Files
mercury/compiler/trace.m
Zoltan Somogyi 3bf462e0b7 Switch to a closure representation that includes runtime type and procedure id
Estimated hours taken: 36

Switch to a closure representation that includes runtime type and procedure id
information, so that closures can be copied, garbage collected, printed, etc.

This RTTI information is not yet used. Adding code to use it would be futile
until Tyson finishes his changes to the other RTTI data structures.

Note also that this change provides the information required for solving the
problem of trying to deep copy closures only for grades that include
--typeinfo-liveness. Providing this info for other grades is future work.

configure.in:
	Find out what the right way to refer to a variable-sized array
	at the end of a struct is.

runtime/mercury_ho_call.h:
	New file to define the structure of closures and macros for accessing
	closures.

runtime/Mmakefile:
	Add the new header file.

runtime/mercury_ho_call.c:
	Add an entry point to handle calls to new-style closures. The code
	to handle old-style closures, which was unnecessarily duplicated for
	each code model, stays until all the installed compilers use the new
	closure representation.

	Until that time, the new entry point will contain code to detect
	the use of old-style closures and invoke the old code instead.
	This allows stage1s compiled with old compilers to use the old style
	and stage2 to use the new style without any special tricks anywhere
	else.

	Add a new entry point to handle method calls of all code models.
	The old entry points, which had the same code, will also be deleted
	after this change has been bootstrapped.

runtime/mercury_calls.h:
	Remove the macros that call closures. Their interface sucked, they
	were not used, and their implementation is now out of date.

runtime/mercury_stack_layout.h:
	Add a new type, MR_Type_Param_Locns, for use by the C type
	representing closures. Since MR_Stack_Layout_Vars has a field,
	MR_slvs_tvars, which references a data structure identical
	in every way to MR_Type_Param_Locns, change the type of that field
	to this new type, instead of the previous cheat.

runtime/mercury_layout_util.h:
	Minor update to conform to the new type of the MR_slvs_tvars field.
	(This is the only use of that field in the system.)

runtime/mercury_type_info.h:
	Add new types MR_TypeInfo and MR_PseudoTypeInfo. For now, they
	are just Word, but later we can make them more accurate.
	In the meantime, we can refer to them instead of to Word,
	making code clearer. One such reference is now in mercury_ho_call.h.

compiler/notes/release_checklist.html:
	Add a reminder to remove the redundant code from mercury_ho_call.c
	after bootstrapping.

compiler/llds.m:
	Replace three code addresses for calling closures and another three
	for calling methods with one each.

compiler/call_gen.m:
compiler/dupelim.m:
compiler/opt_debug.m:
compiler/opt_util.m:
compiler/llds_out.m:
	Trivial updates in accordance with the change to llds.m

compiler/code_info.m:
	Move the code to handle layouts to continuation_info.m,
	since that's where it belongs. Leave only the code for picking
	up parameters from code_infos and for putting results back in there.

	Remove the redundant arguments of code_info__init, and extract
	them from ProcInfo, to make clear that they are related.

compiler/code_gen.m:
	Since we pass ProcInfo to code_info__init, don't pass its components.

compiler/continuation_info.m:
	Add the code moved from code_info.m, in a form which takes explicit
	arguments for things that used be hidden in the code_info.

	Add new code, closely related to the moved code, that creates
	layout info from a procedure's argument info, rather than from a
	(part of) the current code generator state. This way, it can be
	invoked from places that don't have a code_info for the procedure
	for which they want to generate layouts. This is the case when
	we generate layouts for closures.

compiler/par_conj_gen.m:
compiler/trace.m:
	Minor changes required by the move of stuff from code_info to
	continuation_info.

compiler/stack_layout.m:
	Export some predicates for use by unify_gen.

compiler/unify_gen.m:
	Switch to creating new style closures, complete with layout info.

	Optimize the code for extending closures a bit. By copying the
	fixed words of the closure outside the loop, we avoid incurring
	the loop overhead twice.

compiler/code_util.m:
	Add a couple of utility predicates for continuation_info.m and
	unify_gen.m

library/benchmarking.m:
library/std_util.m:
	Refer to the new entry point for handling closures.

browser/dl.m:
	Use the new closure representation.

	Note that extras/dynamic_linking/dl.m, which is supposed to be
	the same as browser/dl.m but is not, should also be updated, but
	this will be handled later by Fergus.

tests/hard_coded/closure_extension.{m,exp}:
	A new test case to exercise the code for extending closures.

tests/hard_coded/Mmakefile:
	Enable the new test case.
1999-04-16 06:05:49 +00:00

716 lines
24 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1997-1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% Author: zs.
%
% This module handles the generation of traces for the trace analysis system.
%
% For the general basis of trace analysis systems, see the paper
% "Opium: An extendable trace analyser for Prolog" by Mireille Ducasse,
% available from http://www.irisa.fr/lande/ducasse.
%
% We reserve some slots in the stack frame of the traced procedure.
% One contains the call sequence number, which is set in the procedure prologue
% by incrementing a global counter. An other contains the call depth, which
% is also set by incrementing a global variable containing the depth of the
% caller. The caller sets this global variable from its own saved depth
% just before the call. We also save the event number, and sometimes also
% the redo layout and the from_full flag.
%
% Each event has a label associated with it. The stack layout for that label
% records what variables are live and where they are at the time of the event.
% These labels are generated by the same predicate that generates the code
% for the event, and are initially not used for anything else.
% However, some of these labels may be fallen into from other places,
% and thus optimization may redirect references from labels to one of these
% labels. This cannot happen in the opposite direction, due to the reference
% to each event's label from the event's pragma C code instruction.
% (This prevents labelopt from removing the label.)
%
% We classify events into three kinds: external events (call, exit, fail),
% internal events (switch, disj, ite_then, ite_else), and nondet pragma C
% events (first, later). Code_gen.m, which calls this module to generate
% all external events, checks whether tracing is required before calling us;
% the predicates handing internal and nondet pragma C events must check this
% themselves. The predicates generating internal events need the goal
% following the event as a parameter. For the first and later arms of
% nondet pragma C code, there is no such hlds_goal, which is why these events
% need a bit of special treatment.
%-----------------------------------------------------------------------------%
:- module trace.
:- interface.
:- import_module hlds_goal, hlds_pred, hlds_module.
:- import_module globals, prog_data, llds, code_info.
:- import_module map, std_util, set.
% The kinds of external ports for which the code we generate will
% call MR_trace. The redo port is not on this list, because for that
% port the code that calls MR_trace is not in compiler-generated code,
% but in the runtime system. Likewise for the exception port.
:- type external_trace_port
---> call
; exit
; fail.
:- type nondet_pragma_trace_port
---> nondet_pragma_first
; nondet_pragma_later.
:- type trace_info.
:- type trace_slot_info
---> trace_slot_info(
maybe(int), % If the procedure is shallow traced,
% this will be yes(N), where stack
% slot N is the slot that holds the
% value of the from-full flag at call.
% Otherwise, it will be no.
maybe(int) % If --trace-decl is set, this will
% be yes(M), where stack slots M
% and M+1 are reserved for the runtime
% system to use in building proof
% trees for the declarative debugger.
).
% Return the set of input variables whose values should be preserved
% until the exit and fail ports. This will be all the input variables,
% except those that can be totally clobbered during the evaluation
% of the procedure (those partially clobbered may still be of interest,
% although to handle them properly we need to record insts in stack
% layouts).
:- pred trace__fail_vars(module_info::in, proc_info::in,
set(prog_var)::out) is det.
% Return the number of slots reserved for tracing information.
% If there are N slots, the reserved slots will be 1 through N.
:- pred trace__reserved_slots(proc_info::in, globals::in, int::out) is det.
% Construct and return an abstract struct that represents the
% tracing-specific part of the code generator state. Return also
% info about the non-fixed slots used by the tracing system,
% for eventual use in the constructing the procedure's layout
% structure.
:- pred trace__setup(globals::in, trace_slot_info::out, trace_info::out,
code_info::in, code_info::out) is det.
% Generate code to fill in the reserevd stack slots.
:- pred trace__generate_slot_fill_code(trace_info::in, code_tree::out,
code_info::in, code_info::out) is det.
% If we are doing execution tracing, generate code to prepare for
% a call.
:- pred trace__prepare_for_call(code_tree::out, code_info::in, code_info::out)
is det.
% If we are doing execution tracing, generate code for an internal
% trace event. This predicate must be called just before generating
% code for the given goal.
:- pred trace__maybe_generate_internal_event_code(hlds_goal::in,
code_tree::out, code_info::in, code_info::out) is det.
% If we are doing execution tracing, generate code for a nondet
% pragma C code trace event.
:- pred trace__maybe_generate_pragma_event_code(nondet_pragma_trace_port::in,
code_tree::out, code_info::in, code_info::out) is det.
% Generate code for an external trace event.
% Besides the trace code, we return the label on which we have hung
% the trace liveness information and data on the type variables in the
% liveness information, since some of our callers also need this
% information.
:- pred trace__generate_external_event_code(external_trace_port::in,
trace_info::in, label::out, map(tvar, set(layout_locn))::out,
code_tree::out, code_info::in, code_info::out) is det.
% If the trace level calls for redo events, generate code that pushes
% a temporary nondet stack frame whose redoip slot contains the
% address of one of the labels in the runtime that calls MR_trace
% for a redo event. Otherwise, generate empty code.
:- pred trace__maybe_setup_redo_event(trace_info::in, code_tree::out) is det.
:- pred trace__path_to_string(goal_path::in, string::out) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module continuation_info, type_util, llds_out, tree, varset.
:- import_module (inst), instmap, inst_match, mode_util, options.
:- import_module list, bool, int, string, map, std_util, require.
% The redo port is not included in this type; see the comment
% on the type external_trace_port above.
:- type trace_port
---> call
; exit
; fail
; ite_then
; ite_else
; switch
; disj
; nondet_pragma_first
; nondet_pragma_later.
% Information specific to a trace port.
:- type trace_port_info
---> external
; internal(
goal_path, % The path of the goal whose start
% this port represents.
set(prog_var) % The pre-death set of this goal.
)
; nondet_pragma.
:- type trace_type
---> deep_trace
; shallow_trace(lval). % This holds the saved value of a bool
% that is true iff we were called from
% code with full tracing.
% Information for tracing that is valid throughout the execution
% of a procedure.
:- type trace_info
---> trace_info(
trace_type, % The trace level (which cannot be
% none), and if it is shallow, the
% lval of the slot that holds the
% from-full flag.
bool, % The value of --trace-internal.
bool, % The value of --trace-return.
maybe(label) % If we are generating redo events,
% this has the label associated with
% the fail event, which we then reserve
% in advance, so we can put the
% address of its layout struct
% into the slot which holds the
% layout for the redo event (the
% two events have identical layouts).
).
trace__fail_vars(ModuleInfo, ProcInfo, FailVars) :-
proc_info_headvars(ProcInfo, HeadVars),
proc_info_argmodes(ProcInfo, Modes),
proc_info_arg_info(ProcInfo, ArgInfos),
mode_list_get_final_insts(Modes, ModuleInfo, Insts),
(
trace__build_fail_vars(HeadVars, Insts, ArgInfos,
ModuleInfo, FailVarsList)
->
set__list_to_set(FailVarsList, FailVars)
;
error("length mismatch in trace__fail_vars")
).
% trace__reserved_slots and trace__setup cooperate in the allocation
% of stack slots for tracing purposes. The allocation is done in four
% stages.
%
% stage 1: Allocate the fixed slots, slots 1, 2 and 3, to hold
% the event number of call, the call sequence number
% and the call depth respectively.
%
% stage 2: If the procedure is model_non and --trace-redo is set,
% allocate the next available slot (which must be slot 4)
% to hold the address of the redo layout structure.
%
% stage 3: If the procedure is shallow traced, allocate the
% next available slot to the saved copy of the
% from-full flag.
%
% stage 4: If --trace-decl is given, allocate the next two
% available slots to hold the pointers to the proof tree
% node of the parent and of this call respectively.
%
% The runtime system cannot know whether the stack frame has a slot
% that holds the saved from-full flag and whether it has the slots
% for the proof tree. This is why trace__setup returns TraceSlotInfo,
% which answers these questions, for later inclusion in the
% procedure's layout structure.
%
% The procedure's layout structure does not need to include
% information about the presence or absence of the slot holding
% the address of the redo layout structure. If we generate redo
% trace events, the runtime will know that this slot exists and
% what its number must be; if we do not, the runtime will never
% refer to such a slot.
trace__reserved_slots(ProcInfo, Globals, ReservedSlots) :-
globals__get_trace_level(Globals, TraceLevel),
(
TraceLevel = none
->
ReservedSlots = 0
;
Fixed = 3, % event#, call#, call depth
(
globals__lookup_bool_option(Globals, trace_redo, yes),
proc_info_interface_code_model(ProcInfo, model_non)
->
RedoLayout = 1
;
RedoLayout = 0
),
( TraceLevel = deep ->
FromFull = 0
;
FromFull = 1
),
globals__lookup_bool_option(Globals, trace_decl, TraceDecl),
( TraceDecl = yes ->
DeclDebug = 2
;
DeclDebug = 0
),
ReservedSlots is Fixed + RedoLayout + FromFull + DeclDebug
).
trace__setup(Globals, TraceSlotInfo, TraceInfo) -->
code_info__get_proc_model(CodeModel),
{ globals__lookup_bool_option(Globals, trace_return, TraceReturn) },
{ globals__lookup_bool_option(Globals, trace_redo, TraceRedo) },
(
{ TraceRedo = yes },
{ CodeModel = model_non }
->
code_info__get_next_label(RedoLayoutLabel),
{ MaybeRedoLayout = yes(RedoLayoutLabel) },
{ NextSlotAfterRedoLayout = 5 }
;
{ MaybeRedoLayout = no },
{ NextSlotAfterRedoLayout = 4 }
),
{ globals__get_trace_level(Globals, deep) ->
TraceType = deep_trace,
MaybeFromFullSlot = no,
NextSlotAfterFromFull = NextSlotAfterRedoLayout,
globals__lookup_bool_option(Globals, trace_internal,
TraceInternal)
;
% Trace level must be shallow.
MaybeFromFullSlot = yes(NextSlotAfterRedoLayout),
( CodeModel = model_non ->
CallFromFullSlot = framevar(NextSlotAfterRedoLayout)
;
CallFromFullSlot = stackvar(NextSlotAfterRedoLayout)
),
TraceType = shallow_trace(CallFromFullSlot),
NextSlotAfterFromFull is NextSlotAfterRedoLayout + 1,
% Shallow traced procs never generate internal events.
TraceInternal = no
},
{ globals__lookup_bool_option(Globals, trace_decl, yes) ->
MaybeDeclSlots = yes(NextSlotAfterFromFull)
;
MaybeDeclSlots = no
},
{ TraceSlotInfo = trace_slot_info(MaybeFromFullSlot, MaybeDeclSlots) },
{ TraceInfo = trace_info(TraceType, TraceInternal, TraceReturn,
MaybeRedoLayout) }.
trace__generate_slot_fill_code(TraceInfo, TraceCode) -->
code_info__get_proc_model(CodeModel),
{
TraceInfo = trace_info(TraceType, _, _, MaybeRedoLayoutSlot),
trace__event_num_slot(CodeModel, EventNumLval),
trace__call_num_slot(CodeModel, CallNumLval),
trace__call_depth_slot(CodeModel, CallDepthLval),
trace__stackref_to_string(EventNumLval, EventNumStr),
trace__stackref_to_string(CallNumLval, CallNumStr),
trace__stackref_to_string(CallDepthLval, CallDepthStr),
string__append_list([
"\t\t", EventNumStr, " = MR_trace_event_number;\n",
"\t\t", CallNumStr, " = MR_trace_incr_seq();\n",
"\t\t", CallDepthStr, " = MR_trace_incr_depth();"
], FillThreeSlots),
( MaybeRedoLayoutSlot = yes(RedoLayoutLabel) ->
trace__redo_layout_slot(CodeModel, RedoLayoutLval),
trace__stackref_to_string(RedoLayoutLval, RedoLayoutStr),
llds_out__make_stack_layout_name(RedoLayoutLabel,
LayoutAddrStr),
string__append_list([
FillThreeSlots, "\n",
"\t\t", RedoLayoutStr, " = (Word) (const Word *) &",
LayoutAddrStr, ";"
], FillFourSlots)
;
FillFourSlots = FillThreeSlots
),
(
TraceType = shallow_trace(CallFromFullSlot),
trace__stackref_to_string(CallFromFullSlot,
CallFromFullSlotStr),
string__append_list([
"\t\t", CallFromFullSlotStr, " = MR_trace_from_full;\n",
"\t\tif (MR_trace_from_full) {\n",
FillFourSlots, "\n",
"\t\t} else {\n",
"\t\t\t", CallDepthStr, " = MR_trace_call_depth;\n",
"\t\t}"
], TraceStmt)
;
TraceType = deep_trace,
TraceStmt = FillFourSlots
),
TraceCode = node([
pragma_c([], [pragma_c_raw_code(TraceStmt)],
will_not_call_mercury, no, yes) - ""
])
}.
trace__prepare_for_call(TraceCode) -->
code_info__get_maybe_trace_info(MaybeTraceInfo),
code_info__get_proc_model(CodeModel),
{
MaybeTraceInfo = yes(TraceInfo)
->
TraceInfo = trace_info(TraceType, _, _, _),
trace__call_depth_slot(CodeModel, CallDepthLval),
trace__stackref_to_string(CallDepthLval, CallDepthStr),
string__append_list([
"MR_trace_reset_depth(", CallDepthStr, ");\n"
], ResetDepthStmt),
(
TraceType = shallow_trace(_),
ResetFromFullStmt = "MR_trace_from_full = FALSE;\n"
;
TraceType = deep_trace,
ResetFromFullStmt = "MR_trace_from_full = TRUE;\n"
),
TraceCode = node([
c_code(ResetFromFullStmt) - "",
c_code(ResetDepthStmt) - ""
])
;
TraceCode = empty
}.
trace__maybe_generate_internal_event_code(Goal, Code) -->
code_info__get_maybe_trace_info(MaybeTraceInfo),
(
{ MaybeTraceInfo = yes(TraceInfo) },
{ TraceInfo = trace_info(_, yes, _, _) }
->
{ Goal = _ - GoalInfo },
{ goal_info_get_goal_path(GoalInfo, Path) },
{ goal_info_get_pre_deaths(GoalInfo, PreDeaths) },
{
Path = [LastStep | _],
(
LastStep = switch(_),
PortPrime = switch
;
LastStep = disj(_),
PortPrime = disj
;
LastStep = ite_then,
PortPrime = ite_then
;
LastStep = ite_else,
PortPrime = ite_else
)
->
Port = PortPrime
;
error("trace__generate_internal_event_code: bad path")
},
trace__generate_event_code(Port, internal(Path, PreDeaths),
TraceInfo, _, _, Code)
;
{ Code = empty }
).
trace__maybe_generate_pragma_event_code(PragmaPort, Code) -->
code_info__get_maybe_trace_info(MaybeTraceInfo),
(
{ MaybeTraceInfo = yes(TraceInfo) },
{ TraceInfo = trace_info(_, yes, _, _) }
->
{ trace__convert_nondet_pragma_port_type(PragmaPort, Port) },
trace__generate_event_code(Port, nondet_pragma, TraceInfo,
_, _, Code)
;
{ Code = empty }
).
trace__generate_external_event_code(ExternalPort, TraceInfo,
Label, TvarDataMap, Code) -->
{ trace__convert_external_port_type(ExternalPort, Port) },
trace__generate_event_code(Port, external, TraceInfo,
Label, TvarDataMap, Code).
:- pred trace__generate_event_code(trace_port::in, trace_port_info::in,
trace_info::in, label::out, map(tvar, set(layout_locn))::out,
code_tree::out, code_info::in, code_info::out) is det.
trace__generate_event_code(Port, PortInfo, TraceInfo, Label, TvarDataMap,
Code) -->
(
{ Port = fail },
{ TraceInfo = trace_info(_, _, _, yes(RedoLabel)) }
->
% The layout information for the redo event is the same as
% for the fail event; all the non-clobbered inputs in their
% stack slots. It is convenient to generate this common layout
% when the code generator state is set up for the fail event;
% generating it for the redo event would be much harder.
% On the other hand, the address of the layout structure
% for the redo event should be put into its fixed stack slot
% at procedure entry. Therefore trace__setup reserves a label
% whose layout structure serves for both the fail and redo
% events.
{ Label = RedoLabel }
;
code_info__get_next_label(Label)
),
code_info__get_known_variables(LiveVars0),
(
{ PortInfo = external },
{ LiveVars = LiveVars0 },
{ PathStr = "" }
;
{ PortInfo = internal(Path, PreDeaths) },
code_info__current_resume_point_vars(ResumeVars),
{ set__difference(PreDeaths, ResumeVars, RealPreDeaths) },
{ set__to_sorted_list(RealPreDeaths, RealPreDeathList) },
{ list__delete_elems(LiveVars0, RealPreDeathList, LiveVars) },
{ trace__path_to_string(Path, PathStr) }
;
{ PortInfo = nondet_pragma },
{ LiveVars = [] },
{ PathStr = "" }
),
code_info__get_varset(VarSet),
code_info__get_instmap(InstMap),
{ set__init(TvarSet0) },
trace__produce_vars(LiveVars, VarSet, InstMap, TvarSet0, TvarSet,
VarInfoList, ProduceCode),
code_info__max_reg_in_use(MaxReg),
code_info__variable_locations(VarLocs),
code_info__get_proc_info(ProcInfo),
{
set__to_sorted_list(TvarSet, TvarList),
continuation_info__find_typeinfos_for_tvars(TvarList,
VarLocs, ProcInfo, TvarDataMap),
set__list_to_set(VarInfoList, VarInfoSet),
LayoutLabelInfo = layout_label_info(VarInfoSet, TvarDataMap),
llds_out__get_label(Label, yes, LabelStr),
Quote = """",
Comma = ", ",
trace__port_to_string(Port, PortStr),
DeclStmt = "\t\tCode *MR_jumpaddr;\n",
SaveStmt = "\t\tsave_transient_registers();\n",
RestoreStmt = "\t\trestore_transient_registers();\n",
string__int_to_string(MaxReg, MaxRegStr),
string__append_list([
"\t\tMR_jumpaddr = MR_trace(\n",
"\t\t\t(const MR_Stack_Layout_Label *)\n",
"\t\t\t&mercury_data__layout__", LabelStr, Comma, "\n",
"\t\t\t", PortStr, Comma, Quote, PathStr, Quote, Comma,
MaxRegStr, ");\n"],
CallStmt),
GotoStmt = "\t\tif (MR_jumpaddr != NULL) GOTO(MR_jumpaddr);",
string__append_list([DeclStmt, SaveStmt, CallStmt, RestoreStmt,
GotoStmt], TraceStmt),
TraceCode =
node([
label(Label)
- "A label to hang trace liveness on",
% Referring to the label from the pragma_c
% prevents the label from being renamed
% or optimized away.
% The label is before the trace code
% because sometimes this pair is preceded
% by another label, and this way we can
% eliminate this other label.
pragma_c([], [pragma_c_raw_code(TraceStmt)],
may_call_mercury, yes(Label), yes)
- ""
]),
Code = tree(ProduceCode, TraceCode)
},
code_info__add_trace_layout_for_label(Label, LayoutLabelInfo).
trace__maybe_setup_redo_event(TraceInfo, Code) :-
TraceInfo = trace_info(_, _, _, TraceRedo),
( TraceRedo = yes(_) ->
Code = node([
mkframe(temp_frame(nondet_stack_proc),
do_trace_redo_fail)
- "set up deep redo event"
])
;
Code = empty
).
:- pred trace__produce_vars(list(prog_var)::in, prog_varset::in, instmap::in,
set(tvar)::in, set(tvar)::out, list(var_info)::out, code_tree::out,
code_info::in, code_info::out) is det.
trace__produce_vars([], _, _, Tvars, Tvars, [], empty) --> [].
trace__produce_vars([Var | Vars], VarSet, InstMap, Tvars0, Tvars,
[VarInfo | VarInfos], tree(VarCode, VarsCode)) -->
code_info__produce_variable_in_reg_or_stack(Var, VarCode, Rval),
code_info__variable_type(Var, Type),
{
( Rval = lval(LvalPrime) ->
Lval = LvalPrime
;
error("var not an lval in trace__produce_vars")
% If the value of the variable is known,
% we record it as living in a nonexistent location, r0.
% The code that interprets layout information must know this.
% Lval = reg(r, 0)
),
varset__lookup_name(VarSet, Var, "V_", Name),
instmap__lookup_var(InstMap, Var, Inst),
LiveType = var(Var, Name, Type, Inst),
VarInfo = var_info(direct(Lval), LiveType),
type_util__vars(Type, TypeVars),
set__insert_list(Tvars0, TypeVars, Tvars1)
},
trace__produce_vars(Vars, VarSet, InstMap, Tvars1, Tvars,
VarInfos, VarsCode).
%-----------------------------------------------------------------------------%
:- pred trace__build_fail_vars(list(prog_var)::in, list(inst)::in,
list(arg_info)::in, module_info::in, list(prog_var)::out) is semidet.
trace__build_fail_vars([], [], [], _, []).
trace__build_fail_vars([Var | Vars], [Inst | Insts], [Info | Infos],
ModuleInfo, FailVars) :-
trace__build_fail_vars(Vars, Insts, Infos, ModuleInfo, FailVars0),
Info = arg_info(_Loc, ArgMode),
(
ArgMode = top_in,
\+ inst_is_clobbered(ModuleInfo, Inst)
->
FailVars = [Var | FailVars0]
;
FailVars = FailVars0
).
%-----------------------------------------------------------------------------%
:- pred trace__port_to_string(trace_port::in, string::out) is det.
trace__port_to_string(call, "MR_PORT_CALL").
trace__port_to_string(exit, "MR_PORT_EXIT").
trace__port_to_string(fail, "MR_PORT_FAIL").
trace__port_to_string(ite_then, "MR_PORT_THEN").
trace__port_to_string(ite_else, "MR_PORT_ELSE").
trace__port_to_string(switch, "MR_PORT_SWITCH").
trace__port_to_string(disj, "MR_PORT_DISJ").
trace__port_to_string(nondet_pragma_first, "MR_PORT_PRAGMA_FIRST").
trace__port_to_string(nondet_pragma_later, "MR_PORT_PRAGMA_LATER").
:- pred trace__code_model_to_string(code_model::in, string::out) is det.
trace__code_model_to_string(model_det, "MR_MODEL_DET").
trace__code_model_to_string(model_semi, "MR_MODEL_SEMI").
trace__code_model_to_string(model_non, "MR_MODEL_NON").
:- pred trace__stackref_to_string(lval::in, string::out) is det.
trace__stackref_to_string(Lval, LvalStr) :-
( Lval = stackvar(Slot) ->
string__int_to_string(Slot, SlotString),
string__append_list(["MR_stackvar(", SlotString, ")"], LvalStr)
; Lval = framevar(Slot) ->
string__int_to_string(Slot, SlotString),
string__append_list(["MR_framevar(", SlotString, ")"], LvalStr)
;
error("non-stack lval in stackref_to_string")
).
%-----------------------------------------------------------------------------%
trace__path_to_string(Path, PathStr) :-
trace__path_steps_to_strings(Path, StepStrs),
list__reverse(StepStrs, RevStepStrs),
string__append_list(RevStepStrs, PathStr).
:- pred trace__path_steps_to_strings(goal_path::in, list(string)::out) is det.
trace__path_steps_to_strings([], []).
trace__path_steps_to_strings([Step | Steps], [StepStr | StepStrs]) :-
trace__path_step_to_string(Step, StepStr),
trace__path_steps_to_strings(Steps, StepStrs).
:- pred trace__path_step_to_string(goal_path_step::in, string::out) is det.
trace__path_step_to_string(conj(N), Str) :-
string__int_to_string(N, NStr),
string__append_list(["c", NStr, ";"], Str).
trace__path_step_to_string(disj(N), Str) :-
string__int_to_string(N, NStr),
string__append_list(["d", NStr, ";"], Str).
trace__path_step_to_string(switch(N), Str) :-
string__int_to_string(N, NStr),
string__append_list(["s", NStr, ";"], Str).
trace__path_step_to_string(ite_cond, "?;").
trace__path_step_to_string(ite_then, "t;").
trace__path_step_to_string(ite_else, "e;").
trace__path_step_to_string(neg, "~;").
trace__path_step_to_string(exist, "q;").
:- pred trace__convert_external_port_type(external_trace_port::in,
trace_port::out) is det.
trace__convert_external_port_type(call, call).
trace__convert_external_port_type(exit, exit).
trace__convert_external_port_type(fail, fail).
:- pred trace__convert_nondet_pragma_port_type(nondet_pragma_trace_port::in,
trace_port::out) is det.
trace__convert_nondet_pragma_port_type(nondet_pragma_first,
nondet_pragma_first).
trace__convert_nondet_pragma_port_type(nondet_pragma_later,
nondet_pragma_later).
%-----------------------------------------------------------------------------%
:- pred trace__event_num_slot(code_model::in, lval::out) is det.
:- pred trace__call_num_slot(code_model::in, lval::out) is det.
:- pred trace__call_depth_slot(code_model::in, lval::out) is det.
:- pred trace__redo_layout_slot(code_model::in, lval::out) is det.
trace__event_num_slot(CodeModel, EventNumSlot) :-
( CodeModel = model_non ->
EventNumSlot = framevar(1)
;
EventNumSlot = stackvar(1)
).
trace__call_num_slot(CodeModel, CallNumSlot) :-
( CodeModel = model_non ->
CallNumSlot = framevar(2)
;
CallNumSlot = stackvar(2)
).
trace__call_depth_slot(CodeModel, CallDepthSlot) :-
( CodeModel = model_non ->
CallDepthSlot = framevar(3)
;
CallDepthSlot = stackvar(3)
).
trace__redo_layout_slot(CodeModel, RedoLayoutSlot) :-
( CodeModel = model_non ->
RedoLayoutSlot = framevar(4)
;
error("attempt to access redo layout slot for det or semi procedure")
).
%-----------------------------------------------------------------------------%