Files
mercury/compiler/delay_construct.m
Fergus Henderson 7597790760 Use sub-modules to structure the modules in the Mercury compiler directory.
The main aim of this change is to make the overall, high-level structure
of the compiler clearer, and to encourage better encapsulation of the
major components.

compiler/libs.m:
compiler/backend_libs.m:
compiler/parse_tree.m:
compiler/hlds.m:
compiler/check_hlds.m:
compiler/transform_hlds.m:
compiler/bytecode_backend.m:
compiler/aditi_backend.m:
compiler/ml_backend.m:
compiler/ll_backend.m:
compiler/top_level.m:
	New files.  One module for each of the major components of the
	Mercury compiler.  These modules contain (as separate sub-modules)
	all the other modules in the Mercury compiler, except gcc.m and
	mlds_to_gcc.m.

Mmakefile:
compiler/Mmakefile:
	Handle the fact that the top-level module is now `top_level',
	not `mercury_compile' (since `mercury_compile' is a sub-module
	of `top_level').

compiler/Mmakefile:
	Update settings of *FLAGS-<modulename> to use the appropriate
	nested module names.

compiler/recompilation_check.m:
compiler/recompilation_version.m:
compiler/recompilation_usage.m:
compiler/recompilation.check.m:
compiler/recompilation.version.m:
compiler/recompilation.version.m:
	Convert the `recompilation_*' modules into sub-modules of the
	`recompilation' module.

compiler/*.m:
compiler/*.pp:
	Module-qualify the module names in `:- module', `:- import_module',
	and `:- use_module' declarations.

compiler/base_type_info.m:
compiler/base_type_layout.m:
	Deleted these unused empty modules.

compiler/prog_data.m:
compiler/globals.m:
	Move the `foreign_language' type from prog_data to globals.

compiler/mlds.m:
compiler/ml_util.m:
compiler/mlds_to_il.m:
	Import `globals', for `foreign_language'.

Mmake.common.in:
trace/Mmakefile:
runtime/Mmakefile:
	Rename the %.check.c targets as %.check_hdr.c,
	to avoid conflicts with compiler/recompilation.check.c.
2002-03-20 12:37:56 +00:00

274 lines
11 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 2001 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: delay_construct.m
%
% Author: zs.
%
% This module transforms sequences of goals in procedure bodies.
% It looks for a unification that constructs a ground term followed by
% primitive goals, at least one of which can fail, and none of which take
% the variable representing the cell as their input. Such code sequences
% cause the cell to be constructed even if the following goal would fail,
% which is wasteful. This module therefore reorders the sequence, moving the
% construction unification past all the semidet primitives it can.
%
% The reason we don't move the construction past calls or composite goals
% is that this may require storing the input arguments of the construction on
% the stack, which may cause a slowdown bigger than the speedup available from
% not having to construct the cell on some execution paths.
%-----------------------------------------------------------------------------%
:- module transform_hlds__delay_construct.
:- interface.
:- import_module hlds__hlds_module, hlds__hlds_pred.
:- import_module io.
:- pred delay_construct_proc(pred_id::in, proc_id::in, module_info::in,
proc_info::in, proc_info::out, io__state::di, io__state::uo) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module parse_tree__prog_data, hlds__hlds_data, hlds__hlds_goal.
:- import_module hlds__passes_aux, libs__globals.
:- import_module hlds__instmap, check_hlds__inst_match.
:- import_module bool, list, set, std_util, require.
%-----------------------------------------------------------------------------%
delay_construct_proc(PredId, ProcId, ModuleInfo, ProcInfo0, ProcInfo) -->
write_proc_progress_message("% Delaying construction unifications in ",
PredId, ProcId, ModuleInfo),
globals__io_get_globals(Globals),
{ module_info_pred_info(ModuleInfo, PredId, PredInfo) },
{ delay_construct_proc_no_io(ProcInfo0, PredInfo, ModuleInfo, Globals,
ProcInfo) }.
:- pred delay_construct_proc_no_io(proc_info::in, pred_info::in,
module_info::in, globals::in, proc_info::out) is det.
delay_construct_proc_no_io(ProcInfo0, PredInfo, ModuleInfo, Globals, ProcInfo)
:-
body_should_use_typeinfo_liveness(PredInfo, Globals,
BodyTypeinfoLiveness),
proc_info_vartypes(ProcInfo0, VarTypes),
proc_info_typeinfo_varmap(ProcInfo0, TypeInfoVarMap),
proc_info_get_initial_instmap(ProcInfo0, ModuleInfo, InstMap0),
DelayInfo = delay_construct_info(ModuleInfo, BodyTypeinfoLiveness,
VarTypes, TypeInfoVarMap),
proc_info_goal(ProcInfo0, Goal0),
delay_construct_in_goal(Goal0, InstMap0, DelayInfo, Goal),
proc_info_set_goal(ProcInfo0, Goal, ProcInfo).
:- type delay_construct_info
---> delay_construct_info(
module_info :: module_info,
body_typeinfo_liveness :: bool,
vartypes :: vartypes,
type_info_varmap :: type_info_varmap
).
%-----------------------------------------------------------------------------%
:- pred delay_construct_in_goal(hlds_goal::in, instmap::in,
delay_construct_info::in, hlds_goal::out) is det.
delay_construct_in_goal(GoalExpr0 - GoalInfo0, InstMap0, DelayInfo, Goal) :-
(
GoalExpr0 = conj(Goals0),
goal_info_get_determinism(GoalInfo0, Detism),
determinism_components(Detism, CanFail, MaxSoln),
(
% If the conjunction cannot fail, then its conjuncts
% cannot fail either, so we have no hope of pushing a
% construction past a failing goal.
%
% If the conjuntion contains goals that can succeed
% more than once, which is possible if MaxSoln is
% at_most_many or at_most_many_cc, then moving a
% construction to the right may increase the number of
% times the construction is executed. We are therefore
% careful to make sure delay_construct_in_conj doesn't
% move constructions across goals that succeed more
% than once.
%
% If the conjunction cannot succeed, i.e. MaxSoln is
% at_most_zero, there is no point in trying to speed it
% up.
CanFail = can_fail,
MaxSoln \= at_most_zero
->
delay_construct_in_conj(Goals0, InstMap0, DelayInfo,
set__init, [], Goals1)
;
Goals1 = Goals0
),
delay_construct_in_goals(Goals1, InstMap0, DelayInfo, Goals),
Goal = conj(Goals) - GoalInfo0
;
GoalExpr0 = par_conj(Goals0, SM),
delay_construct_in_goals(Goals0, InstMap0, DelayInfo, Goals),
Goal = par_conj(Goals, SM) - GoalInfo0
;
GoalExpr0 = disj(Goals0, SM),
delay_construct_in_goals(Goals0, InstMap0, DelayInfo, Goals),
Goal = disj(Goals, SM) - GoalInfo0
;
GoalExpr0 = not(NegGoal0),
delay_construct_in_goal(NegGoal0, InstMap0, DelayInfo, NegGoal),
Goal = not(NegGoal) - GoalInfo0
;
GoalExpr0 = switch(Var, CanFail, Cases0, SM),
delay_construct_in_cases(Cases0, InstMap0, DelayInfo, Cases),
Goal = switch(Var, CanFail, Cases, SM) - GoalInfo0
;
GoalExpr0 = if_then_else(Vars, Cond0, Then0, Else0, SM),
Cond0 = _ - CondInfo0,
goal_info_get_instmap_delta(CondInfo0, CondInstMapDelta),
instmap__apply_instmap_delta(InstMap0, CondInstMapDelta,
InstMapThen),
delay_construct_in_goal(Cond0, InstMap0, DelayInfo, Cond),
delay_construct_in_goal(Then0, InstMapThen, DelayInfo, Then),
delay_construct_in_goal(Else0, InstMap0, DelayInfo, Else),
Goal = if_then_else(Vars, Cond, Then, Else, SM) - GoalInfo0
;
GoalExpr0 = some(Var, CanRemove, SubGoal0),
delay_construct_in_goal(SubGoal0, InstMap0, DelayInfo, SubGoal),
Goal = some(Var, CanRemove, SubGoal) - GoalInfo0
;
GoalExpr0 = generic_call(_, _, _, _),
Goal = GoalExpr0 - GoalInfo0
;
GoalExpr0 = call(_, _, _, _, _, _),
Goal = GoalExpr0 - GoalInfo0
;
GoalExpr0 = unify(_, _, _, _, _),
Goal = GoalExpr0 - GoalInfo0
;
GoalExpr0 = foreign_proc(_, _, _, _, _, _, _),
Goal = GoalExpr0 - GoalInfo0
;
GoalExpr0 = shorthand(_),
% these should have been expanded out by now
error("delay_construct_in_goal: unexpected shorthand")
).
%-----------------------------------------------------------------------------%
% We maintain a list of delayed construction unifications that construct ground
% terms, and the set of variables they define.
%
% When we find other construction unifications, we add them to the list.
% It does not matter if they depend on other delayed construction unifications;
% when we put them back into the conjunction, we do so in the original order.
%
% There are several reasons why we may not be able to delay a construction
% unification past a conjunct. The conjunct may not be a primitive goal,
% or it may be impure; in either case, we must insert all the delayed
% construction unifications before it. The conjunct may also require the value
% of a variable defined by a construction unification. In such cases, we could
% drop before that goal only the construction unifications that define the
% variables needed by the conjunct, either directly or indirectly through
% the values required by some of those construction unifications. However,
% separating out this set of delayed constructions from the others would
% require somewhat complex code, and it is not clear that there would be any
% significant benefit. We therefore insert *all* the delayed constructions
% before a goal if the goal requires *any* of the variables bound by the
% constructions.
%
% The instmap we pass around is the one that we construct from the original
% conjunction order. At each point, it reflects the bindings made by the
% conjuncts so far *plus* the bindings made by the delayed goals.
:- pred delay_construct_in_conj(list(hlds_goal)::in, instmap::in,
delay_construct_info::in, set(prog_var)::in, list(hlds_goal)::in,
list(hlds_goal)::out) is det.
delay_construct_in_conj([], _, _, _, RevDelayedGoals, DelayedGoals) :-
list__reverse(RevDelayedGoals, DelayedGoals).
delay_construct_in_conj([Goal0 | Goals0], InstMap0, DelayInfo,
ConstructedVars0, RevDelayedGoals0, Goals) :-
Goal0 = GoalExpr0 - GoalInfo0,
goal_info_get_instmap_delta(GoalInfo0, InstMapDelta0),
instmap__apply_instmap_delta(InstMap0, InstMapDelta0, InstMap1),
(
GoalExpr0 = unify(_, _, _, Unif, _),
Unif = construct(Var, _, Args, _, _, _, _),
Args = [_ | _], % We are constructing a cell, not a constant
instmap__lookup_var(InstMap0, Var, Inst0),
inst_is_free(DelayInfo ^ module_info, Inst0),
instmap__lookup_var(InstMap1, Var, Inst1),
inst_is_ground(DelayInfo ^ module_info, Inst1)
->
set__insert(ConstructedVars0, Var, ConstructedVars1),
RevDelayedGoals1 = [Goal0 | RevDelayedGoals0],
delay_construct_in_conj(Goals0, InstMap1, DelayInfo,
ConstructedVars1, RevDelayedGoals1, Goals)
;
Goal0 = GoalExpr0 - GoalInfo0,
delay_construct_skippable(GoalExpr0, GoalInfo0),
goal_info_get_nonlocals(GoalInfo0, NonLocals),
proc_info_maybe_complete_with_typeinfo_vars(NonLocals,
DelayInfo ^ body_typeinfo_liveness,
DelayInfo ^ vartypes,
DelayInfo ^ type_info_varmap, CompletedNonLocals),
set__intersect(CompletedNonLocals, ConstructedVars0,
Intersection),
set__empty(Intersection),
\+ goal_info_has_feature(GoalInfo0, impure),
\+ goal_info_has_feature(GoalInfo0, semipure)
->
delay_construct_in_conj(Goals0, InstMap1, DelayInfo,
ConstructedVars0, RevDelayedGoals0, Goals1),
Goals = [Goal0 | Goals1]
;
list__reverse(RevDelayedGoals0, DelayedGoals),
delay_construct_in_conj(Goals0, InstMap1, DelayInfo,
set__init, [], Goals1),
list__append(DelayedGoals, [Goal0 | Goals1], Goals)
).
:- pred delay_construct_skippable(hlds_goal_expr::in, hlds_goal_info::in)
is semidet.
delay_construct_skippable(GoalExpr, GoalInfo) :-
(
GoalExpr = unify(_, _, _, _, _)
;
GoalExpr = call(_, _, _, inline_builtin, _, _)
),
goal_info_get_determinism(GoalInfo, Detism),
determinism_components(Detism, _CanFail, MaxSoln),
MaxSoln \= at_most_many.
%-----------------------------------------------------------------------------%
:- pred delay_construct_in_goals(list(hlds_goal)::in, instmap::in,
delay_construct_info::in, list(hlds_goal)::out) is det.
delay_construct_in_goals([], _, _, []).
delay_construct_in_goals([Goal0 | Goals0], InstMap0, DelayInfo,
[Goal | Goals]) :-
delay_construct_in_goal(Goal0, InstMap0, DelayInfo, Goal),
delay_construct_in_goals(Goals0, InstMap0, DelayInfo, Goals).
:- pred delay_construct_in_cases(list(case)::in, instmap::in,
delay_construct_info::in, list(case)::out) is det.
delay_construct_in_cases([], _, _, []).
delay_construct_in_cases([case(Cons, Goal0) | Cases0], InstMap0, DelayInfo,
[case(Cons, Goal) | Cases]) :-
delay_construct_in_goal(Goal0, InstMap0, DelayInfo, Goal),
delay_construct_in_cases(Cases0, InstMap0, DelayInfo, Cases).
%-----------------------------------------------------------------------------%