Files
mercury/compiler/type_util.m
Simon Taylor 79dcbbef15 User-guided type specialization.
Estimated hours taken: 60

User-guided type specialization.

compiler/prog_data.m:
compiler/prog_io_pragma.m:
compiler/modules.m:
compiler/module_qual.m:
compiler/mercury_to_mercury.m:
	Handle `:- pragma type_spec'.

compiler/prog_io_pragma.m:
	Factor out some common code to parse predicate names with arguments.

compiler/hlds_module.m:
	Added a field to the module_sub_info to hold information about
	user-requested type specializations, filled in by make_hlds.m
	and not used by anything after higher_order.m.

compiler/make_hlds.m:
	For each `:- pragma type_spec' declaration, introduce a new predicate
	which just calls the predicate to be specialized with the
	specified argument types. This forces higher_order.m to produce
	the specialized versions.

compiler/higher_order.m:
	Process the user-requested type specializations first to ensure
	that they get the correct names.
	Allow partial matches against user-specified versions, e.g.
		map__lookup(map(int, list(int)), int, list(int)) matches
		map__lookup(map(int, V), int, V).
	Perform specialization where a typeclass constraint matches a
	known instance, but the construction of the typeclass_info is
	done in the calling module.
	Give slightly more informative progress messages.

compiler/dead_proc_elim.m:
	Remove specializations for dead procedures.

compiler/prog_io_util.m:
	Change the definition of the `maybe1' and `maybe_functor' types
	to avoid the need for copying to convert between `maybe1'
	and `maybe1(generic)'.
	Changed the interface of `make_pred_name_with_context' to allow
	creation of predicate names for type specializations which describe
	the type substitution.

compiler/make_hlds.m:
compiler/prog_io_pragma.m:
	Make the specification of pragma declarations in error
	messages consistent. (There are probably some more to
	be fixed elsewhere for termination and tabling).

compiler/intermod.m:
	Write type specialization pragmas for predicates declared
	in `.opt' files.

compiler/mercury_to_mercury.m:
	Export `mercury_output_item' for use by intermod.m.

compiler/options.m:
	Add an option `--user-guided-type-specialization' enabled
	with `-O2' or higher.

compiler/handle_options.m:
	`--type-specialization' implies `--user-guided-type-specialization'.

compiler/hlds_goal.m:
	Add predicates to construct constants. These are duplicated
	in several other places, I'll fix that as a separate change.

compiler/type_util.m:
	Added functions `int_type/0', `string_type/0', `float_type/0'
	and `char_type/0' which return the builtin types.
	These are duplicated in several other places,
	I'll fix that as a separate change.

library/private_builtin.m:
	Added `instance_constraint_from_typeclass_info/3' to extract
	the typeclass_infos for a constraint on an instance declaration.
	This is useful for specializing class method calls.
	Added `thread_safe' to various `:- pragma c_code's.
	Added `:- pragma inline' declarations for `builtin_compare_*', which
	are important for user-guided type specialization. (`builtin_unify_*'
	are simple enough to go in the `.opt' files automatically).

compiler/polymorphism.m:
	`instance_constraint_from_typeclass_info/3' does not need type_infos.
	Add `instance_constraint_from_typeclass_info/3' to the
	list of `typeclass_info_manipulator's which higher_order.m
	can interpret.

NEWS:
doc/reference_manual.texi:
doc/user_guide.texi
	Document the new pragma and option.

tests/invalid/Mmakefile:
tests/invalid/type_spec.m:
tests/invalid/type_spec.err_exp:
	Test error reporting for invalid type specializations.

tests/hard_coded/Mmakefile:
tests/invalid/type_spec.m:
tests/invalid/type_spec.exp:
	Test type specialization.
1999-04-23 01:03:51 +00:00

963 lines
32 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1994-1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% File: type_util.m.
% Main author: fjh.
% This file provides some utility predicates which operate on types.
% It is used by various stages of the compilation after type-checking,
% include the mode checker and the code generator.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- module type_util.
:- interface.
:- import_module hlds_module, hlds_pred, hlds_data, prog_data.
:- import_module term.
:- import_module list, map.
%-----------------------------------------------------------------------------%
% Succeed iff type is an "atomic" type - one which can be
% unified using a simple_test rather than a complicated_unify.
:- pred type_is_atomic(type, module_info).
:- mode type_is_atomic(in, in) is semidet.
% type_is_higher_order(Type, PredOrFunc, ArgTypes) succeeds iff
% Type is a higher-order predicate or function type with the specified
% argument types (for functions, the return type is appended to the
% end of the argument types).
:- pred type_is_higher_order(type, pred_or_func, list(type)).
:- mode type_is_higher_order(in, out, out) is semidet.
% type_id_is_higher_order(TypeId, PredOrFunc) succeeds iff
% TypeId is a higher-order predicate or function type.
:- pred type_id_is_higher_order(type_id, pred_or_func).
:- mode type_id_is_higher_order(in, out) is semidet.
:- pred type_is_aditi_state(type).
:- mode type_is_aditi_state(in) is semidet.
% A test for types that are defined by hand (not including
% the builtin types). Don't generate type_ctor_*
% for these types.
:- pred type_id_is_hand_defined(type_id).
:- mode type_id_is_hand_defined(in) is semidet.
% Given a type, determine what sort of type it is.
:- pred classify_type(type, module_info, builtin_type).
:- mode classify_type(in, in, out) is det.
:- type builtin_type ---> int_type
; char_type
; str_type
; float_type
; pred_type
; enum_type
; polymorphic_type
; user_type.
% Given a non-variable type, return its type-id and argument types.
:- pred type_to_type_id(type, type_id, list(type)).
:- mode type_to_type_id(in, out, out) is semidet.
% Given a variable type, return its type variable.
:- pred type_util__var(type, tvar).
:- mode type_util__var(in, out) is semidet.
:- mode type_util__var(out, in) is det.
% Given a type_id, a list of argument types and maybe a context,
% construct a type.
:- pred construct_type(type_id, list(type), (type)).
:- mode construct_type(in, in, out) is det.
:- pred construct_type(type_id, list(type), prog_context, (type)).
:- mode construct_type(in, in, in, out) is det.
% Construct builtin types.
:- func int_type = (type).
:- func string_type = (type).
:- func float_type = (type).
:- func char_type = (type).
% Given a constant and an arity, return a type_id.
% Fails if the constant is not an atom.
:- pred make_type_id(const, int, type_id).
:- mode make_type_id(in, in, out) is semidet.
% Given a type_id, look up its module/name/arity
:- pred type_util__type_id_module(module_info, type_id, module_name).
:- mode type_util__type_id_module(in, in, out) is det.
:- pred type_util__type_id_name(module_info, type_id, string).
:- mode type_util__type_id_name(in, in, out) is det.
:- pred type_util__type_id_arity(module_info, type_id, arity).
:- mode type_util__type_id_arity(in, in, out) is det.
% If the type is a du type, return the list of its constructors.
:- pred type_constructors(type, module_info, list(constructor)).
:- mode type_constructors(in, in, out) is semidet.
% Work out the types of the arguments of a functor.
:- pred type_util__get_cons_id_arg_types(module_info::in, (type)::in,
cons_id::in, list(type)::out) is det.
% Given a list of constructors for a type,
% check whether that type is a no_tag type
% (i.e. one with only one constructor, and
% whose one constructor has only one argument,
% and which is not private_builtin:type_info/1),
% and if so, return its constructor symbol and argument type.
:- pred type_is_no_tag_type(list(constructor), sym_name, type).
:- mode type_is_no_tag_type(in, out, out) is semidet.
% Unify (with occurs check) two types with respect to a type
% substitution and update the type bindings.
% The third argument is a list of type variables which cannot
% be bound (i.e. head type variables).
:- pred type_unify(type, type, list(tvar), tsubst, tsubst).
:- mode type_unify(in, in, in, in, out) is semidet.
:- pred type_unify_list(list(type), list(type), list(tvar), tsubst, tsubst).
:- mode type_unify_list(in, in, in, in, out) is semidet.
% Return a list of the type variables of a type.
:- pred type_util__vars(type, list(tvar)).
:- mode type_util__vars(in, out) is det.
% type_list_subsumes(TypesA, TypesB, Subst) succeeds iff the list
% TypesA subsumes (is more general than) TypesB, producing a
% type substitution which when applied to TypesA will give TypesB.
:- pred type_list_subsumes(list(type), list(type), tsubst).
:- mode type_list_subsumes(in, in, out) is semidet.
% apply a type substitution (i.e. map from tvar -> type)
% to all the types in a variable typing (i.e. map from var -> type).
:- pred apply_substitution_to_type_map(map(prog_var, type), tsubst,
map(prog_var, type)).
:- mode apply_substitution_to_type_map(in, in, out) is det.
% same thing as above, except for a recursive substitution
% (i.e. we keep applying the substitution recursively until
% there are no more changes).
:- pred apply_rec_substitution_to_type_map(map(prog_var, type), tsubst,
map(prog_var, type)).
:- mode apply_rec_substitution_to_type_map(in, in, out) is det.
% Update a map from tvar to type_info_locn, using the type renaming
% and substitution to rename tvars and a variable substitution to
% rename vars. The type renaming is applied before the type
% substitution.
%
% If tvar maps to a another type variable, we keep the new
% variable, if it maps to a type, we remove it from the map.
:- pred apply_substitutions_to_var_map(map(tvar, type_info_locn), tsubst,
map(tvar, type), map(prog_var, prog_var), map(tvar, type_info_locn)).
:- mode apply_substitutions_to_var_map(in, in, in, in, out) is det.
% Update a map from class_constraint to var, using the type renaming
% and substitution to rename tvars and a variable substition to
% rename vars. The type renaming is applied before the type
% substitution.
:- pred apply_substitutions_to_typeclass_var_map(
map(class_constraint, prog_var), tsubst, map(tvar, type),
map(prog_var, prog_var), map(class_constraint, prog_var)).
:- mode apply_substitutions_to_typeclass_var_map(in, in, in, in, out) is det.
:- pred apply_rec_subst_to_constraints(tsubst, class_constraints,
class_constraints).
:- mode apply_rec_subst_to_constraints(in, in, out) is det.
:- pred apply_rec_subst_to_constraint_list(tsubst,
list(class_constraint), list(class_constraint)).
:- mode apply_rec_subst_to_constraint_list(in, in, out) is det.
:- pred apply_rec_subst_to_constraint(tsubst, class_constraint,
class_constraint).
:- mode apply_rec_subst_to_constraint(in, in, out) is det.
:- pred apply_subst_to_constraints(tsubst, class_constraints,
class_constraints).
:- mode apply_subst_to_constraints(in, in, out) is det.
:- pred apply_subst_to_constraint_list(tsubst, list(class_constraint),
list(class_constraint)).
:- mode apply_subst_to_constraint_list(in, in, out) is det.
:- pred apply_subst_to_constraint(tsubst, class_constraint,
class_constraint).
:- mode apply_subst_to_constraint(in, in, out) is det.
:- pred apply_subst_to_constraint_proofs(tsubst,
map(class_constraint, constraint_proof),
map(class_constraint, constraint_proof)).
:- mode apply_subst_to_constraint_proofs(in, in, out) is det.
:- pred apply_rec_subst_to_constraint_proofs(tsubst,
map(class_constraint, constraint_proof),
map(class_constraint, constraint_proof)).
:- mode apply_rec_subst_to_constraint_proofs(in, in, out) is det.
:- pred apply_variable_renaming_to_constraints(map(tvar, tvar),
class_constraints, class_constraints).
:- mode apply_variable_renaming_to_constraints(in, in, out) is det.
:- pred apply_variable_renaming_to_constraint_list(map(tvar, tvar),
list(class_constraint), list(class_constraint)).
:- mode apply_variable_renaming_to_constraint_list(in, in, out) is det.
:- pred apply_variable_renaming_to_constraint(map(tvar, tvar),
class_constraint, class_constraint).
:- mode apply_variable_renaming_to_constraint(in, in, out) is det.
% Apply a renaming (partial map) to a list.
% Useful for applying a variable renaming to a list of variables.
:- pred apply_partial_map_to_list(list(T), map(T, T), list(T)).
:- mode apply_partial_map_to_list(in, in, out) is det.
% strip out the prog_context fields, replacing them with empty
% prog_context (as obtained by term__context_init/1)
% in a type or list of types
:- pred strip_prog_contexts(list(term(T))::in, list(term(T))::out) is det.
:- pred strip_prog_context(term(T)::in, term(T)::out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module bool, require, std_util.
:- import_module prog_io, prog_io_goal, prog_util.
type_util__type_id_module(_ModuleInfo, TypeName - _Arity, ModuleName) :-
sym_name_get_module_name(TypeName, unqualified(""), ModuleName).
type_util__type_id_name(_ModuleInfo, Name0 - _Arity, Name) :-
unqualify_name(Name0, Name).
type_util__type_id_arity(_ModuleInfo, _Name - Arity, Arity).
type_is_atomic(Type, ModuleInfo) :-
classify_type(Type, ModuleInfo, BuiltinType),
BuiltinType \= polymorphic_type,
BuiltinType \= pred_type,
BuiltinType \= user_type.
type_util__var(term__variable(Var), Var).
type_id_is_hand_defined(qualified(PrivateBuiltin, "type_info") - 1) :-
mercury_private_builtin_module(PrivateBuiltin).
type_id_is_hand_defined(qualified(PrivateBuiltin, "type_ctor_info") - 1) :-
mercury_private_builtin_module(PrivateBuiltin).
type_id_is_hand_defined(qualified(PrivateBuiltin, "typeclass_info") - 1) :-
mercury_private_builtin_module(PrivateBuiltin).
type_id_is_hand_defined(qualified(PrivateBuiltin, "base_typeclass_info") - 1) :-
mercury_private_builtin_module(PrivateBuiltin).
%-----------------------------------------------------------------------------%
% Given a type, determine what sort of type it is.
classify_type(VarType, ModuleInfo, Type) :-
( type_to_type_id(VarType, TypeId, _) ->
( TypeId = unqualified("character") - 0 ->
Type = char_type
; TypeId = unqualified("int") - 0 ->
Type = int_type
; TypeId = unqualified("float") - 0 ->
Type = float_type
; TypeId = unqualified("string") - 0 ->
Type = str_type
; type_id_is_higher_order(TypeId, _) ->
Type = pred_type
; type_id_is_enumeration(TypeId, ModuleInfo) ->
Type = enum_type
;
Type = user_type
)
;
Type = polymorphic_type
).
type_is_higher_order(Type, PredOrFunc, PredArgTypes) :-
(
Type = term__functor(term__atom("pred"),
PredArgTypes, _),
PredOrFunc = predicate
;
Type = term__functor(term__atom("="),
[term__functor(term__atom("func"),
FuncArgTypes, _),
FuncRetType], _),
list__append(FuncArgTypes, [FuncRetType], PredArgTypes),
PredOrFunc = function
).
type_id_is_higher_order(SymName - Arity, PredOrFunc) :-
unqualify_name(SymName, TypeName),
(
TypeName = "pred",
PredOrFunc = predicate
;
TypeName = "=",
Arity = 2,
PredOrFunc = function
).
type_is_aditi_state(Type) :-
type_to_type_id(Type,
qualified(unqualified("aditi"), "state") - 0, []).
:- pred type_id_is_enumeration(type_id, module_info).
:- mode type_id_is_enumeration(in, in) is semidet.
type_id_is_enumeration(TypeId, ModuleInfo) :-
module_info_types(ModuleInfo, TypeDefnTable),
map__search(TypeDefnTable, TypeId, TypeDefn),
hlds_data__get_type_defn_body(TypeDefn, TypeBody),
TypeBody = du_type(_, _, IsEnum, _),
IsEnum = yes.
type_to_type_id(Type, SymName - Arity, Args) :-
sym_name_and_args(Type, SymName, Args1),
% `private_builtin:constraint' is introduced by polymorphism, and
% should only appear as the argument of a `typeclass:info/1' type.
% It behaves sort of like a type variable, so according to the
% specification of `type_to_type_id', it should cause failure.
% There isn't a definition in the type table.
mercury_private_builtin_module(PrivateBuiltin),
SymName \= qualified(PrivateBuiltin, "constraint"),
% higher order types may have representations where
% their arguments don't directly correspond to the
% arguments of the term.
(
type_is_higher_order(Type, _, PredArgTypes)
->
Args = PredArgTypes,
list__length(Args1, Arity) % functions have arity 2,
% (they are =/2)
;
Args = Args1,
list__length(Args, Arity)
).
construct_type(TypeId, Args, Type) :-
term__context_init(Context),
construct_type(TypeId, Args, Context, Type).
construct_type(TypeId, Args, Context, Type) :-
(
type_id_is_higher_order(TypeId, PredOrFunc)
->
(
PredOrFunc = predicate,
NewArgs = Args
;
PredOrFunc = function,
pred_args_to_func_args(Args, FuncArgTypes, FuncRetType),
NewArgs = [term__functor(term__atom("func"),
FuncArgTypes, Context),
FuncRetType]
)
;
NewArgs = Args
),
TypeId = SymName - _,
construct_qualified_term(SymName, NewArgs, Context, Type).
int_type = Type :- construct_type(unqualified("int") - 0, [], Type).
string_type = Type :- construct_type(unqualified("string") - 0, [], Type).
float_type = Type :- construct_type(unqualified("float") - 0, [], Type).
char_type = Type :- construct_type(unqualified("character") - 0, [], Type).
%-----------------------------------------------------------------------------%
% Given a constant and an arity, return a type_id.
% This really ought to take a name and an arity -
% use of integers/floats/strings as type names should
% be rejected by the parser in prog_io.m, not in module_qual.m.
make_type_id(term__atom(Name), Arity, unqualified(Name) - Arity).
%-----------------------------------------------------------------------------%
% If the type is a du type, return the list of its constructors.
type_constructors(Type, ModuleInfo, Constructors) :-
type_to_type_id(Type, TypeId, TypeArgs),
module_info_types(ModuleInfo, TypeTable),
map__search(TypeTable, TypeId, TypeDefn),
hlds_data__get_type_defn_tparams(TypeDefn, TypeParams),
hlds_data__get_type_defn_body(TypeDefn, TypeBody),
TypeBody = du_type(Constructors0, _, _, _),
substitute_type_args(TypeParams, TypeArgs, Constructors0,
Constructors).
%-----------------------------------------------------------------------------%
type_util__get_cons_id_arg_types(ModuleInfo, VarType, ConsId, ArgTypes) :-
(
type_to_type_id(VarType, TypeId, TypeArgs),
module_info_ctors(ModuleInfo, Ctors),
% will fail for builtin cons_ids.
map__search(Ctors, ConsId, ConsDefns),
CorrectCons = lambda([ConsDefn::in] is semidet, (
ConsDefn = hlds_cons_defn(_, _, _, TypeId, _)
)),
list__filter(CorrectCons, ConsDefns,
[hlds_cons_defn(_, _, ArgTypes0, _, _)]),
ArgTypes0 \= []
->
module_info_types(ModuleInfo, Types),
map__lookup(Types, TypeId, TypeDefn),
hlds_data__get_type_defn_tparams(TypeDefn, TypeDefnParams),
term__term_list_to_var_list(TypeDefnParams, TypeDefnVars),
term__substitute_corresponding_list(TypeDefnVars, TypeArgs,
ArgTypes0, ArgTypes)
;
ArgTypes = []
).
%-----------------------------------------------------------------------------%
% The checks for type_info and type_ctor_info
% are needed because those types lie about their
% arity; it might be cleaner to change that in
% private_builtin.m, but that would cause some
% bootstrapping difficulties.
% It might be slightly better to check for private_builtin:type_info
% etc. rather than just checking the unqualified type name,
% but I found it difficult to verify that the constructors
% would always be fully module-qualified at points where
% type_is_no_tag_type/3 is called.
type_is_no_tag_type(Ctors, Ctor, Type) :-
Ctors = [SingleCtor],
SingleCtor = ctor(ExistQVars, _Constraints, Ctor, [_FieldName - Type]),
ExistQVars = [],
unqualify_name(Ctor, Name),
Name \= "type_info",
Name \= "type_ctor_info",
Name \= "typeclass_info",
Name \= "base_typeclass_info".
%-----------------------------------------------------------------------------%
% Substitute the actual values of the type parameters
% in list of constructors, for a particular instance of
% a polymorphic type.
:- pred substitute_type_args(list(type_param), list(type),
list(constructor), list(constructor)).
:- mode substitute_type_args(in, in, in, out) is det.
substitute_type_args(TypeParams0, TypeArgs, Constructors0, Constructors) :-
( TypeParams0 = [] ->
Constructors = Constructors0
;
term__term_list_to_var_list(TypeParams0, TypeParams),
map__from_corresponding_lists(TypeParams, TypeArgs, Subst),
substitute_type_args_2(Constructors0, Subst, Constructors)
).
:- pred substitute_type_args_2(list(constructor), tsubst,
list(constructor)).
:- mode substitute_type_args_2(in, in, out) is det.
substitute_type_args_2([], _, []).
substitute_type_args_2([Ctor0| Ctors0], Subst, [Ctor | Ctors]) :-
% Note: prog_io.m ensures that the existentially quantified
% variables, if any, are distinct from the parameters,
% and that the (existential) constraints can only contain
% existentially quantified variables, so there's
% no need to worry about applying the substitution to
% ExistQVars or Constraints
Ctor0 = ctor(ExistQVars, Constraints, Name, Args0),
Ctor = ctor(ExistQVars, Constraints, Name, Args),
substitute_type_args_3(Args0, Subst, Args),
substitute_type_args_2(Ctors0, Subst, Ctors).
:- pred substitute_type_args_3(list(constructor_arg), tsubst,
list(constructor_arg)).
:- mode substitute_type_args_3(in, in, out) is det.
substitute_type_args_3([], _, []).
substitute_type_args_3([Name - Arg0 | Args0], Subst, [Name - Arg | Args]) :-
term__apply_substitution(Arg0, Subst, Arg),
substitute_type_args_3(Args0, Subst, Args).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% Check whether TypesA subsumes TypesB, and if so return
% a type substitution that will map from TypesA to TypesB.
type_list_subsumes(TypesA, TypesB, TypeSubst) :-
%
% TypesA subsumes TypesB iff TypesA can be unified with TypesB
% without binding any of the type variables in TypesB.
%
term__vars_list(TypesB, TypesBVars),
map__init(TypeSubst0),
type_unify_list(TypesA, TypesB, TypesBVars, TypeSubst0, TypeSubst).
%-----------------------------------------------------------------------------%
% Types are represented as terms, but we can't just use term__unify
% because we need to avoid binding any of the "head type params"
% (the type variables that occur in the head of the clause),
% and because one day we might want to handle equivalent types.
type_unify(term__variable(X), term__variable(Y), HeadTypeParams,
Bindings0, Bindings) :-
( list__member(Y, HeadTypeParams) ->
type_unify_head_type_param(X, Y, HeadTypeParams,
Bindings0, Bindings)
; list__member(X, HeadTypeParams) ->
type_unify_head_type_param(Y, X, HeadTypeParams,
Bindings0, Bindings)
; map__search(Bindings0, X, BindingOfX) ->
( map__search(Bindings0, Y, BindingOfY) ->
% both X and Y already have bindings - just
% unify the types they are bound to
type_unify(BindingOfX, BindingOfY, HeadTypeParams,
Bindings0, Bindings)
;
term__apply_rec_substitution(BindingOfX,
Bindings0, SubstBindingOfX),
% Y is a type variable which hasn't been bound yet
( SubstBindingOfX = term__variable(Y) ->
Bindings = Bindings0
;
\+ term__occurs(SubstBindingOfX, Y,
Bindings0),
map__det_insert(Bindings0, Y, SubstBindingOfX,
Bindings)
)
)
;
( map__search(Bindings0, Y, BindingOfY) ->
term__apply_rec_substitution(BindingOfY,
Bindings0, SubstBindingOfY),
% X is a type variable which hasn't been bound yet
( SubstBindingOfY = term__variable(X) ->
Bindings = Bindings0
;
\+ term__occurs(SubstBindingOfY, X,
Bindings0),
map__det_insert(Bindings0, X, SubstBindingOfY,
Bindings)
)
;
% both X and Y are unbound type variables -
% bind one to the other
( X = Y ->
Bindings = Bindings0
;
map__det_insert(Bindings0, X,
term__variable(Y), Bindings)
)
)
).
type_unify(term__variable(X), term__functor(F, As, C), HeadTypeParams,
Bindings0, Bindings) :-
(
map__search(Bindings0, X, BindingOfX)
->
type_unify(BindingOfX, term__functor(F, As, C),
HeadTypeParams, Bindings0, Bindings)
;
\+ term__occurs_list(As, X, Bindings0),
\+ list__member(X, HeadTypeParams),
map__det_insert(Bindings0, X, term__functor(F, As, C),
Bindings)
).
type_unify(term__functor(F, As, C), term__variable(X), HeadTypeParams,
Bindings0, Bindings) :-
(
map__search(Bindings0, X, BindingOfX)
->
type_unify(term__functor(F, As, C), BindingOfX,
HeadTypeParams, Bindings0, Bindings)
;
\+ term__occurs_list(As, X, Bindings0),
\+ list__member(X, HeadTypeParams),
map__det_insert(Bindings0, X, term__functor(F, As, C),
Bindings)
).
type_unify(term__functor(FX, AsX, _CX), term__functor(FY, AsY, _CY),
HeadTypeParams, Bindings0, Bindings) :-
list__length(AsX, ArityX),
list__length(AsY, ArityY),
(
FX = FY,
ArityX = ArityY
->
type_unify_list(AsX, AsY, HeadTypeParams, Bindings0, Bindings)
;
fail
).
% XXX Instead of just failing if the functors' name/arity is different,
% we should check here if these types have been defined
% to be equivalent using equivalence types. But this
% is difficult because (1) it causes typevarset synchronization
% problems, and (2) the relevant variables TypeInfo, TVarSet0, TVarSet
% haven't been passed in to here.
/*******
...
;
replace_eqv_type(FX, ArityX, AsX, EqvType)
->
type_unify(EqvType, term__functor(FY, AsY, CY),
HeadTypeParams, Bindings0, Bindings)
;
replace_eqv_type(FY, ArityY, AsY, EqvType)
->
type_unify(term__functor(FX, AsX, CX), EqvType,
HeadTypeParams, Bindings0, Bindings)
;
fail
).
:- pred replace_eqv_type(const, int, list(type), type).
:- mode replace_eqv_type(in, in, in, out) is semidet.
replace_eqv_type(Functor, Arity, Args, EqvType) :-
% XXX magically_obtain(TypeTable, TVarSet0, TVarSet)
make_type_id(Functor, Arity, TypeId),
map__search(TypeTable, TypeId, TypeDefn),
TypeDefn = hlds_type_defn(TypeVarSet, TypeParams0,
eqv_type(EqvType0), _Condition, Context, _Status),
varset__merge(TVarSet0, TypeVarSet, [EqvType0 | TypeParams0],
TVarSet, [EqvType1, TypeParams1]),
type_param_to_var_list(TypeParams1, TypeParams),
term__substitute_corresponding(EqvType1, TypeParams, AsX,
EqvType).
******/
type_unify_list([], [], _) --> [].
type_unify_list([X | Xs], [Y | Ys], HeadTypeParams) -->
type_unify(X, Y, HeadTypeParams),
type_unify_list(Xs, Ys, HeadTypeParams).
:- pred type_unify_head_type_param(tvar, tvar, list(tvar), tsubst, tsubst).
:- mode type_unify_head_type_param(in, in, in, in, out) is semidet.
type_unify_head_type_param(Var, HeadVar, HeadTypeParams, Bindings0,
Bindings) :-
( map__search(Bindings0, Var, BindingOfVar) ->
BindingOfVar = term__variable(Var2),
type_unify_head_type_param(Var2, HeadVar, HeadTypeParams,
Bindings0, Bindings)
;
( Var = HeadVar ->
Bindings = Bindings0
;
\+ list__member(Var, HeadTypeParams),
map__det_insert(Bindings0, Var,
term__variable(HeadVar), Bindings)
)
).
%-----------------------------------------------------------------------------%
type_util__vars(Type, Tvars) :-
term__vars(Type, Tvars).
%-----------------------------------------------------------------------------%
apply_substitution_to_type_map(VarTypes0, Subst, VarTypes) :-
% optimize the common case of an empty type substitution
( map__is_empty(Subst) ->
VarTypes = VarTypes0
;
map__keys(VarTypes0, Vars),
apply_substitution_to_type_map_2(Vars, VarTypes0, Subst,
VarTypes)
).
:- pred apply_substitution_to_type_map_2(list(prog_var)::in,
map(prog_var, type)::in, tsubst::in, map(prog_var, type)::out)
is det.
apply_substitution_to_type_map_2([], VarTypes, _Subst, VarTypes).
apply_substitution_to_type_map_2([Var | Vars], VarTypes0, Subst,
VarTypes) :-
map__lookup(VarTypes0, Var, VarType0),
term__apply_substitution(VarType0, Subst, VarType),
map__det_update(VarTypes0, Var, VarType, VarTypes1),
apply_substitution_to_type_map_2(Vars, VarTypes1, Subst, VarTypes).
%-----------------------------------------------------------------------------%
apply_rec_substitution_to_type_map(VarTypes0, Subst, VarTypes) :-
% optimize the common case of an empty type substitution
( map__is_empty(Subst) ->
VarTypes = VarTypes0
;
map__keys(VarTypes0, Vars),
apply_rec_substitution_to_type_map_2(Vars, VarTypes0, Subst,
VarTypes)
).
:- pred apply_rec_substitution_to_type_map_2(list(prog_var)::in,
map(prog_var, type)::in, tsubst::in, map(prog_var, type)::out)
is det.
apply_rec_substitution_to_type_map_2([], VarTypes, _Subst, VarTypes).
apply_rec_substitution_to_type_map_2([Var | Vars], VarTypes0, Subst,
VarTypes) :-
map__lookup(VarTypes0, Var, VarType0),
term__apply_rec_substitution(VarType0, Subst, VarType),
map__det_update(VarTypes0, Var, VarType, VarTypes1),
apply_rec_substitution_to_type_map_2(Vars, VarTypes1, Subst, VarTypes).
%-----------------------------------------------------------------------------%
apply_substitutions_to_var_map(VarMap0, TRenaming, TSubst, Subst, VarMap) :-
% optimize the common case of empty substitutions
(
map__is_empty(Subst),
map__is_empty(TSubst),
map__is_empty(TRenaming)
->
VarMap = VarMap0
;
map__keys(VarMap0, TVars),
map__init(NewVarMap),
apply_substitutions_to_var_map_2(TVars, VarMap0,
TRenaming, TSubst, Subst, NewVarMap, VarMap)
).
:- pred apply_substitutions_to_var_map_2(list(tvar)::in, map(tvar,
type_info_locn)::in, tsubst::in, map(tvar, type)::in,
map(prog_var, prog_var)::in, map(tvar, type_info_locn)::in,
map(tvar, type_info_locn)::out) is det.
apply_substitutions_to_var_map_2([], _VarMap0, _, _, _, NewVarMap, NewVarMap).
apply_substitutions_to_var_map_2([TVar | TVars], VarMap0, TRenaming,
TSubst, VarSubst, NewVarMap0, NewVarMap) :-
map__lookup(VarMap0, TVar, Locn),
type_info_locn_var(Locn, Var),
% find the new var, if there is one
( map__search(VarSubst, Var, NewVar0) ->
NewVar = NewVar0
;
NewVar = Var
),
type_info_locn_set_var(Locn, NewVar, NewLocn),
% find the new tvar, if there is one, otherwise just
% create the old var as a type variable.
(
map__search(TRenaming, TVar, NewTVar0)
->
( NewTVar0 = term__variable(NewTVar1) ->
NewTVar2 = NewTVar1
;
% varset__merge_subst only returns var->var mappings,
% never var->term.
error(
"apply_substitution_to_var_map_2: weird type renaming")
)
;
% The variable wasn't renamed.
NewTVar2 = TVar
),
term__apply_rec_substitution(term__variable(NewTVar2),
TSubst, NewType),
% if the tvar is still a variable, insert it into the
% map with the new var.
( type_util__var(NewType, NewTVar) ->
% Don't abort if two old type variables
% map to the same new type variable.
map__set(NewVarMap0, NewTVar, NewLocn, NewVarMap1)
;
NewVarMap1 = NewVarMap0
),
apply_substitutions_to_var_map_2(TVars, VarMap0, TRenaming,
TSubst, VarSubst, NewVarMap1, NewVarMap).
%-----------------------------------------------------------------------------%
apply_substitutions_to_typeclass_var_map(VarMap0,
TRenaming, TSubst, Subst, VarMap) :-
map__to_assoc_list(VarMap0, VarAL0),
list__map(apply_substitutions_to_typeclass_var_map_2(TRenaming,
TSubst, Subst), VarAL0, VarAL),
map__from_assoc_list(VarAL, VarMap).
:- pred apply_substitutions_to_typeclass_var_map_2(tsubst, map(tvar, type),
map(prog_var, prog_var), pair(class_constraint, prog_var),
pair(class_constraint, prog_var)).
:- mode apply_substitutions_to_typeclass_var_map_2(in, in,
in, in, out) is det.
apply_substitutions_to_typeclass_var_map_2(TRenaming, TSubst, VarRenaming,
Constraint0 - Var0, Constraint - Var) :-
apply_subst_to_constraint(TRenaming, Constraint0, Constraint1),
apply_rec_subst_to_constraint(TSubst, Constraint1, Constraint),
( map__search(VarRenaming, Var0, Var1) ->
Var = Var1
;
Var = Var0
).
%-----------------------------------------------------------------------------%
apply_rec_subst_to_constraints(Subst, Constraints0, Constraints) :-
Constraints0 = constraints(UnivCs0, ExistCs0),
apply_rec_subst_to_constraint_list(Subst, UnivCs0, UnivCs),
apply_rec_subst_to_constraint_list(Subst, ExistCs0, ExistCs),
Constraints = constraints(UnivCs, ExistCs).
apply_rec_subst_to_constraint_list(Subst, Constraints0, Constraints) :-
list__map(apply_rec_subst_to_constraint(Subst), Constraints0,
Constraints).
apply_rec_subst_to_constraint(Subst, Constraint0, Constraint) :-
Constraint0 = constraint(ClassName, Types0),
term__apply_rec_substitution_to_list(Types0, Subst, Types1),
% we need to maintain the invariant that types in class constraints
% do not have any information in their prog_context fields
strip_prog_contexts(Types1, Types),
Constraint = constraint(ClassName, Types).
apply_subst_to_constraints(Subst,
constraints(UniversalCs0, ExistentialCs0),
constraints(UniversalCs, ExistentialCs)) :-
apply_subst_to_constraint_list(Subst, UniversalCs0, UniversalCs),
apply_subst_to_constraint_list(Subst, ExistentialCs0, ExistentialCs).
apply_subst_to_constraint_list(Subst, Constraints0, Constraints) :-
list__map(apply_subst_to_constraint(Subst), Constraints0, Constraints).
apply_subst_to_constraint(Subst, Constraint0, Constraint) :-
Constraint0 = constraint(ClassName, Types0),
term__apply_substitution_to_list(Types0, Subst, Types),
Constraint = constraint(ClassName, Types).
apply_subst_to_constraint_proofs(Subst, Proofs0, Proofs) :-
map__init(Empty),
map__foldl(
lambda([Constraint0::in, Proof0::in, Map0::in, Map::out] is det,
(
apply_subst_to_constraint(Subst, Constraint0,
Constraint),
(
Proof0 = apply_instance(_),
Proof = Proof0
;
Proof0 = superclass(Super0),
apply_subst_to_constraint(Subst, Super0,
Super),
Proof = superclass(Super)
),
map__set(Map0, Constraint, Proof, Map)
)),
Proofs0, Empty, Proofs).
apply_rec_subst_to_constraint_proofs(Subst, Proofs0, Proofs) :-
map__init(Empty),
map__foldl(
lambda([Constraint0::in, Proof0::in, Map0::in, Map::out] is det,
(
apply_rec_subst_to_constraint(Subst, Constraint0,
Constraint),
(
Proof0 = apply_instance(_),
Proof = Proof0
;
Proof0 = superclass(Super0),
apply_rec_subst_to_constraint(Subst, Super0,
Super),
Proof = superclass(Super)
),
map__set(Map0, Constraint, Proof, Map)
)),
Proofs0, Empty, Proofs).
apply_variable_renaming_to_constraints(Renaming,
constraints(UniversalCs0, ExistentialCs0),
constraints(UniversalCs, ExistentialCs)) :-
apply_variable_renaming_to_constraint_list(Renaming,
UniversalCs0, UniversalCs),
apply_variable_renaming_to_constraint_list(Renaming,
ExistentialCs0, ExistentialCs).
apply_variable_renaming_to_constraint_list(Renaming, Constraints0,
Constraints) :-
list__map(apply_variable_renaming_to_constraint(Renaming),
Constraints0, Constraints).
apply_variable_renaming_to_constraint(Renaming, Constraint0, Constraint) :-
Constraint0 = constraint(ClassName, ClassArgTypes0),
term__apply_variable_renaming_to_list(ClassArgTypes0,
Renaming, ClassArgTypes),
Constraint = constraint(ClassName, ClassArgTypes).
%-----------------------------------------------------------------------------%
apply_partial_map_to_list([], _PartialMap, []).
apply_partial_map_to_list([X|Xs], PartialMap, [Y|Ys]) :-
( map__search(PartialMap, X, Y0) ->
Y = Y0
;
Y = X
),
apply_partial_map_to_list(Xs, PartialMap, Ys).
%-----------------------------------------------------------------------------%
strip_prog_contexts(Terms, StrippedTerms) :-
list__map(strip_prog_context, Terms, StrippedTerms).
strip_prog_context(term__variable(V), term__variable(V)).
strip_prog_context(term__functor(F, As0, _C0),
term__functor(F, As, C)) :-
term__context_init(C),
strip_prog_contexts(As0, As).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%