Commit Graph

13 Commits

Author SHA1 Message Date
Zoltan Somogyi
b2012c0c0e Rename the types 'type', 'inst' and 'mode' to 'mer_type', 'mer_inst'
Estimated hours taken: 8
Branches: main

compiler/*.m:
	Rename the types 'type', 'inst' and 'mode' to 'mer_type', 'mer_inst'
	and 'mer_mode'. This is to avoid the need to parenthesize these type
	names in some contexts, and to prepare for the possibility of a parser
	that considers those words to be reserved words.

	Rename some other uses of those names (e.g. as item types in
	recompilation.m).

	Delete some redundant synonyms (prog_type, mercury_type) for mer_type.

	Change some type names (e.g. mlds__type) and predicate names (e.g.
	deforest__goal) to make them unique even without module qualification.

	Rename the function symbols (e.g. pure, &) that need to be renamed
	to avoid the need to parenthesize them. Make their replacement names
	more expressive.

	Convert some more modules to four space indentation.

	Avoid excessively long lines, such as those resulting from the
	automatic substitution of 'mer_type' for 'type'.
2005-10-24 04:14:34 +00:00
Zoltan Somogyi
905e4a114f Convert a bunch of modules to four-space indentation.
Estimated hours taken: 4
Branches: main

compiler/*.m:
	Convert a bunch of modules to four-space indentation.
	In the process, fix departures from our coding standards.

	In some cases, do minor other cleanups such as changing argument orders
	to be friendly to state variables.

	There are no algorithmic changes.
2005-10-12 23:51:38 +00:00
Mark Brown
38d9ef3479 Package the type_info_varmap and typeclass_info_varmap types into an ADT
Estimated hours taken: 25
Branches: main

Package the type_info_varmap and typeclass_info_varmap types into an ADT
called rtti_varmaps.  There are two main purposes for this:

	- We wish to extend this set of maps with new maps.  Doing this
	will be a lot easier and less error prone if all of the maps are
	packaged in a single data structure.

	- Any new maps that we add may contain redundant information that
	just makes searching the maps more efficient.  Therefore they must
	be kept consistent with the existing maps.  Having all the maps
	inside an ADT makes it easier to ensure this.

This change also includes two extensions to the maps.  First, the
typeclass_info_map is made reversible so that it is possible to efficiently
look up the constraint for a given typeclass_info variable.  Second, a new
map from prog_vars to types makes it possible to efficiently look up the
type that a given type_info variable is for.  These two changes mean that
it is no longer necessary to consult the argument of type_info/1 or
typeclass_info/1 to find this information.  (We still do put that information
there, though; changing the RTTI is left for a separate change.)

compiler/hlds_pred.m:
	Move items relating to type_infos and typeclass_infos into a section
	of their own.

	Add a type `rtti_var_info' to hold information about the contents
	of a type_info or typeclass_info variable.

	Define the rtti_varmaps abstract data type.  This data structure
	consists of the type_info_varmap and the typeclass_info_varmap.
	Add a new map, type_info_type_map, which is like the inverse
	to the type_info_varmap.  The difference is that the latter can
	point to locations that are inside a typeclass_info variable,
	whereas the former only refers to type_info variables.  Note that
	the combined maps do not form a bijection, or even an injection,
	since it is possible for two different type variables to point to
	the same location (that is, if they are aliased).

	Make the typeclass_info_varmap reversible, by using the new module
	injection.m.  Unlike the type_info_varmap, this map is always
	injective since the same typeclass_info cannot be used for two
	different constraints.

	The predicates rtti_det_insert_type_info_locn and set_type_info_locn,
	which update the type_info_varmap, contain sanity checks to ensure
	that only type variables that have already been registered with
	the type_info_type_map are used, and that the information in both
	maps is consistent.

	Use the rtti_varmaps structure in proc_info and clauses_info, in
	place of type_info_varmap and typeclass_info_varmap.

compiler/polymorphism.m:
	Remove polymorphism__type_info_or_ctor_type/2 and
	polymorphism__typeclass_info_class_constraint/2, to ensure that
	nobody tries to use the information in the type argument.  Replace
	them with two similar predicates that test if a type is type_info
	or typeclass_info, but that don't return the argument.

	Ensure that the new type_info_type_map in the rtti_varmaps is kept
	up to date by threading the rtti_varmaps through a few more places.
	Some of these places are exported, so this part of the change
	affects other modules as well.

	Fix a comment that referred to a non-existent predicate.

compiler/type_util.m:
	Remove the predicates apply_substitutions_to_var_map/5 and
	apply_substitutions_to_typeclass_var_map/5.  The functionality
	is now provided by the new ADT.

compiler/cse_detection.m:
	Rewrite update_existential_data_structures/4 to use the interface
	provided by rtti_varmaps.  The algorithm for doing this has changed
	in the following ways:

		- The first pass, which builds a map from changed locations
		in the first branch to the tvars concerned, is modified
		slightly to traverse over the keys instead of over key-value
		pairs.

		- The second pass, which previously calculated the induced
		type substitution and reconstructed the type_info_varmap
		now only does the former.

		- Applying the prog_var transformation and the induced type
		substitution is done at the end, using the interface to
		rtti_varmaps.

compiler/goal_util.m:
	Rewrite goal_util__extra_nonlocal_typeinfos/6 to avoid the need
	for using map__member/3 on the typeclass_info_varmap (about which
	the existing comments say "this is probably not very efficient..."),
	and to be more efficient in general.

	Previously, we nondeterministically generated non-local type vars
	and then tested each constraint to see if it had the type var in it.
	Now, we go through each constraint one at a time and check if any of
	the type variables in it are non-local.  This is more efficient
	because we only need to find one non-local type in order to include
	the typeclass_info in the non-locals -- the remaining (duplicate)
	solutions are pruned away.

compiler/higher_order.m:
	Use the new maps instead of looking at the arguments of type_info/1
	and typeclass_info/1 types.  We plan to remove this information
	from type_info and typeclass_info types in future.

	Previously, this module used the type argument in order to update
	the varmaps when the curried arguments of a higher order call are
	added as arguments to the procedure in which the call occurs.
	We now look up this information at the point where the curried arg
	variables are known, and store this information in higher_order_arg
	alongside the types where it used to be stored.  This structure is
	threaded through to the place where the information is needed.

	Fix a cut and paste bug in higher_order_arg_depth/1.  It was
	previously calling higher_order_args_size/1 in the recursive
	call, instead of calling higher_order_args_depth/1.

compiler/inlining.m:
	In inlining__do_inline_call, apply the substitutions to the entire
	rtti_varmaps structure, not just to the type_info_varmap.  (XXX Is
	there a good reason why the substitution should _not_ be applied
	to the typeclass_info varmap?)

compiler/magic_util.m:
	Avoid using polymorphism__type_info_or_ctor_type/2 and
	polymorphism__typeclass_info_class_constraint/2, as these are
	no longer supported.

compiler/*.m:
	Straightforward changes to use the new ADT.

library/injection.m:
	New library module.  This provides an `injection' type which is
	similar to the existing `bimap' type in that it implements
	back-to-back maps, but doesn't have such stringent invariants
	imposed.  In particular, the reverse map is not required to be
	injective.

	This type is used to model the relationship between prog_constraints
	and program variables that hold typeclass_infos for them.  Namely,
	the typeclass_info for a constraint can be held in two different
	variables, but one variable can never hold the typeclass_info for
	two distinct constraints.

library/library.m:
	Add the new library module.

library/list.m:
	Add list__foldl_corresponding and list__foldl2_corresponding, which
	traverse two lists in parallel, which one or two accumulators, and
	abort if there is a length mismatch.

NEWS:
	Mention the changes to the standard library.
2005-07-22 12:32:07 +00:00
Zoltan Somogyi
8b8b3b7d3f Replace the some() HLDS goal with a more general scope() goal, which can be
Estimated hours taken: 12
Branches: main

Replace the some() HLDS goal with a more general scope() goal, which can be
used not just for existential quantification but also for other purposes.

The main such purposes are new goal types that allow the programmer
to annotate arbitrary goals, and not just whole procedure bodies, with the
equivalents of promise_pure/promise_semipure and promise_only_solution:

	promise_pure ( <impure/semipure goal> )
	promise_semipure ( <impure goal> )

	promise_equivalent_solutions [OutVar1, OutVar2] (
		<cc_multi/cc_nondet goal that computed OutVar1 & OutVar2>
	)

Both are intended to be helpful in writing constraint solvers, as well as in
other situations.

doc/reference_manual.texi:
	Document the new constructs.

library/ops.m:
	Add the keywords of the new constructs to the list of operators.
	Since they work similarly to the "some" operator, they have the same
	precedence.

compiler/hlds_goal.m:
	Replace the some(Vars, SubGoal) HLDS construct, with its optional
	keep_this_commit attribute, with the new scope(Reason, SubGoal)
	construct. The Reason argument may say that this scope is an
	existential quantification, but it can also say that it represents
	a purity promise, the introduction of a single-solution context
	with promise_equivalent_solutions, or a decision by a compiler pass.

	It can also say that the scope represents a set of goals that all arise
	from the unraveling of a unification between a variable and a ground
	term. This was intended to speed up mode checking by significantly
	reducing the number of delays and wakeups, but the cost of the scopes
	themselves turned out to be bigger than the gain in modechecking speed.

	Update the goal_path_step type to refer to scope goals instead of just
	existential quantification.

compiler/prog_data.m:
	Add new function symbols to the type we use to represent goals in items
	to stand for the new Mercury constructs.

compiler/prog_io_goal.m:
	Add code to read in the new language constructs.

compiler/prog_io_util.m:
	Add a utility predicate for use by the new code in prog_io_goal.m.

compiler/make_hlds.m:
	Convert the item representation of the new constructs to the HLDS
	representation.

	Document how the from_ground_term scope reason would work, but do not
	enable the code.

compiler/purity.m:
	When checking the purity of goals, respect the new promise_pure and
	promise_semipure scopes. Generate warnings if such scopes are
	redundant.

compiler/det_analysis.m:
	Make the insides of promise_equivalent_solutions goals single solution
	contexts.

compiler/det_report.m:
	Provide mechanisms for reporting inappropriate usage of
	promise_equivalent_solutions goals.

compiler/instmap.m:
	Add a utility predicate for use by one of the modules above.

compiler/deep_profiling.m:
	Use one of the new scope reasons to prevent simplify from optimizing
	away commits of goals that have been made impure, instead of the old
	keep_this_commit goal feature.

compiler/modes.m:
	Handle from_ground_term scopes when present; for now, they won't be
	present, since make_hlds isn't creating them.

compiler/options.m:
	Add two new compiler options, for use by implementors only, to allow
	finer control over the amount of output one gets with --debug-modes.
	(I used them when debugging the performance of the from_ground_term
	scope reason.) The options are --debug-modes-minimal and
	--debug-modes-verbose.

compiler/handle_options.m:
	Make the options that are meaningful only in the presence of
	--debug-modes imply --debug-modes, since this allows more convenient
	(shorter) invocations.

compiler/mode_debug.m:
	Respect the new options when deciding how much data to print
	when debugging of the mode checking process is enabled.

compiler/switch_detect.m:
	Rename a predicate to make it differ from another predicate by more
	than just its arity.

compiler/passes_aux.m:
	Bring this module up to date with our current style guidelines,
	by using state variable syntax where appropriate.

compiler/*.m:
	Minor changes to conform to the change in the HLDS and/or parse tree
	goal type.

mdbcomp/program_representation.m:
	Rename the some goal to the scope goal, and the same for path steps,
	to keep them in sync with the HLDS.

browser/declarative_tree.m:
	Conform to the change in goal representations.

tests/hard_coded/promise_equivalent_solutions_test.{m,exp}:
	A new test case to test the handling of the
	promise_equivalent_solutions construct.

tests/hard_coded/Mmakefile:
	Enable the new test.

tests/hard_coded/purity/promise_pure_test.{m,exp}:
	A new test case to test the handling of the promise_pure and
	promise_semipure constructs.

tests/hard_coded/purity/Mmakefile:
	Enable the new test.

tests/invalid/promise_equivalent_solutions.{m,err_exp}:
	A new test case to test the error messages for improper use of the
	promise_pure and promise_semipure constructs.

tests/invalid/Mmakefile:
	Enable the new test.
2005-03-24 05:34:41 +00:00
Zoltan Somogyi
c08ca7fbc8 Import only one module per line in the modules of the compiler
Estimated hours taken: 3
Branches: main

compiler/*.m:
	Import only one module per line in the modules of the compiler
	where my previous diff did not already do so.

	Misc other cleanups.

	Where relevant, use the new mechanism in tree.m.

compiler/tree.m:
	Fix a performance problem I noticed while update :- import_module
	items. Instead of supplying a function to convert lists of trees
	to a tree, make the tree data structure able to hold a list of
	subtrees directly. This reduces the number of times where we have to
	convert list of trees to trees that are sticks just to stay within
	the old definition of what a tree is.
2005-03-24 02:00:43 +00:00
Zoltan Somogyi
885fd4a387 Remove almost all dependencies by the modules of parse_tree.m on the modules
Estimated hours taken: 12
Branches: main

Remove almost all dependencies by the modules of parse_tree.m on the modules
of hlds.m. The only such dependencies remaining now are on type_util.m.

compiler/hlds_data.m:
compiler/prog_data.m:
	Move the cons_id type from hlds_data to prog_data, since several parts
	of the parse tree data structure depend on it (particularly insts).
	Remove the need to import HLDS modules in prog_data.m by making the
	cons_ids that refer to procedure ids refer to them via a new type
	that contains shrouded pred_ids and proc_ids. Since pred_ids and
	proc_ids are abstract types in hlds_data, add predicates to hlds_data
	to shroud and unshroud them.

	Also move some other types, e.g. mode_id and class_id, from hlds_data
	to prog_data.

compiler/hlds_data.m:
compiler/prog_util.m:
	Move predicates for manipulating cons_ids from hlds_data to prog_util.

compiler/inst.m:
compiler/prog_data.m:
	Move the contents of inst.m to prog_data.m, since that is where it
	belongs, and since doing so eliminates a circular dependency.
	The separation doesn't serve any purpose any more, since we don't
	need to import hlds_data.m anymore to get access to the cons_id type.

compiler/mode_util.m:
compiler/prog_mode.m:
compiler/parse_tree.m:
	Move the predicates in mode_util that don't depend on the HLDS to a new
	module prog_mode, which is part of parse_tree.m.

compiler/notes/compiler_design.m:
	Mention prog_mode.m, and delete the mention of inst.m.

compiler/mercury_to_mercury.m:
compiler/hlds_out.m:
	Move the predicates that depend on HLDS out of mercury_to_mercury.m
	to hlds_out.m. Export from mercury_to_mercury.m the predicates needed
	by the moved predicates.

compiler/hlds_out.m:
compiler/prog_out.m:
	Move predicates for printing parts of the parse tree out of hlds_out.m
	to prog_out.m, since mercury_to_mercury.m needs to use them.

compiler/purity.m:
compiler/prog_out.m:
	Move predicates for printing purities from purity.m, which is part
	of check_hlds.m, to prog_out.m, since mercury_to_mercury.m needs to use
	them.

compiler/passes_aux.m:
compiler/prog_out.m:
	Move some utility predicates (e.g. for printing progress messages) from
	passes_aux.m to prog_out.m, since some predicates in submodules of
	parse_tree.m need to use them.

compiler/foreign.m:
compiler/prog_data.m:
	Move some types from foreign.m to prog_data.m to allow the elimination
	of some dependencies on foreign.m from submodules of parse_tree.m.

compiler/*.m:
	Conform to the changes above, mostly by updating lists of imported
	modules and module qualifications. In some cases, also do some local
	cleanups such as converting predicate declarations to predmode syntax
	and fixing white space.
2004-06-14 04:17:03 +00:00
Zoltan Somogyi
7bf0cd03af Reduce the overhead of all forms of tabling by eliminating in many cases
Estimated hours taken: 32
Branches: main

Reduce the overhead of all forms of tabling by eliminating in many cases
the overhead of transferring data across the C/Mercury boundary. These
involve lots of control transfers as well as assignments to and from
Mercury abstract machine registers, which are not real machine registers
on x86 machines. Benchmarking in Uppsala revealed this overhead to be
a real problem.

The way we do that is by changing the tabling transformation so that instead
of generating sequences of calls to predicates from library/table_builtin.m,
we generate sequences of calls to C macros from runtime/mercury_tabling_pred.h,
and emit the resulting code string as the body of a foreign_proc goal.
(The old transformation is still available via a new option,
--no-tabling-via-extra-args.)

Since the number of inputs and outputs of the resulting C code sequences
are not always fixed (they can depend on the number of input or output
arguments of predicate being transformed), implementing this required
adding to foreign_procs a new field that allows the specification of extra
arguments to be passed to and from the given foreign code fragment. For now,
this mechanism is implemented only by the C backends, since it is needed
only by the C backends. (We don't support yet tabling on other backends.)

To simplify the new implementation of the field on foreign_procs, consolidate
three existing fields into one. Each of these fields was a list with one
element per argument, so turning them into a single list with a combined record
per argument should also improve reliability, since it reduces the likelyhood
of updates leaving the data structure inconsistent.

The goal paths of components of a tabled predicate depend on whether
-no-tabling-via-extra-args was specified. To enable the expected outputs
of the debugger test cases testing tabling, we add a new mdb command,
goal_paths, that controls whether goal paths are printed by the debugger
at events, and turn off the printing of events in the relevant test cases.

Also, prepare for a future change to optimize the trie structure for
user-defined types by handling type_infos (and once we support them,
typeclass_infos) specially.

compiler/table_gen.m:
	Change the tabling transformation along the lines described above.

	To allow us to factor out as much of the new code as possible,
	we change the meaning of the call_table_tip variable for minimal
	model subgoals: instead of the trie node at the end of the answer
	table, it is not now the subgoal reachable from it. This change
	has no effect as yet, because we use call_table_tip variables
	only to perform resets across retries in the debugger, and we
	don't do retries across calls to minimal model tabled predicates.

	Put predicates into logical groups.

library/table_builtin.m:
runtime/mercury_tabling_preds.h:
	When the new transformations in table_gen.m generate foreign_procs
	with variable numbers of arguments, the interfaces of those
	foreign_procs often do not match the interfaces of the existing
	library predicates at their core: they frequently have one more
	or one fewer argument. To prevent any possible confusion, in such
	cases we add a new variant of the predicate. These predicates
	have the suffix _shortcut in their name. Their implementations
	are dummy macros that do nothing; they serve merely as placeholders
	before or after which the macros that actually do the work are
	inserted.

	Move the definitions of the lookup, save and restore predicates
	into mercury_tabling_preds.h. Make the naming scheme of their
	arguments more regular.

runtime/mercury_minimal_model.c:
runtime/mercury_tabling_preds.h:
	Move the definition of a predicate from mercury_minimal_model.c
	to mercury_tabling_preds.h, since the compiler now needs to be
	able to generate an inlined version of it.

compiler/hlds_goal.m:
	Replace the three existing fields describing the arguments of
	foreign_procs with one, and add a new field describing the extra
	arguments that may be inserted by table_gen.m.

	Add utility predicates for processing the arguments of foreign_procs.

	Change the order of some existing groups of declarations make it
	more logical.

compiler/hlds_pred.m:
runtime/mercury_stack_layout.h:
	Extend the data structures recording the structure of tabling tries
	to allow the representation of trie steps for type_infos and
	typeclass_infos.

runtime/mercury_tabling_macros.c:
	Fix a bug regarding the tabling of typeclass_infos, which is now
	required for a clean compile.

compiler/pragma_c_gen.m:
compiler/ml_code_gen.m:
	Modify the generation of code for foreign_procs to handle extra
	arguments, and to conform to the new data structures for foreign_proc
	arguments.

compiler/llds.m:
	The tabling transformations can now generate significantly sized
	foreign_procs bodies, which the LLDS code generator translates to
	pragma_c instructions. Duplicating these by jump optimization
	may lose more by worsening locality than it gains in avoiding jumps,
	so we add an extra field to pragma_c instructions that tells jumpopt
	not to duplicate code sequences containing such pragma_cs.

compiler/jumpopt.m:
	Respect the new flag on pragma_cs.

compiler/goal_util.m:
	Add a predicate to create foreign_procs with specified contents,
	modelled on the existing predicate to create calls.

	Change the order of the arguments of that existing predicate
	to make it more logical.

compiler/polymorphism.m:
	Conform to the new definition of foreign_procs. Try to simplify
	the mechanism for generating the type_info and typeclass_info
	arguments of foreign_proc goals, but it is not clear that this
	code is even ever executed.

compiler/aditi_builtin_ops.m:
compiler/assertion.m:
compiler/bytecode_gen.m:
compiler/clause_to_proc.m:
compiler/code_gen.m:
compiler/code_info.m:
compiler/code_util.m:
compiler/constraint.m:
compiler/deep_profiling.m:
compiler/deforest.m:
compiler/delay_construct.m:
compiler/dependency_graph.m:
compiler/det_analysis.m:
compiler/det_report.m:
compiler/dnf.m:
compiler/dupelim.m:
compiler/equiv_type_hlds.m:
compiler/exprn_aux.m:
compiler/follow_code.m:
compiler/follow_vars.m:
compiler/frameopt.m:
compiler/goal_form.m:
compiler/goal_path.m:
compiler/higher_order.m:
compiler/higher_order.m:
compiler/hlds_module.m:
compiler/hlds_out.m:
compiler/inlining.m:
compiler/ite_gen.m:
compiler/layout_out.m:
compiler/livemap.m:
compiler/liveness.m:
compiler/llds_out.m:
compiler/loop_inv.m:
compiler/magic.m:
compiler/make_hlds.m:
compiler/mark_static_terms.m:
compiler/middle_rec.m:
compiler/modes.m:
compiler/modules.m:
compiler/opt_debug.m:
compiler/pd_cost.m:
compiler/prog_rep.m:
compiler/purity.m:
compiler/quantification.m:
compiler/reassign.m:
compiler/rl_exprn.m:
compiler/saved_vars.m:
compiler/simplify.m:
compiler/size_prof.m:
compiler/store_alloc.m:
compiler/stratify.m:
compiler/switch_detection.m:
compiler/term_pass1.m:
compiler/term_traversal.m:
compiler/termination.m:
compiler/trace.m:
compiler/typecheck.m:
compiler/unify_proc.m:
compiler/unique_modes.m:
compiler/unneeed_code.m:
compiler/unused_args.m:
compiler/use_local_vars.m:
	Conform to the new definition of foreign_procs, pragma_cs and/or
	table trie steps, or to changed argument orders.

compiler/add_heap_ops.m:
compiler/add_trail_ops.m:
compiler/cse_detection.m:
compiler/dead_proc_elim.m:
compiler/equiv_type.m:
compiler/intermod.m:
compiler/lambda.m:
compiler/lco.m:
compiler/module_util.m:
compiler/opt_util.m:
compiler/stack_opt.m:
compiler/trans_opt.m:
	Conform to the new definition of foreign_procs.

	Bring these modules up to date with our current code style guidelines,
	using predmode declarations, state variable syntax and unification
	expressions as appropriate.

compiler/mercury_compile.m:
	Conform to the changed argument order of a predicate in trans_opt.m.

compiler/options.m:
	Add the --no-tabling-via-extra-args option, but leave the
	documentation commented out since the option is for developers only.

doc/user_guide.texi:
	Document --no-tabling-via-extra-args option, though leave the
	documentation commented out since the option is for developers only.

doc/user_guide.texi:
doc/mdb_categories:
	Document the new goal_paths mdb command.

trace/mercury_trace_internals.c:
	Implement the new goal_paths mdb command.

tests/debugger/completion.exp:
	Conform to the presence of the goal_paths mdb command.

tests/debugger/mdb_command_test.inp:
	Test the existence of documentation for the goal_paths mdb command.

tests/debugger/print_table.{inp,exp*}:
tests/debugger/retry.{inp,exp*}:
	Use the goal_paths command to avoid having the expected output
	depend on the presence or absence of --tabling-via-extra-args.

tests/tabling/table_foreign_output.{m,exp}:
	Add a new test case to test the save/restore of arguments of foreign
	types.

tests/tabling/Mmakefile:
	Enable the new test case.

tests/tabling/test_tabling:
	Make this script more robust.

	Add an option for testing only the standard model forms of tabling.
2004-06-07 09:07:23 +00:00
Zoltan Somogyi
ff60134ee9 Bring these modules up to our current coding standards.
Estimated hours taken: 8
Branches: main

analysis/analysis.m:
browser/browse.m:
compiler/accumulator.m:
compiler/assertion.m:
compiler/atsort.m:
compiler/c_util.m:
compiler/check_typeclass.m:
compiler/clause_to_proc.m:
compiler/code_gen.m:
compiler/code_model.m:
compiler/const_prop.m:
compiler/constraint.m:
compiler/dead_proc_elim.m:
compiler/delay_construct.m:
compiler/dependency_graph.m:
compiler/det_analysis.m:
compiler/det_report.m:
compiler/export.m:
compiler/fact_table.m:
compiler/follow_code.m:
compiler/graph_colour.m:
compiler/hlds_module.m:
compiler/inlining.m:
compiler/llds.m:
compiler/make_hlds.m:
compiler/mercury_to_mercury.m:
compiler/ml_tailcall.m:
compiler/ml_unify_gen.m:
compiler/mmc_analysis.m:
compiler/mode_errors.m:
compiler/passes_aux.m:
compiler/post_typecheck.m:
compiler/size_prof.m:
compiler/switch_util.m:
compiler/table_gen.m:
compiler/term_errors.m:
compiler/transform_llds.m:
compiler/type_util.m:
compiler/unify_gen.m:
compiler/unneeded_code.m:
compiler/unused_args.m:
	Bring these modules up to our current coding standards. Use predmode
	declarations and state variable syntax where relevant. Reorder
	arguments where this is needed for the use state variables. Make the
	orders of predicate definitions correspond to the order of their
	declarations. Replace some overly large lambda expressions with named
	predicates. Convert some predicates to functions where this makes
	their use more convenient. Use field access notation where convenient.
	Fix any inconsistent indentation. Remove module prefixes on predicate
	names where this is necessary to allow sane indentation.

	In several places, use predicates from error_util.m to print error
	messages. Apart from this, there are no changes in algorithms.

	In some places, conform to the changes below.

compiler/error_util.m:
compiler/hlds_error_util.m:
	Add new variants of existing predicates for use in some of the
	changed modules above.

compiler/hlds_out.m:
	Add some functions to convert values of some HLDS types as strings,
	for use in preparing the arguments of the new calls to predicates in
	error_util.m. Change the implementations of the predicates that print
	values of those types to call those functions instead of allowing
	code duplication.

compiler/llds.m:
	Add some field names to allow use of field updates where relevant.

tests/invalid/assert_in_interface.err_exp:
tests/invalid/multisoln_func.err_exp:
tests/invalid/tricky_assert1.err_exp:
	Update the expected outputs of these test cases to allow for them being
	generated by error_util.m, and hence being better formatted than
	before.
2004-04-05 05:07:49 +00:00
Zoltan Somogyi
8693e293a2 This diff makes hlds_pred.m and many callers of its predicates easier to read
Estimated hours taken: 4
Branches: main

This diff makes hlds_pred.m and many callers of its predicates easier to read
and to maintain, but contains no changes in algorithms whatsoever.

compiler/hlds_pred.m:
	Bring this module into line with our current coding standards.
	Use predmode declarations, functions, and state variable syntax
	when appropriate.

	Reorder arguments of predicates where necessary for the use of state
	variable syntax, and where this improves readability.

	Replace old-style lambdas with new-style lambdas or with partially
	applied named procedures.

	Standardize indentation.

compiler/*.m:
	Conform to the changes in hlds_pred.m. This mostly means using the
	new argument orders of predicates exported by hlds_pred.m. Where this
	is now conveniently possible, change predicates to use state
	variable notation.

	In some modules, using state variable notation required changing the
	orders of arguments in the module's top predicate.

compiler/passes_aux.m:
	Change the order of arguments in the calls this module makes to
	allow the callees to use state variable notation.

	Convert this module to state variable notation too.
2003-10-24 06:17:51 +00:00
Zoltan Somogyi
9551640f55 Import only one compiler module per line. Sort the blocks of imports.
Estimated hours taken: 2
Branches: main

compiler/*.m:
	Import only one compiler module per line. Sort the blocks of imports.
	This makes it easier to merge in changes.

	In a couple of places, remove unnecessary imports.
2003-03-15 03:09:14 +00:00
Zoltan Somogyi
189b9215ae This diff implements stack slot optimization for the LLDS back end based on
Estimated hours taken: 400
Branches: main

This diff implements stack slot optimization for the LLDS back end based on
the idea that after a unification such as A = f(B, C, D), saving the
variable A on the stack indirectly also saves the values of B, C and D.

Figuring out what subset of {B,C,D} to access via A and what subset to access
via their own stack slots is a tricky optimization problem. The algorithm we
use to solve it is described in the paper "Using the heap to eliminate stack
accesses" by Zoltan Somogyi and Peter Stuckey, available in ~zs/rep/stackslot.
That paper also describes (and has examples of) the source-to-source
transformation that implements the optimization.

The optimization needs to know what variables are flushed at call sites
and at program points that establish resume points (e.g. entries to
disjunctions and if-then-elses). We already had code to compute this
information in live_vars.m, but this code was being invoked too late.
This diff modifies live_vars.m to allow it to be invoked both by the stack
slot optimization transformation and by the code generator, and allows its
function to be tailored to the requirements of each invocation.

The information computed by live_vars.m is specific to the LLDS back end,
since the MLDS back ends do not (yet) have the same control over stack
frame layout. We therefore store this information in a new back end specific
field in goal_infos. For uniformity, we make all the other existing back end
specific fields in goal_infos, as well as the similarly back end specific
store map field of goal_exprs, subfields of this new field. This happens
to significantly reduce the sizes of goal_infos.

To allow a more meaningful comparison of the gains produced by the new
optimization, do not save any variables across erroneous calls even if
the new optimization is not enabled.

compiler/stack_opt.m:
	New module containing the code that performs the transformation
	to optimize stack slot usage.

compiler/matching.m:
	New module containing an algorithm for maximal matching in bipartite
	graphs, specialized for the graphs needed by stack_opt.m.

compiler/mercury_compile.m:
	Invoke the new optimization if the options ask for it.

compiler/stack_alloc.m:
	New module containing code that is shared between the old,
	non-optimizing stack slot allocation system and the new, optimizing
	stack slot allocation system, and the code for actually allocating
	stack slots in the absence of optimization.

	Live_vars.m used to have two tasks: find out what variables need to be
	saved on the stack, and allocating those variables to stack slots.
	Live_vars.m now does only the first task; stack_alloc.m now does
	the second, using code that used to be in live_vars.m.

compiler/trace_params:
	Add a new function to test the trace level, which returns yes if we
	want to preserve the values of the input headvars.

compiler/notes/compiler_design.html:
	Document the new modules (as well as trace_params.m, which wasn't
	documented earlier).

compiler/live_vars.m:
	Delete the code that is now in stack_alloc.m and graph_colour.m.

	Separate out the kinds of stack uses due to nondeterminism: the stack
	slots used by nondet calls, and the stack slots used by resumption
	points, in order to allow the reuse of stack slots used by resumption
	points after execution has left their scope. This should allow the
	same stack slots to be used by different variables in the resumption
	point at the start of an else branch and nondet calls in the then
	branch, since the resumption point of the else branch is not in effect
	when the then branch is executed.

	If the new option --opt-no-return-calls is set, then say that we do not
	need to save any values across erroneous calls.

	Use type classes to allow the information generated by this module
	to be recorded in the way required by its invoker.

	Package up the data structures being passed around readonly into a
	single tuple.

compiler/store_alloc.m:
	Allow this module to be invoked by stack_opt.m without invoking the
	follow_vars transformation, since applying follow_vars before the form
	of the HLDS code is otherwise final can be a pessimization.

	Make the module_info a part of the record containing the readonly data
	passed around during the traversal.

compiler/common.m:
	Do not delete or move around unifications created by stack_opt.m.

compiler/call_gen.m:
compiler/code_info.m:
compiler/continuation_info.m:
compiler/var_locn.m:
	Allow the code generator to delete its last record of the location
	of a value when generating code to make an erroneous call, if the new
	--opt-no-return-calls option is set.

compiler/code_gen.m:
	Use a more useful algorithm to create the messages/comments that
	we put into incr_sp instructions, e.g. by distinguishing between
	predicates and functions. This is to allow the new scripts in the
	tool directory to gather statistics about the effect of the
	optimization on stack frame sizes.

library/exception.m:
	Make a hand-written incr_sp follow the new pattern.

compiler/arg_info.m:
	Add predicates to figure out the set of input, output and unused
	arguments of a procedure in several different circumstances.
	Previously, variants of these predicates were repeated in several
	places.

compiler/goal_util.m:
	Export some previously private utility predicates.

compiler/handle_options.m:
	Turn off stack slot optimizations when debugging, unless
	--trace-optimized is set.

	Add a new dump format useful for debugging --optimize-saved-vars.

compiler/hlds_llds.m:
	New module for handling all the stuff specific to the LLDS back end
	in HLDS goal_infos.

compiler/hlds_goal.m:
	Move all the relevant stuff into the new back end specific field
	in goal_infos.

compiler/notes/allocation.html:
	Update the documentation of store maps to reflect their movement
	into a subfield of goal_infos.

compiler/*.m:
	Minor changes to accomodate the placement of all back end specific
	information about goals from goal_exprs and individual fields of
	goal_infos into a new field in goal_infos that gathers together
	all back end specific information.

compiler/use_local_vars.m:
	Look for sequences in which several instructions use a fake register
	or stack slot as a base register pointing to a cell, and make those
	instructions use a local variable instead.

	Without this, a key assumption of the stack slot optimization,
	that accessing a field in a cell costs only one load or store
	instruction, would be much less likely to be true. (With this
	optimization, the assumption will be false only if the C compiler's
	code generator runs out of registers in a basic block, which for
	the code we generate should be unlikely even on x86s.)

compiler/options.m:
	Make the old option --optimize-saved-vars ask for both the old stack
	slot optimization (implemented by saved_vars.m) that only eliminates
	the storing of constants in stack slots, and the new optimization.

	Add two new options --optimize-saved-vars-{const,cell} to turn on
	the two optimizations separately.

	Add a bunch of options to specify the parameters of the new
	optimizations, both in stack_opt.m and use_local_vars.m. These are
	for implementors only; they are deliberately not documented.

	Add a new option, --opt-no-return-cells, that governs whether we avoid
	saving variables on the stack at calls that cannot return, either by
	succeeding or by failing. This is for implementors only, and thus
	deliberately documented only in comments. It is enabled by default.

compiler/optimize.m:
	Transmit the value of a new option to use_local_vars.m.

doc/user_guide.texi:
	Update the documentation of --optimize-saved-vars.

library/tree234.m:
	Undo a previous change of mine that effectively applied this
	optimization by hand. That change complicated the code, and now
	the compiler can do the optimization automatically.

tools/extract_incr_sp:
	A new script for extracting stack frame sizes and messages from
	stack increment operations in the C code for LLDS grades.

tools/frame_sizes:
	A new script that uses extract_incr_sp to extract information about
	stack frame sizes from the C files saved from a stage 2 directory
	by makebatch and summarizes the resulting information.

tools/avg_frame_size:
	A new script that computes average stack frame sizes from the files
	created by frame_sizes.

tools/compare_frame_sizes:
	A new script that compares the stack frame size information
	extracted from two different stage 2 directories by frame_sizes,
	reporting on both average stack frame sizes and on specific procedures
	that have different stack frame sizes in the two versions.
2002-03-28 03:44:41 +00:00
Fergus Henderson
7597790760 Use sub-modules to structure the modules in the Mercury compiler directory.
The main aim of this change is to make the overall, high-level structure
of the compiler clearer, and to encourage better encapsulation of the
major components.

compiler/libs.m:
compiler/backend_libs.m:
compiler/parse_tree.m:
compiler/hlds.m:
compiler/check_hlds.m:
compiler/transform_hlds.m:
compiler/bytecode_backend.m:
compiler/aditi_backend.m:
compiler/ml_backend.m:
compiler/ll_backend.m:
compiler/top_level.m:
	New files.  One module for each of the major components of the
	Mercury compiler.  These modules contain (as separate sub-modules)
	all the other modules in the Mercury compiler, except gcc.m and
	mlds_to_gcc.m.

Mmakefile:
compiler/Mmakefile:
	Handle the fact that the top-level module is now `top_level',
	not `mercury_compile' (since `mercury_compile' is a sub-module
	of `top_level').

compiler/Mmakefile:
	Update settings of *FLAGS-<modulename> to use the appropriate
	nested module names.

compiler/recompilation_check.m:
compiler/recompilation_version.m:
compiler/recompilation_usage.m:
compiler/recompilation.check.m:
compiler/recompilation.version.m:
compiler/recompilation.version.m:
	Convert the `recompilation_*' modules into sub-modules of the
	`recompilation' module.

compiler/*.m:
compiler/*.pp:
	Module-qualify the module names in `:- module', `:- import_module',
	and `:- use_module' declarations.

compiler/base_type_info.m:
compiler/base_type_layout.m:
	Deleted these unused empty modules.

compiler/prog_data.m:
compiler/globals.m:
	Move the `foreign_language' type from prog_data to globals.

compiler/mlds.m:
compiler/ml_util.m:
compiler/mlds_to_il.m:
	Import `globals', for `foreign_language'.

Mmake.common.in:
trace/Mmakefile:
runtime/Mmakefile:
	Rename the %.check.c targets as %.check_hdr.c,
	to avoid conflicts with compiler/recompilation.check.c.
2002-03-20 12:37:56 +00:00
Zoltan Somogyi
afd6568f4e A new module for delaying construction unifications past builtins in
Estimated hours taken: 8
Branches: main

compiler/delay_construct.m:
	A new module for delaying construction unifications past builtins in
	conjunctions that can fail. The idea is to incur the cost of memory
	allocation only if those tests succeed. This can speed up code (e.g.
	tests/benchmarks/query) by integer factors.

compiler/notes/compiler_design.m:
	Mention the new module.

compiler/options.m:
doc/user_guide.texi:
	Add a new option, --delay-construct, that switches on the new
	optimization.

compiler/mercury_compile.m:
	Invoke the new optimization if the option calls for it.
2001-04-24 03:39:43 +00:00