfo, OldPredTable0, OldPredTable) :-
module_info_pred_proc_info(ModuleInfo, PredId, ProcId,
_PredInfo, ProcInfo),
map__lookup(OldPredTable0, PredId, OldPredInfo0),
pred_info_procedures(OldPredInfo0, OldProcTable0),
map__set(OldProcTable0, ProcId, ProcInfo, OldProcTable),
pred_info_set_procedures(OldPredInfo0, OldProcTable, OldPredInfo),
map__det_update(OldPredTable0, PredId, OldPredInfo, OldPredTable).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
unify_proc__generate_clause_info(SpecialPredId, Type, TypeBody, Context,
ModuleInfo, ClauseInfo) :-
unify_proc__info_init(ModuleInfo, VarTypeInfo0),
( TypeBody = eqv_type(EqvType) ->
HeadVarType = EqvType
;
HeadVarType = Type
),
special_pred_info(SpecialPredId, HeadVarType,
_PredName, ArgTypes, _Modes, _Det),
unify_proc__make_fresh_vars_from_types(ArgTypes, Args,
VarTypeInfo0, VarTypeInfo1),
( SpecialPredId = unify, Args = [H1, H2] ->
unify_proc__generate_unify_clauses(TypeBody, H1, H2, Context,
Clauses, VarTypeInfo1, VarTypeInfo)
; SpecialPredId = index, Args = [X, Index] ->
unify_proc__generate_index_clauses(TypeBody, X, Index, Context,
Clauses, VarTypeInfo1, VarTypeInfo)
; SpecialPredId = compare, Args = [Res, X, Y] ->
unify_proc__generate_compare_clauses(TypeBody, Res, X, Y,
Context,
Clauses, VarTypeInfo1, VarTypeInfo)
;
error("unknown special pred")
),
unify_proc__info_extract(VarTypeInfo, VarSet, Types),
ClauseInfo = clauses_info(VarSet, Types, Types, Args, Clauses).
:- pred unify_proc__generate_unify_clauses(hlds_type_body, prog_var, prog_var,
prog_context, list(clause), unify_proc_info, unify_proc_info).
:- mode unify_proc__generate_unify_clauses(in, in, in, in, out, in, out)
is det.
unify_proc__generate_unify_clauses(TypeBody, H1, H2, Context, Clauses) -->
( { TypeBody = du_type(Ctors, _, IsEnum, MaybeEqPred), IsEnum = no } ->
( { MaybeEqPred = yes(PredName) } ->
%
% Just generate a call to the specified predicate,
% which is the user-defined equality pred for this
% type.
% (The pred_id and proc_id will be figured
% out by type checking and mode analysis.)
%
{ invalid_pred_id(PredId) },
{ invalid_proc_id(ModeId) },
{ Call = call(PredId, ModeId, [H1, H2], not_builtin,
no, PredName) },
{ goal_info_init(GoalInfo0) },
{ goal_info_set_context(GoalInfo0, Context,
GoalInfo) },
{ Goal = Call - GoalInfo },
unify_proc__quantify_clause_body([H1, H2], Goal,
Context, Clauses)
;
unify_proc__generate_du_unify_clauses(Ctors, H1, H2,
Context, Clauses)
)
;
{ create_atomic_unification(H1, var(H2), Context, explicit, [],
Goal) },
unify_proc__quantify_clause_body([H1, H2], Goal, Context,
Clauses)
).
:- pred unify_proc__generate_index_clauses(hlds_type_body, prog_var, prog_var,
prog_context, list(clause), unify_proc_info, unify_proc_info).
:- mode unify_proc__generate_index_clauses(in, in, in, in, out, in, out)
is det.
unify_proc__generate_index_clauses(TypeBody, X, Index, Context, Clauses) -->
( { TypeBody = du_type(Ctors, _, IsEnum, MaybeEqPred), IsEnum = no } ->
( { MaybeEqPred = yes(_) } ->
%
% For non-canonical types, we just give up and
% always return -1 (meaning "index not available")
% from index/1.
%
{ ArgVars = [X, Index] },
unify_proc__build_call(
"builtin_index_non_canonical_type",
ArgVars, Context, Goal),
unify_proc__quantify_clause_body(ArgVars, Goal,
Context, Clauses)
;
unify_proc__generate_du_index_clauses(Ctors, X, Index,
Context, 0, Clauses)
)
;
{ ArgVars = [X, Index] },
unify_proc__build_call("index", ArgVars, Context, Goal),
unify_proc__quantify_clause_body(ArgVars, Goal, Context,
Clauses)
).
:- pred unify_proc__generate_compare_clauses(hlds_type_body, prog_var, prog_var,
prog_var, prog_context, list(clause),
unify_proc_info, unify_proc_info).
:- mode unify_proc__generate_compare_clauses(in, in, in, in, in, out, in, out)
is det.
unify_proc__generate_compare_clauses(TypeBody, Res, H1, H2, Context, Clauses)
-->
( { TypeBody = du_type(Ctors, _, IsEnum, MaybeEqPred), IsEnum = no } ->
( { MaybeEqPred = yes(_) } ->
%
% just generate code that will call error/1
%
{ ArgVars = [Res, H1, H2] },
unify_proc__build_call(
"builtin_compare_non_canonical_type",
ArgVars, Context, Goal),
unify_proc__quantify_clause_body(ArgVars, Goal,
Context, Clauses)
;
unify_proc__generate_du_compare_clauses(Ctors,
Res, H1, H2, Context, Clauses)
)
;
{ ArgVars = [Res, H1, H2] },
unify_proc__build_call("compare", ArgVars, Context, Goal),
unify_proc__quantify_clause_body(ArgVars, Goal, Context,
Clauses)
).
:- pred unify_proc__quantify_clause_body(list(prog_var), hlds_goal,
prog_context, list(clause), unify_proc_info, unify_proc_info).
:- mode unify_proc__quantify_clause_body(in, in, in, out, in, out) is det.
unify_proc__quantify_clause_body(HeadVars, Goal, Context, Clauses) -->
unify_proc__info_get_varset(Varset0),
unify_proc__info_get_types(Types0),
{ implicitly_quantify_clause_body(HeadVars, Goal,
Varset0, Types0, Body, Varset, Types, _Warnings) },
unify_proc__info_set_varset(Varset),
unify_proc__info_set_types(Types),
{ Clauses = [clause([], Body, Context)] }.
%-----------------------------------------------------------------------------%
/*
For a type such as
type t(X) ---> a ; b(int) ; c(X); d(int, X, t)
we want to generate code
eq(H1, H2) :-
(
H1 = a,
H2 = a
;
H1 = b(X1),
H2 = b(X2),
X1 = X2,
;
H1 = c(Y1),
H2 = c(Y2),
Y1 = Y2,
;
H1 = d(A1, B1, C1),
H2 = c(A2, B2, C2),
A1 = A2,
B1 = B2,
C1 = C2
).
*/
:- pred unify_proc__generate_du_unify_clauses(list(constructor), prog_var,
prog_var, prog_context, list(clause),
unify_proc_info, unify_proc_info).
:- mode unify_proc__generate_du_unify_clauses(in, in, in, in, out, in, out)
is det.
unify_proc__generate_du_unify_clauses([], _H1, _H2, _Context, []) --> [].
unify_proc__generate_du_unify_clauses([Ctor | Ctors], H1, H2, Context,
[Clause | Clauses]) -->
{ Ctor = ctor(_ExistQVars, _Constraints, FunctorName, ArgTypes) },
{ list__length(ArgTypes, FunctorArity) },
{ FunctorConsId = cons(FunctorName, FunctorArity) },
unify_proc__make_fresh_vars(ArgTypes, Vars1),
unify_proc__make_fresh_vars(ArgTypes, Vars2),
{ create_atomic_unification(
H1, functor(FunctorConsId, Vars1), Context, explicit, [],
UnifyH1_Goal) },
{ create_atomic_unification(
H2, functor(FunctorConsId, Vars2), Context, explicit, [],
UnifyH2_Goal) },
{ unify_proc__unify_var_lists(Vars1, Vars2, UnifyArgs_Goal) },
{ GoalList = [UnifyH1_Goal, UnifyH2_Goal | UnifyArgs_Goal] },
{ goal_info_init(GoalInfo0) },
{ goal_info_set_context(GoalInfo0, Context,
GoalInfo) },
{ conj_list_to_goal(GoalList, GoalInfo, Goal) },
unify_proc__info_get_varset(Varset0),
unify_proc__info_get_types(Types0),
{ implicitly_quantify_clause_body([H1, H2], Goal,
Varset0, Types0, Body, Varset, Types, _Warnings) },
unify_proc__info_set_varset(Varset),
unify_proc__info_set_types(Types),
{ Clause = clause([], Body, Context) },
unify_proc__generate_du_unify_clauses(Ctors, H1, H2, Context, Clauses).
%-----------------------------------------------------------------------------%
/*
For a type such as
:- type foo ---> f ; g(a, b, c) ; h(foo).
we want to generate code
index(X, Index) :-
(
X = f,
Index = 0
;
X = g(_, _, _),
Index = 1
;
X = h(_),
Index = 2
).
*/
:- pred unify_proc__generate_du_index_clauses(list(constructor), prog_var,
prog_var, prog_context, int, list(clause),
unify_proc_info, unify_proc_info).
:- mode unify_proc__generate_du_index_clauses(in, in, in, in, in, out, in, out)
is det.
unify_proc__generate_du_index_clauses([], _X, _Index, _Context, _N, []) --> [].
unify_proc__generate_du_index_clauses([Ctor | Ctors], X, Index, Context, N,
[Clause | Clauses]) -->
{ Ctor = ctor(_ExistQVars, _Constraints, FunctorName, ArgTypes) },
{ list__length(ArgTypes, FunctorArity) },
{ FunctorConsId = cons(FunctorName, FunctorArity) },
unify_proc__make_fresh_vars(ArgTypes, ArgVars),
{ create_atomic_unification(
X, functor(FunctorConsId, ArgVars), Context, explicit, [],
UnifyX_Goal) },
{ create_atomic_unification(
Index, functor(int_const(N), []), Context, explicit, [],
UnifyIndex_Goal) },
{ GoalList = [UnifyX_Goal, UnifyIndex_Goal] },
{ goal_info_init(GoalInfo0) },
{ goal_info_set_context(GoalInfo0, Context,
GoalInfo) },
{ conj_list_to_goal(GoalList, GoalInfo, Goal) },
unify_proc__info_get_varset(Varset0),
unify_proc__info_get_types(Types0),
{ implicitly_quantify_clause_body([X, Index], Goal,
Varset0, Types0, Body, Varset, Types, _Warnings) },
unify_proc__info_set_varset(Varset),
unify_proc__info_set_types(Types),
{ Clause = clause([], Body, Context) },
{ N1 is N + 1 },
unify_proc__generate_du_index_clauses(Ctors, X, Index, Context, N1,
Clauses).
%-----------------------------------------------------------------------------%
/* For a type such as
:- type foo ---> f ; g(a) ; h(b, foo).
we want to generate code
compare(Res, X, Y) :-
index(X, X_Index), % Call_X_Index
index(Y, Y_Index), % Call_Y_Index
( X_Index < Y_Index -> % Call_Less_Than
Res = (<) % Return_Less_Than
; X_Index > Y_Index -> % Call_Greater_Than
Res = (>) % Return_Greater_Than
;
% This disjunction is generated by
% unify_proc__generate_compare_cases, below.
(
X = f, Y = f,
R = (=)
;
X = g(X1), Y = g(Y1),
compare(R, X1, Y1)
;
X = h(X1, X2), Y = h(Y1, Y2),
( compare(R1, X1, Y1), R1 \= (=) ->
R = R1
;
compare(R, X2, Y2)
)
)
->
Res = R % Return_R
;
compare_error % Abort
).
*/
:- pred unify_proc__generate_du_compare_clauses(
list(constructor), prog_var, prog_var, prog_var, prog_context,
list(clause), unify_proc_info, unify_proc_info).
:- mode unify_proc__generate_du_compare_clauses(in, in, in, in, in,
out, in, out) is det.
unify_proc__generate_du_compare_clauses(Ctors, Res, X, Y, Context, [Clause]) -->
( { Ctors = [SingleCtor] } ->
unify_proc__generate_compare_case(SingleCtor, Res, X, Y,
Context, Goal)
;
unify_proc__generate_du_compare_clauses_2(Ctors, Res, X, Y,
Context, Goal)
),
{ ArgVars = [Res, X, Y] },
unify_proc__info_get_varset(Varset0),
unify_proc__info_get_types(Types0),
{ implicitly_quantify_clause_body(ArgVars, Goal,
Varset0, Types0, Body, Varset, Types, _Warnings) },
unify_proc__info_set_varset(Varset),
unify_proc__info_set_types(Types),
{ Clause = clause([], Body, Context) }.
:- pred unify_proc__generate_du_compare_clauses_2(
list(constructor), prog_var, prog_var, prog_var, prog_context,
hlds_goal, unify_proc_info, unify_proc_info).
:- mode unify_proc__generate_du_compare_clauses_2(in, in, in, in, in,
out, in, out) is det.
unify_proc__generate_du_compare_clauses_2(Ctors, Res, X, Y, Context, Goal) -->
{ construct_type(unqualified("int") - 0, [], IntType) },
{ mercury_public_builtin_module(MercuryBuiltin) },
{ construct_type(qualified(MercuryBuiltin, "comparison_result") - 0,
[], ResType) },
unify_proc__info_new_var(IntType, X_Index),
unify_proc__info_new_var(IntType, Y_Index),
unify_proc__info_new_var(ResType, R),
{ goal_info_init(GoalInfo0) },
{ goal_info_set_context(GoalInfo0, Context,
GoalInfo) },
unify_proc__build_call("index", [X, X_Index], Context, Call_X_Index),
unify_proc__build_call("index", [Y, Y_Index], Context, Call_Y_Index),
unify_proc__build_call("builtin_int_lt", [X_Index, Y_Index], Context,
Call_Less_Than),
unify_proc__build_call("builtin_int_gt", [X_Index, Y_Index], Context,
Call_Greater_Than),
{ create_atomic_unification(
Res, functor(cons(unqualified("<"), 0), []),
Context, explicit, [],
Return_Less_Than) },
{ create_atomic_unification(
Res, functor(cons(unqualified(">"), 0), []),
Context, explicit, [],
Return_Greater_Than) },
{ create_atomic_unification(Res, var(R), Context, explicit, [],
Return_R) },
unify_proc__generate_compare_cases(Ctors, R, X, Y, Context, Cases),
{ map__init(Empty) },
{ CasesGoal = disj(Cases, Empty) - GoalInfo },
unify_proc__build_call("compare_error", [], Context, Abort),
{ Goal = conj([
Call_X_Index,
Call_Y_Index,
if_then_else([], Call_Less_Than, Return_Less_Than,
if_then_else([], Call_Greater_Than, Return_Greater_Than,
if_then_else([], CasesGoal, Return_R, Abort, Empty
) - GoalInfo, Empty
) - GoalInfo, Empty
) - GoalInfo
]) - GoalInfo }.
/*
unify_proc__generate_compare_cases: for a type such as
:- type foo ---> f ; g(a) ; h(b, foo).
we want to generate code
(
X = f, % UnifyX_Goal
Y = f, % UnifyY_Goal
R = (=) % CompareArgs_Goal
;
X = g(X1),
Y = g(Y1),
compare(R, X1, Y1)
;
X = h(X1, X2),
Y = h(Y1, Y2),
( compare(R1, X1, Y1), R1 \= (=) ->
R = R1
;
compare(R, X2, Y2)
)
)
*/
:- pred unify_proc__generate_compare_cases(list(constructor), prog_var,
prog_var, prog_var, prog_context, list(hlds_goal),
unify_proc_info, unify_proc_info).
:- mode unify_proc__generate_compare_cases(in, in, in, in, in, out, in, out)
is det.
unify_proc__generate_compare_cases([], _R, _X, _Y, _Context, []) --> [].
unify_proc__generate_compare_cases([Ctor | Ctors], R, X, Y, Context,
[Case | Cases]) -->
unify_proc__generate_compare_case(Ctor, R, X, Y, Context, Case),
unify_proc__generate_compare_cases(Ctors, R, X, Y, Context, Cases).
:- pred unify_proc__generate_compare_case(constructor, prog_var, prog_var,
prog_var, prog_context, hlds_goal,
unify_proc_info, unify_proc_info).
:- mode unify_proc__generate_compare_case(in, in, in, in, in, out, in, out)
is det.
unify_proc__generate_compare_case(Ctor, R, X, Y, Context, Case) -->
{ Ctor = ctor(_ExistQVars, _Constraints, FunctorName, ArgTypes) },
{ list__length(ArgTypes, FunctorArity) },
{ FunctorConsId = cons(FunctorName, FunctorArity) },
unify_proc__make_fresh_vars(ArgTypes, Vars1),
unify_proc__make_fresh_vars(ArgTypes, Vars2),
{ create_atomic_unification(
X, functor(FunctorConsId, Vars1), Context, explicit, [],
UnifyX_Goal) },
{ create_atomic_unification(
Y, functor(FunctorConsId, Vars2), Context, explicit, [],
UnifyY_Goal) },
unify_proc__compare_args(Vars1, Vars2, R, Context, CompareArgs_Goal),
{ GoalList = [UnifyX_Goal, UnifyY_Goal, CompareArgs_Goal] },
{ goal_info_init(GoalInfo0) },
{ goal_info_set_context(GoalInfo0, Context,
GoalInfo) },
{ conj_list_to_goal(GoalList, GoalInfo, Case) }.
/* unify_proc__compare_args: for a constructor such as
h(list(int), foo, string)
we want to generate code
(
compare(R1, X1, Y1), % Do_Comparison
R1 \= (=) % Check_Not_Equal
->
R = R1 % Return_R1
;
compare(R2, X2, Y2),
R2 \= (=)
->
R = R2
;
compare(R, X3, Y3) % Return_Comparison
)
For a constructor with no arguments, we want to generate code
R = (=) % Return_Equal
*/
:- pred unify_proc__compare_args(list(prog_var), list(prog_var), prog_var,
prog_context, hlds_goal, unify_proc_info, unify_proc_info).
:- mode unify_proc__compare_args(in, in, in, in, out, in, out) is det.
unify_proc__compare_args([], [], R, Context, Return_Equal) -->
{ create_atomic_unification(
R, functor(cons(unqualified("="), 0), []),
Context, explicit, [],
Return_Equal) }.
unify_proc__compare_args([X|Xs], [Y|Ys], R, Context, Goal) -->
{ goal_info_init(GoalInfo0) },
{ goal_info_set_context(GoalInfo0, Context, GoalInfo) },
( { Xs = [], Ys = [] } ->
unify_proc__build_call("compare", [R, X, Y], Context, Goal)
;
{ mercury_public_builtin_module(MercuryBuiltin) },
{ construct_type(
qualified(MercuryBuiltin, "comparison_result") - 0,
[], ResType) },
unify_proc__info_new_var(ResType, R1),
unify_proc__build_call("compare", [R1, X, Y], Context,
Do_Comparison),
{ create_atomic_unification(
R1, functor(cons(unqualified("="), 0), []),
Context, explicit, [],
Check_Equal) },
{ Check_Not_Equal = not(Check_Equal) - GoalInfo },
{ create_atomic_unification(
R, var(R1), Context, explicit, [], Return_R1) },
{ Condition = conj([Do_Comparison, Check_Not_Equal])
- GoalInfo },
{ map__init(Empty) },
{ Goal = if_then_else([], Condition, Return_R1, ElseCase, Empty)
- GoalInfo},
unify_proc__compare_args(Xs, Ys, R, Context, ElseCase)
).
unify_proc__compare_args([], [_|_], _, _, _) -->
{ error("unify_proc__compare_args: length mismatch") }.
unify_proc__compare_args([_|_], [], _, _, _) -->
{ error("unify_proc__compare_args: length mismatch") }.
%-----------------------------------------------------------------------------%
:- pred unify_proc__build_call(string, list(prog_var), prog_context, hlds_goal,
unify_proc_info, unify_proc_info).
:- mode unify_proc__build_call(in, in, in, out, in, out) is det.
unify_proc__build_call(Name, ArgVars, Context, Goal) -->
unify_proc__info_get_module_info(ModuleInfo),
{ module_info_get_predicate_table(ModuleInfo, PredicateTable) },
{ list__length(ArgVars, Arity) },
%
% We assume that the special preds compare/3, index/2, and unify/2
% are the only public builtins called by code generated
% by this module.
%
{ special_pred_name_arity(_, Name, _, Arity) ->
mercury_public_builtin_module(MercuryBuiltin)
;
mercury_private_builtin_module(MercuryBuiltin)
},
{
predicate_table_search_pred_m_n_a(PredicateTable,
MercuryBuiltin, Name, Arity, [PredId])
->
IndexPredId = PredId
;
prog_out__sym_name_to_string(qualified(MercuryBuiltin, Name),
QualName),
string__int_to_string(Arity, ArityString),
string__append_list(["unify_proc__build_call: ",
"invalid/ambiguous pred `",
QualName, "/", ArityString, "'"],
ErrorMessage),
error(ErrorMessage)
},
{ hlds_pred__initial_proc_id(ModeId) },
{ Call = call(IndexPredId, ModeId, ArgVars, not_builtin,
no, unqualified(Name)) },
{ goal_info_init(GoalInfo0) },
{ goal_info_set_context(GoalInfo0, Context, GoalInfo) },
{ Goal = Call - GoalInfo }.
%-----------------------------------------------------------------------------%
:- pred unify_proc__make_fresh_vars_from_types(list(type), list(prog_var),
unify_proc_info, unify_proc_info).
:- mode unify_proc__make_fresh_vars_from_types(in, out, in, out) is det.
unify_proc__make_fresh_vars_from_types([], []) --> [].
unify_proc__make_fresh_vars_from_types([Type | Types], [Var | Vars]) -->
unify_proc__info_new_var(Type, Var),
unify_proc__make_fresh_vars_from_types(Types, Vars).
:- pred unify_proc__make_fresh_vars(list(constructor_arg), list(prog_var),
unify_proc_info, unify_proc_info).
:- mode unify_proc__make_fresh_vars(in, out, in, out) is det.
unify_proc__make_fresh_vars([], []) --> [].
unify_proc__make_fresh_vars([_Name - Type | Args], [Var | Vars]) -->
unify_proc__info_new_var(Type, Var),
unify_proc__make_fresh_vars(Args, Vars).
:- pred unify_proc__unify_var_lists(list(prog_var), list(prog_var),
list(hlds_goal)).
:- mode unify_proc__unify_var_lists(in, in, out) is det.
unify_proc__unify_var_lists([], [_|_], _) :-
error("unify_proc__unify_var_lists: length mismatch").
unify_proc__unify_var_lists([_|_], [], _) :-
error("unify_proc__unify_var_lists: length mismatch").
unify_proc__unify_var_lists([], [], []).
unify_proc__unify_var_lists([Var1 | Vars1], [Var2 | Vars2], [Goal | Goals]) :-
term__context_init(Context),
create_atomic_unification(Var1, var(Var2), Context, explicit, [],
Goal),
unify_proc__unify_var_lists(Vars1, Vars2, Goals).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% It's a pity that we don't have nested modules.
% :- begin_module unify_proc_info.
% :- interface.
:- type unify_proc_info.
:- pred unify_proc__info_init(module_info, unify_proc_info).
:- mode unify_proc__info_init(in, out) is det.
:- pred unify_proc__info_new_var(type, prog_var,
unify_proc_info, unify_proc_info).
:- mode unify_proc__info_new_var(in, out, in, out) is det.
:- pred unify_proc__info_extract(unify_proc_info, prog_varset,
map(prog_var, type)).
:- mode unify_proc__info_extract(in, out, out) is det.
:- pred unify_proc__info_get_varset(prog_varset,
unify_proc_info, unify_proc_info).
:- mode unify_proc__info_get_varset(out, in, out) is det.
:- pred unify_proc__info_set_varset(prog_varset,
unify_proc_info, unify_proc_info).
:- mode unify_proc__info_set_varset(in, in, out) is det.
:- pred unify_proc__info_get_types(map(prog_var, type),
unify_proc_info, unify_proc_info).
:- mode unify_proc__info_get_types(out, in, out) is det.
:- pred unify_proc__info_set_types(map(prog_var, type),
unify_proc_info, unify_proc_info).
:- mode unify_proc__info_set_types(in, in, out) is det.
:- pred unify_proc__info_get_module_info(module_info,
unify_proc_info, unify_proc_info).
:- mode unify_proc__info_get_module_info(out, in, out) is det.
%-----------------------------------------------------------------------------%
% :- implementation
:- type unify_proc_info
---> unify_proc_info(
prog_varset,
map(prog_var, type),
module_info
).
unify_proc__info_init(ModuleInfo, VarTypeInfo) :-
varset__init(VarSet),
map__init(Types),
VarTypeInfo = unify_proc_info(VarSet, Types, ModuleInfo).
unify_proc__info_new_var(Type, Var,
unify_proc_info(VarSet0, Types0, ModuleInfo),
unify_proc_info(VarSet, Types, ModuleInfo)) :-
varset__new_var(VarSet0, Var, VarSet),
map__det_insert(Types0, Var, Type, Types).
unify_proc__info_extract(unify_proc_info(VarSet, Types, _ModuleInfo),
VarSet, Types).
unify_proc__info_get_varset(VarSet, ProcInfo, ProcInfo) :-
ProcInfo = unify_proc_info(VarSet, _Types, _ModuleInfo).
unify_proc__info_set_varset(VarSet, unify_proc_info(_VarSet, Types, ModuleInfo),
unify_proc_info(VarSet, Types, ModuleInfo)).
unify_proc__info_get_types(Types, ProcInfo, ProcInfo) :-
ProcInfo = unify_proc_info(_VarSet, Types, _ModuleInfo).
unify_proc__info_set_types(Types, unify_proc_info(VarSet, _Types, ModuleInfo),
unify_proc_info(VarSet, Types, ModuleInfo)).
unify_proc__info_get_module_info(ModuleInfo, VarTypeInfo, VarTypeInfo) :-
VarTypeInfo = unify_proc_info(_VarSet, _Types, ModuleInfo).
% :- end_module unify_proc_info.
%-----------------------------------------------------------------------------%