mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-18 07:15:19 +00:00
Estimated hours taken: 3 Branches: main compiler/*.m: Import only one module per line in the modules of the compiler where my previous diff did not already do so. Misc other cleanups. Where relevant, use the new mechanism in tree.m. compiler/tree.m: Fix a performance problem I noticed while update :- import_module items. Instead of supplying a function to convert lists of trees to a tree, make the tree data structure able to hold a list of subtrees directly. This reduces the number of times where we have to convert list of trees to trees that are sticks just to stay within the old definition of what a tree is.
188 lines
5.9 KiB
Mathematica
188 lines
5.9 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 1993-2001, 2003-2005 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Main authors: conway, fjh, zs.
|
|
%
|
|
% This file provides a 'tree' data type.
|
|
% The code generater uses this to build a tree of instructions and
|
|
% then flatten them into a list.
|
|
%
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- module libs.tree.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- interface.
|
|
|
|
:- import_module bool.
|
|
:- import_module list.
|
|
|
|
:- type tree(T)
|
|
---> empty
|
|
; node(T)
|
|
; tree(tree(T), tree(T))
|
|
; tree_list(list(tree(T))).
|
|
|
|
:- func tree.flatten(tree(T)) = list(T).
|
|
:- pred tree.flatten(tree(T)::in, list(T)::out) is det.
|
|
|
|
:- func tree.is_empty(tree(T)) = bool.
|
|
:- pred tree.is_empty(tree(T)::in) is semidet.
|
|
|
|
:- func tree.tree_of_lists_is_empty(tree(list(T))) = bool.
|
|
:- pred tree.tree_of_lists_is_empty(tree(list(T))::in) is semidet.
|
|
|
|
:- pred tree.foldl(pred(T, A, A)::in(pred(in, in, out) is det), tree(T)::in,
|
|
A::in, A::out) is det.
|
|
|
|
:- func tree.map(func(T) = U, tree(T)) = tree(U).
|
|
:- pred tree.map(pred(T, U)::in(pred(in, out) is det),
|
|
tree(T)::in, tree(U)::out) is det.
|
|
|
|
:- pred tree.map_foldl(pred(T, U, A, A)::in(pred(in, out, in, out) is det),
|
|
tree(T)::in, tree(U)::out, A::in, A::out) is det.
|
|
|
|
:- pred tree.map_foldl2(
|
|
pred(T, U, A, A, B, B)::in(pred(in, out, in, out, in, out) is det),
|
|
tree(T)::in, tree(U)::out, A::in, A::out, B::in, B::out) is det.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
tree.flatten(T) = L :-
|
|
tree.flatten(T, L).
|
|
|
|
tree.flatten(T, L) :-
|
|
tree.flatten_2(T, [], L).
|
|
|
|
% flatten_2(T, !Flat) is true iff !:Flat is the list that results from
|
|
% traversing T left-to-right depth-first, and then appending !.Flat.
|
|
:- pred tree.flatten_2(tree(T)::in, list(T)::in, list(T)::out) is det.
|
|
|
|
tree.flatten_2(empty, !Flat).
|
|
tree.flatten_2(node(Item), !Flat) :-
|
|
!:Flat = [Item | !.Flat].
|
|
tree.flatten_2(tree(T1, T2), !Flat) :-
|
|
tree.flatten_2(T2, !Flat),
|
|
tree.flatten_2(T1, !Flat).
|
|
tree.flatten_2(tree_list(List), !Flat) :-
|
|
tree.flatten_list(List, !Flat).
|
|
|
|
% flatten_list(List, !Flat) is true iff !:Flat is the list that results
|
|
% from traversing List left-to-right depth-first, and then appending
|
|
% !.Flat.
|
|
:- pred tree.flatten_list(list(tree(T))::in, list(T)::in, list(T)::out)
|
|
is det.
|
|
|
|
tree.flatten_list([], !Flat).
|
|
tree.flatten_list([Head | Tail], !Flat) :-
|
|
tree.flatten_list(Tail, !Flat),
|
|
tree.flatten_2(Head, !Flat).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
tree.is_empty(T) :-
|
|
tree.is_empty(T) = yes.
|
|
|
|
tree.is_empty(empty) = yes.
|
|
tree.is_empty(node(_)) = no.
|
|
tree.is_empty(tree(Left, Right)) =
|
|
( tree.is_empty(Left) = no ->
|
|
no
|
|
;
|
|
tree.is_empty(Right)
|
|
).
|
|
tree.is_empty(tree_list(List)) = tree.list_is_empty(List).
|
|
|
|
:- func tree.list_is_empty(list(tree(T))) = bool.
|
|
|
|
tree.list_is_empty([]) = yes.
|
|
tree.list_is_empty([Head | Tail]) =
|
|
( tree.is_empty(Head) = no ->
|
|
no
|
|
;
|
|
tree.list_is_empty(Tail)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Unfortunately, we can't factor out the common code between tree.is_empty
|
|
% and tree.tree_of_lists_is_empty because their signatures are different,
|
|
% and the signatures of their helpers must therefore be different too.
|
|
|
|
tree.tree_of_lists_is_empty(T) :-
|
|
tree.tree_of_lists_is_empty(T) = yes.
|
|
|
|
tree.tree_of_lists_is_empty(empty) = yes.
|
|
tree.tree_of_lists_is_empty(node([])) = yes.
|
|
tree.tree_of_lists_is_empty(node([_ | _])) = no.
|
|
tree.tree_of_lists_is_empty(tree(Left, Right)) =
|
|
( tree.tree_of_lists_is_empty(Left) = no ->
|
|
no
|
|
;
|
|
tree.is_empty(Right)
|
|
).
|
|
tree.tree_of_lists_is_empty(tree_list(List)) =
|
|
tree.list_tree_of_lists_is_empty(List).
|
|
|
|
:- func tree.list_tree_of_lists_is_empty(list(tree(list(T)))) = bool.
|
|
|
|
tree.list_tree_of_lists_is_empty([]) = yes.
|
|
tree.list_tree_of_lists_is_empty([Head | Tail]) =
|
|
( tree.tree_of_lists_is_empty(Head) = no ->
|
|
no
|
|
;
|
|
tree.list_tree_of_lists_is_empty(Tail)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
tree.foldl(_P, empty, !A).
|
|
tree.foldl(P, node(Node), !A) :-
|
|
P(Node, !A).
|
|
tree.foldl(P, tree(Left, Right), !A) :-
|
|
tree.foldl(P, Left, !A),
|
|
tree.foldl(P, Right, !A).
|
|
tree.foldl(P, tree_list(List), !A) :-
|
|
list.foldl(tree.foldl(P), List, !A).
|
|
|
|
tree.map(_F, empty) = empty.
|
|
tree.map(F, node(T)) = node(F(T)).
|
|
tree.map(F, tree(L, R)) = tree(tree.map(F, L), tree.map(F, R)).
|
|
tree.map(F, tree_list(L)) = tree_list(list.map(tree.map(F), L)).
|
|
|
|
tree.map(_P, empty, empty).
|
|
tree.map(P, node(Node0), node(Node)) :-
|
|
P(Node0, Node).
|
|
tree.map(P, tree(Left0, Right0), tree(Left, Right)) :-
|
|
tree.map(P, Left0, Left),
|
|
tree.map(P, Right0, Right).
|
|
tree.map(P, tree_list(List0), tree_list(List)) :-
|
|
list.map(tree.map(P), List0, List).
|
|
|
|
tree.map_foldl(_P, empty, empty, !A).
|
|
tree.map_foldl(P, node(Node0), node(Node), !A) :-
|
|
P(Node0, Node, !A).
|
|
tree.map_foldl(P, tree(Left0, Right0), tree(Left, Right), !A) :-
|
|
tree.map_foldl(P, Left0, Left, !A),
|
|
tree.map_foldl(P, Right0, Right, !A).
|
|
tree.map_foldl(P, tree_list(List0), tree_list(List), !A) :-
|
|
list.map_foldl(tree.map_foldl(P), List0, List, !A).
|
|
|
|
tree.map_foldl2(_P, empty, empty, !A, !B).
|
|
tree.map_foldl2(P, node(Node0), node(Node), !A, !B) :-
|
|
P(Node0, Node, !A, !B).
|
|
tree.map_foldl2(P, tree(Left0, Right0), tree(Left, Right), !A, !B) :-
|
|
tree.map_foldl2(P, Left0, Left, !A, !B),
|
|
tree.map_foldl2(P, Right0, Right, !A, !B).
|
|
tree.map_foldl2(P, tree_list(List0), tree_list(List), !A, !B) :-
|
|
list.map_foldl2(tree.map_foldl2(P), List0, List, !A, !B).
|
|
|
|
%-----------------------------------------------------------------------------%
|