Files
mercury/compiler/switch_gen.m
Fergus Henderson 4be69fa961 Eliminated a lot of the dependencies on the the `code_model' type,
Estimated hours taken: 6

Eliminated a lot of the dependencies on the the `code_model' type,
and move that type from llds.m into a new module `code_model'.
The aim of this change is to improve the modularity of the compiler by
reducing the number of places in the compiler front-end that depend
on back-end concepts and the number of places in the MLDS back-end
which depend on the LLDS.

compiler/code_model.m:
	New module.  Contains the code_model type and associated
	procedures.

compiler/llds.m:
	Move the code_model type into code_model.m.

compiler/hlds_goal.m:
	Move the goal_info_get_code_model procedure into code_model.m,
	to avoid having the HLDS modules import code_model.

compiler/hlds_out.m:
	Delete `hlds_out__write_code_model', since it wasn't being used.

compiler/hlds_pred.m:
	Move the proc_info_interface_code_model procedure into code_model.m,
	to avoid having the HLDS modules import code_model.

compiler/goal_path.m:
	When computing the `maybe_cut' field for `some' goals,
	compute it by comparing the determinism rather than by
	comparing the goal_infos.

compiler/unique_modes.m:
	Use determinism and test for soln_count = at_most_many
	rather than using code_model and testing for model_non.

compiler/inlining.m:
	Test for determinism nondet/multi rather than testing
	for code_model model_non.

compiler/hlds_pred.m:
compiler/det_report.m:
	Change valid_code_model_for_eval_method, which succeeded unless
	the eval_method was minimal_model and the code_model was model_det,
	to valid_determinism_for_eval_method, which succeeds unless the
	eval_method is minimal_model and the determinism cannot fail.
	As well as avoiding a dependency on code_model in the HLDS
	modules, this also fixes a bug where det_report could give
	misleading error messages, saying that `multi' was a valid
	determinism for `minimal_model' predicates, when in fact the
	compiler will always report a determinism error if you declare
	a `minimal_model' predicate with determinism `multi'.
	(Actually the code in which this bug occurs is in fact
	unreachable, but this is no doubt also a bug... I'll address
	that one in a separate change.)

compiler/lookup_switch.m:
	Simplify the code a bit by using globals__lookup_*_option
	rather than globals__get_option and then getopt__lookup_option.

compiler/*.m:
	Add `import_module' declarations for `code_model', and in some
	cases remove `import_module' declarations for `llds'.
2000-11-23 04:32:51 +00:00

314 lines
11 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1994-2000 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%---------------------------------------------------------------------------%
%
% File: switch_gen.m
% Authors: conway, fjh, zs
%
% This module handles the generation of code for switches, which are
% disjunctions that do not require backtracking. Switches are detected
% in switch_detection.m. This is the module that determines what
% sort of indexing to use for each switch and then actually generates the
% code.
%
% Currently the following forms of indexing are used:
%
% For switches on atomic data types (int, char, enums),
% if the cases are not sparse, we use the value of the switch variable
% to index into a jump table.
%
% If all the alternative goals for a switch on an atomic data type
% contain only construction unifications of constants, then we generate
% a dense lookup table (an array) for each output variable of the switch,
% rather than a dense jump table, so that executing the switch becomes
% a matter of doing an array index for each output variable - avoiding
% the branch overhead of the jump-table.
%
% For switches on discriminated union types, we generate code that does
% indexing first on the primary tag, and then on the secondary tag (if
% the primary tag is shared between several function symbols). The
% indexing code for switches on both primary and secondary tags can be
% in the form of a try-me-else chain, a try chain, a dense jump table
% or a binary search.
%
% For switches on strings, we lookup the address to jump to in a
% hash table, using open addressing to resolve hash collisions.
%
% For all other cases (or if the --smart-indexing option was
% disabled), we just generate a chain of if-then-elses.
%
%---------------------------------------------------------------------------%
:- module switch_gen.
:- interface.
:- import_module prog_data, hlds_goal, hlds_data, code_model, code_info, llds.
:- import_module list.
:- pred switch_gen__generate_switch(code_model, prog_var, can_fail, list(case),
store_map, hlds_goal_info, code_tree, code_info, code_info).
:- mode switch_gen__generate_switch(in, in, in, in, in, in, out, in, out)
is det.
%---------------------------------------------------------------------------%
:- implementation.
:- import_module dense_switch, string_switch, tag_switch, lookup_switch.
:- import_module code_gen, unify_gen, code_aux, code_util.
:- import_module switch_util, type_util.
:- import_module trace, globals, options.
:- import_module bool, int, string, map, tree, std_util, require.
%---------------------------------------------------------------------------%
% Choose which method to use to generate the switch.
% CanFail says whether the switch covers all cases.
switch_gen__generate_switch(CodeModel, CaseVar, CanFail, Cases, StoreMap,
GoalInfo, Code) -->
switch_gen__determine_category(CaseVar, SwitchCategory),
code_info__get_next_label(EndLabel),
switch_gen__lookup_tags(Cases, CaseVar, TaggedCases0),
{ list__sort_and_remove_dups(TaggedCases0, TaggedCases) },
code_info__get_globals(Globals),
{ globals__lookup_bool_option(Globals, smart_indexing,
Indexing) },
(
{ Indexing = yes },
{ SwitchCategory = atomic_switch },
code_info__get_maybe_trace_info(MaybeTraceInfo),
{ MaybeTraceInfo = no },
{ list__length(TaggedCases, NumCases) },
{ globals__lookup_int_option(Globals, lookup_switch_size,
LookupSize) },
{ NumCases >= LookupSize },
{ globals__lookup_int_option(Globals, lookup_switch_req_density,
ReqDensity) },
lookup_switch__is_lookup_switch(CaseVar, TaggedCases, GoalInfo,
CanFail, ReqDensity, StoreMap, no, MaybeEndPrime,
CodeModel, FirstVal, LastVal, NeedRangeCheck,
NeedBitVecCheck, OutVars, CaseVals, MLiveness)
->
{ MaybeEnd = MaybeEndPrime },
lookup_switch__generate(CaseVar, OutVars, CaseVals,
FirstVal, LastVal, NeedRangeCheck, NeedBitVecCheck,
MLiveness, StoreMap, no, Code)
;
{ Indexing = yes },
{ SwitchCategory = atomic_switch },
{ list__length(TaggedCases, NumCases) },
{ globals__lookup_int_option(Globals, dense_switch_size,
DenseSize) },
{ NumCases >= DenseSize },
{ globals__lookup_int_option(Globals, dense_switch_req_density,
ReqDensity) },
dense_switch__is_dense_switch(CaseVar, TaggedCases, CanFail,
ReqDensity, FirstVal, LastVal, CanFail1)
->
dense_switch__generate(TaggedCases,
FirstVal, LastVal, CaseVar, CodeModel, CanFail1,
StoreMap, EndLabel, no, MaybeEnd, Code)
;
{ Indexing = yes },
{ SwitchCategory = string_switch },
{ list__length(TaggedCases, NumCases) },
{ globals__lookup_int_option(Globals, string_switch_size,
StringSize) },
{ NumCases >= StringSize }
->
string_switch__generate(TaggedCases, CaseVar, CodeModel,
CanFail, StoreMap, EndLabel, no, MaybeEnd, Code)
;
{ Indexing = yes },
{ SwitchCategory = tag_switch },
{ list__length(TaggedCases, NumCases) },
{ globals__lookup_int_option(Globals, tag_switch_size,
TagSize) },
{ NumCases >= TagSize }
->
tag_switch__generate(TaggedCases, CaseVar, CodeModel, CanFail,
StoreMap, EndLabel, no, MaybeEnd, Code)
;
% To generate a switch, first we flush the
% variable on whose tag we are going to switch, then we
% generate the cases for the switch.
switch_gen__generate_all_cases(TaggedCases, CaseVar,
CodeModel, CanFail, StoreMap, EndLabel, no, MaybeEnd,
Code)
),
code_info__after_all_branches(StoreMap, MaybeEnd).
%---------------------------------------------------------------------------%
% We categorize switches according to whether the value
% being switched on is an atomic type, a string, or
% something more complicated.
:- pred switch_gen__determine_category(prog_var, switch_category,
code_info, code_info).
:- mode switch_gen__determine_category(in, out, in, out) is det.
switch_gen__determine_category(CaseVar, SwitchCategory) -->
code_info__variable_type(CaseVar, Type),
code_info__get_module_info(ModuleInfo),
{ classify_type(Type, ModuleInfo, TypeCategory) },
{ switch_util__type_cat_to_switch_cat(TypeCategory, SwitchCategory) }.
%---------------------------------------------------------------------------%
:- pred switch_gen__lookup_tags(list(case), prog_var, cases_list,
code_info, code_info).
:- mode switch_gen__lookup_tags(in, in, out, in, out) is det.
switch_gen__lookup_tags([], _, []) --> [].
switch_gen__lookup_tags([Case | Cases], Var, [TaggedCase | TaggedCases]) -->
{ Case = case(ConsId, Goal) },
code_info__cons_id_to_tag(Var, ConsId, Tag),
{ switch_util__switch_priority(Tag, Priority) },
{ TaggedCase = case(Priority, Tag, ConsId, Goal) },
switch_gen__lookup_tags(Cases, Var, TaggedCases).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
% Generate a switch as a chain of if-then-elses.
%
% To generate a case for a switch we generate
% code to do a tag-test and fall through to the next case in
% the event of failure.
%
% Each case except the last consists of
%
% a tag test, jumping to the next case if it fails
% the goal for that case
% code to move variables to where the store map says they
% ought to be
% a branch to the end of the switch.
%
% For the last case, if the switch covers all cases that can occur,
% we don't need to generate the tag test, and we never need to
% generate the branch to the end of the switch.
%
% After the last case, we put the end-of-switch label which other
% cases branch to after their case goals.
%
% In the important special case of a det switch with two cases,
% we try to find out which case will be executed more frequently,
% and put that one first. This minimizes the number of pipeline
% breaks caused by taken branches.
:- pred switch_gen__generate_all_cases(list(extended_case), prog_var,
code_model, can_fail, store_map, label, branch_end, branch_end,
code_tree, code_info, code_info).
:- mode switch_gen__generate_all_cases(in, in, in, in, in, in, in, out, out,
in, out) is det.
switch_gen__generate_all_cases(Cases0, Var, CodeModel, CanFail, StoreMap,
EndLabel, MaybeEnd0, MaybeEnd, Code) -->
code_info__produce_variable(Var, VarCode, _Rval),
(
{ CodeModel = model_det },
{ CanFail = cannot_fail },
{ Cases0 = [Case1, Case2] },
{ Case1 = case(_, _, _, Goal1) },
{ Case2 = case(_, _, _, Goal2) }
->
code_info__get_pred_id(PredId),
code_info__get_proc_id(ProcId),
{ code_util__count_recursive_calls(Goal1, PredId, ProcId,
Min1, Max1) },
{ code_util__count_recursive_calls(Goal2, PredId, ProcId,
Min2, Max2) },
{
Max1 = 0, % Goal1 is a base case
Min2 = 1 % Goal2 is probably singly recursive
->
Cases = [Case2, Case1]
;
Max2 = 0, % Goal2 is a base case
Min1 > 1 % Goal1 is at least doubly recursive
->
Cases = [Case2, Case1]
;
Cases = Cases0
}
;
{ Cases = Cases0 }
),
switch_gen__generate_cases(Cases, Var, CodeModel, CanFail,
StoreMap, EndLabel, MaybeEnd0, MaybeEnd, CasesCode),
{ Code = tree(VarCode, CasesCode) }.
:- pred switch_gen__generate_cases(list(extended_case), prog_var, code_model,
can_fail, store_map, label, branch_end, branch_end, code_tree,
code_info, code_info).
:- mode switch_gen__generate_cases(in, in, in, in, in, in, in, out, out,
in, out) is det.
% At the end of a locally semidet switch, we fail because we
% came across a tag which was not covered by one of the cases.
% It is followed by the end of switch label to which the cases
% branch.
switch_gen__generate_cases([], _Var, _CodeModel, CanFail, _StoreMap,
EndLabel, MaybeEnd, MaybeEnd, Code) -->
( { CanFail = can_fail } ->
code_info__generate_failure(FailCode)
;
{ FailCode = empty }
),
{ EndCode = node([
label(EndLabel) -
"end of switch"
]) },
{ Code = tree(FailCode, EndCode) }.
switch_gen__generate_cases([case(_, _, Cons, Goal) | Cases], Var, CodeModel,
CanFail, StoreMap, EndLabel, MaybeEnd0, MaybeEnd, CasesCode) -->
code_info__remember_position(BranchStart),
(
{ Cases = [_|_] ; CanFail = can_fail }
->
unify_gen__generate_tag_test(Var, Cons, branch_on_failure,
NextLabel, TestCode),
trace__maybe_generate_internal_event_code(Goal, TraceCode),
code_gen__generate_goal(CodeModel, Goal, GoalCode),
code_info__generate_branch_end(StoreMap, MaybeEnd0, MaybeEnd1,
SaveCode),
{ ElseCode = node([
goto(label(EndLabel)) -
"skip to the end of the switch",
label(NextLabel) -
"next case"
]) },
{ ThisCaseCode =
tree(TestCode,
tree(TraceCode,
tree(GoalCode,
tree(SaveCode,
ElseCode))))
}
;
trace__maybe_generate_internal_event_code(Goal, TraceCode),
code_gen__generate_goal(CodeModel, Goal, GoalCode),
code_info__generate_branch_end(StoreMap, MaybeEnd0, MaybeEnd1,
SaveCode),
{ ThisCaseCode =
tree(TraceCode,
tree(GoalCode,
SaveCode))
}
),
code_info__reset_to_position(BranchStart),
% generate the rest of the cases.
switch_gen__generate_cases(Cases, Var, CodeModel, CanFail, StoreMap,
EndLabel, MaybeEnd1, MaybeEnd, OtherCasesCode),
{ CasesCode = tree(ThisCaseCode, OtherCasesCode) }.
%------------------------------------------------------------------------------%