%-----------------------------------------------------------------------------% % Copyright (C) 1994-2000 The University of Melbourne. % This file may only be copied under the terms of the GNU General % Public License - see the file COPYING in the Mercury distribution. %---------------------------------------------------------------------------% % % File: switch_gen.m % Authors: conway, fjh, zs % % This module handles the generation of code for switches, which are % disjunctions that do not require backtracking. Switches are detected % in switch_detection.m. This is the module that determines what % sort of indexing to use for each switch and then actually generates the % code. % % Currently the following forms of indexing are used: % % For switches on atomic data types (int, char, enums), % if the cases are not sparse, we use the value of the switch variable % to index into a jump table. % % If all the alternative goals for a switch on an atomic data type % contain only construction unifications of constants, then we generate % a dense lookup table (an array) for each output variable of the switch, % rather than a dense jump table, so that executing the switch becomes % a matter of doing an array index for each output variable - avoiding % the branch overhead of the jump-table. % % For switches on discriminated union types, we generate code that does % indexing first on the primary tag, and then on the secondary tag (if % the primary tag is shared between several function symbols). The % indexing code for switches on both primary and secondary tags can be % in the form of a try-me-else chain, a try chain, a dense jump table % or a binary search. % % For switches on strings, we lookup the address to jump to in a % hash table, using open addressing to resolve hash collisions. % % For all other cases (or if the --smart-indexing option was % disabled), we just generate a chain of if-then-elses. % %---------------------------------------------------------------------------% :- module switch_gen. :- interface. :- import_module prog_data, hlds_goal, hlds_data, code_model, code_info, llds. :- import_module list. :- pred switch_gen__generate_switch(code_model, prog_var, can_fail, list(case), store_map, hlds_goal_info, code_tree, code_info, code_info). :- mode switch_gen__generate_switch(in, in, in, in, in, in, out, in, out) is det. %---------------------------------------------------------------------------% :- implementation. :- import_module dense_switch, string_switch, tag_switch, lookup_switch. :- import_module code_gen, unify_gen, code_aux, code_util. :- import_module switch_util, type_util. :- import_module trace, globals, options. :- import_module bool, int, string, map, tree, std_util, require. %---------------------------------------------------------------------------% % Choose which method to use to generate the switch. % CanFail says whether the switch covers all cases. switch_gen__generate_switch(CodeModel, CaseVar, CanFail, Cases, StoreMap, GoalInfo, Code) --> switch_gen__determine_category(CaseVar, SwitchCategory), code_info__get_next_label(EndLabel), switch_gen__lookup_tags(Cases, CaseVar, TaggedCases0), { list__sort_and_remove_dups(TaggedCases0, TaggedCases) }, code_info__get_globals(Globals), { globals__lookup_bool_option(Globals, smart_indexing, Indexing) }, ( { Indexing = yes }, { SwitchCategory = atomic_switch }, code_info__get_maybe_trace_info(MaybeTraceInfo), { MaybeTraceInfo = no }, { list__length(TaggedCases, NumCases) }, { globals__lookup_int_option(Globals, lookup_switch_size, LookupSize) }, { NumCases >= LookupSize }, { globals__lookup_int_option(Globals, lookup_switch_req_density, ReqDensity) }, lookup_switch__is_lookup_switch(CaseVar, TaggedCases, GoalInfo, CanFail, ReqDensity, StoreMap, no, MaybeEndPrime, CodeModel, FirstVal, LastVal, NeedRangeCheck, NeedBitVecCheck, OutVars, CaseVals, MLiveness) -> { MaybeEnd = MaybeEndPrime }, lookup_switch__generate(CaseVar, OutVars, CaseVals, FirstVal, LastVal, NeedRangeCheck, NeedBitVecCheck, MLiveness, StoreMap, no, Code) ; { Indexing = yes }, { SwitchCategory = atomic_switch }, { list__length(TaggedCases, NumCases) }, { globals__lookup_int_option(Globals, dense_switch_size, DenseSize) }, { NumCases >= DenseSize }, { globals__lookup_int_option(Globals, dense_switch_req_density, ReqDensity) }, dense_switch__is_dense_switch(CaseVar, TaggedCases, CanFail, ReqDensity, FirstVal, LastVal, CanFail1) -> dense_switch__generate(TaggedCases, FirstVal, LastVal, CaseVar, CodeModel, CanFail1, StoreMap, EndLabel, no, MaybeEnd, Code) ; { Indexing = yes }, { SwitchCategory = string_switch }, { list__length(TaggedCases, NumCases) }, { globals__lookup_int_option(Globals, string_switch_size, StringSize) }, { NumCases >= StringSize } -> string_switch__generate(TaggedCases, CaseVar, CodeModel, CanFail, StoreMap, EndLabel, no, MaybeEnd, Code) ; { Indexing = yes }, { SwitchCategory = tag_switch }, { list__length(TaggedCases, NumCases) }, { globals__lookup_int_option(Globals, tag_switch_size, TagSize) }, { NumCases >= TagSize } -> tag_switch__generate(TaggedCases, CaseVar, CodeModel, CanFail, StoreMap, EndLabel, no, MaybeEnd, Code) ; % To generate a switch, first we flush the % variable on whose tag we are going to switch, then we % generate the cases for the switch. switch_gen__generate_all_cases(TaggedCases, CaseVar, CodeModel, CanFail, StoreMap, EndLabel, no, MaybeEnd, Code) ), code_info__after_all_branches(StoreMap, MaybeEnd). %---------------------------------------------------------------------------% % We categorize switches according to whether the value % being switched on is an atomic type, a string, or % something more complicated. :- pred switch_gen__determine_category(prog_var, switch_category, code_info, code_info). :- mode switch_gen__determine_category(in, out, in, out) is det. switch_gen__determine_category(CaseVar, SwitchCategory) --> code_info__variable_type(CaseVar, Type), code_info__get_module_info(ModuleInfo), { classify_type(Type, ModuleInfo, TypeCategory) }, { switch_util__type_cat_to_switch_cat(TypeCategory, SwitchCategory) }. %---------------------------------------------------------------------------% :- pred switch_gen__lookup_tags(list(case), prog_var, cases_list, code_info, code_info). :- mode switch_gen__lookup_tags(in, in, out, in, out) is det. switch_gen__lookup_tags([], _, []) --> []. switch_gen__lookup_tags([Case | Cases], Var, [TaggedCase | TaggedCases]) --> { Case = case(ConsId, Goal) }, code_info__cons_id_to_tag(Var, ConsId, Tag), { switch_util__switch_priority(Tag, Priority) }, { TaggedCase = case(Priority, Tag, ConsId, Goal) }, switch_gen__lookup_tags(Cases, Var, TaggedCases). %---------------------------------------------------------------------------% %---------------------------------------------------------------------------% % Generate a switch as a chain of if-then-elses. % % To generate a case for a switch we generate % code to do a tag-test and fall through to the next case in % the event of failure. % % Each case except the last consists of % % a tag test, jumping to the next case if it fails % the goal for that case % code to move variables to where the store map says they % ought to be % a branch to the end of the switch. % % For the last case, if the switch covers all cases that can occur, % we don't need to generate the tag test, and we never need to % generate the branch to the end of the switch. % % After the last case, we put the end-of-switch label which other % cases branch to after their case goals. % % In the important special case of a det switch with two cases, % we try to find out which case will be executed more frequently, % and put that one first. This minimizes the number of pipeline % breaks caused by taken branches. :- pred switch_gen__generate_all_cases(list(extended_case), prog_var, code_model, can_fail, store_map, label, branch_end, branch_end, code_tree, code_info, code_info). :- mode switch_gen__generate_all_cases(in, in, in, in, in, in, in, out, out, in, out) is det. switch_gen__generate_all_cases(Cases0, Var, CodeModel, CanFail, StoreMap, EndLabel, MaybeEnd0, MaybeEnd, Code) --> code_info__produce_variable(Var, VarCode, _Rval), ( { CodeModel = model_det }, { CanFail = cannot_fail }, { Cases0 = [Case1, Case2] }, { Case1 = case(_, _, _, Goal1) }, { Case2 = case(_, _, _, Goal2) } -> code_info__get_pred_id(PredId), code_info__get_proc_id(ProcId), { code_util__count_recursive_calls(Goal1, PredId, ProcId, Min1, Max1) }, { code_util__count_recursive_calls(Goal2, PredId, ProcId, Min2, Max2) }, { Max1 = 0, % Goal1 is a base case Min2 = 1 % Goal2 is probably singly recursive -> Cases = [Case2, Case1] ; Max2 = 0, % Goal2 is a base case Min1 > 1 % Goal1 is at least doubly recursive -> Cases = [Case2, Case1] ; Cases = Cases0 } ; { Cases = Cases0 } ), switch_gen__generate_cases(Cases, Var, CodeModel, CanFail, StoreMap, EndLabel, MaybeEnd0, MaybeEnd, CasesCode), { Code = tree(VarCode, CasesCode) }. :- pred switch_gen__generate_cases(list(extended_case), prog_var, code_model, can_fail, store_map, label, branch_end, branch_end, code_tree, code_info, code_info). :- mode switch_gen__generate_cases(in, in, in, in, in, in, in, out, out, in, out) is det. % At the end of a locally semidet switch, we fail because we % came across a tag which was not covered by one of the cases. % It is followed by the end of switch label to which the cases % branch. switch_gen__generate_cases([], _Var, _CodeModel, CanFail, _StoreMap, EndLabel, MaybeEnd, MaybeEnd, Code) --> ( { CanFail = can_fail } -> code_info__generate_failure(FailCode) ; { FailCode = empty } ), { EndCode = node([ label(EndLabel) - "end of switch" ]) }, { Code = tree(FailCode, EndCode) }. switch_gen__generate_cases([case(_, _, Cons, Goal) | Cases], Var, CodeModel, CanFail, StoreMap, EndLabel, MaybeEnd0, MaybeEnd, CasesCode) --> code_info__remember_position(BranchStart), ( { Cases = [_|_] ; CanFail = can_fail } -> unify_gen__generate_tag_test(Var, Cons, branch_on_failure, NextLabel, TestCode), trace__maybe_generate_internal_event_code(Goal, TraceCode), code_gen__generate_goal(CodeModel, Goal, GoalCode), code_info__generate_branch_end(StoreMap, MaybeEnd0, MaybeEnd1, SaveCode), { ElseCode = node([ goto(label(EndLabel)) - "skip to the end of the switch", label(NextLabel) - "next case" ]) }, { ThisCaseCode = tree(TestCode, tree(TraceCode, tree(GoalCode, tree(SaveCode, ElseCode)))) } ; trace__maybe_generate_internal_event_code(Goal, TraceCode), code_gen__generate_goal(CodeModel, Goal, GoalCode), code_info__generate_branch_end(StoreMap, MaybeEnd0, MaybeEnd1, SaveCode), { ThisCaseCode = tree(TraceCode, tree(GoalCode, SaveCode)) } ), code_info__reset_to_position(BranchStart), % generate the rest of the cases. switch_gen__generate_cases(Cases, Var, CodeModel, CanFail, StoreMap, EndLabel, MaybeEnd1, MaybeEnd, OtherCasesCode), { CasesCode = tree(ThisCaseCode, OtherCasesCode) }. %------------------------------------------------------------------------------%