Files
mercury/compiler/rtti.m
Zoltan Somogyi 3c60c0e485 Change a bunch of modules to import only one module per line, even
Estimated hours taken: 4
Branches: main

compiler/*.m:
	Change a bunch of modules to import only one module per line, even
	from the library.

compiler/mlds_to_il.m:
compiler/mlds_to_managed.m:
	Convert these modules to our current coding style. Use state variables
	where appropriate. Use predmode declarations where possible.
2005-03-22 06:40:32 +00:00

1934 lines
70 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 2000-2005 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% Definitions of data structures for representing run-time type information
% within the compiler. When output by rtti_out.m, values of most these types
% will correspond to the types defined in runtime/mercury_type_info.h;
% the documentation of those types can be found there.
% The code to generate the structures is in type_ctor_info.m.
% See also pseudo_type_info.m.
%
% This module is independent of whether we are compiling to LLDS or MLDS.
% It is used as an intermediate data structure that we generate from the
% HLDS, and which we can then convert to either LLDS or MLDS.
% The LLDS actually incorporates this data structure unchanged.
%
% Authors: zs, fjh.
%-----------------------------------------------------------------------------%
:- module backend_libs__rtti.
:- interface.
:- import_module hlds__hlds_data.
:- import_module hlds__hlds_module.
:- import_module hlds__hlds_pred.
:- import_module mdbcomp__prim_data.
:- import_module parse_tree__prog_data.
:- import_module bool.
:- import_module list.
:- import_module set.
:- import_module map.
:- import_module std_util.
%-----------------------------------------------------------------------------%
%
% The data structures representing types, both ground (typeinfos) and
% nonground (pseudo-typeinfos).
% An rtti_type_info identifies a ground type.
:- type rtti_type_info
---> plain_arity_zero_type_info(
rtti_type_ctor
)
; plain_type_info(
rtti_type_ctor,
% This list should not be empty; if it is, one should
% use plain_arity_zero_type_info instead.
list(rtti_type_info)
)
; var_arity_type_info(
var_arity_ctor_id,
list(rtti_type_info)
).
% An rtti_pseudo_type_info identifies a possibly non-ground type.
:- type rtti_pseudo_type_info
---> plain_arity_zero_pseudo_type_info(
rtti_type_ctor
)
; plain_pseudo_type_info(
rtti_type_ctor,
% This list should not be empty; if it is, one should
% use plain_arity_zero_pseudo_type_info instead.
list(rtti_maybe_pseudo_type_info)
)
; var_arity_pseudo_type_info(
var_arity_ctor_id,
list(rtti_maybe_pseudo_type_info)
)
; type_var(int).
% An rtti_maybe_pseudo_type_info identifies a type. If the type is
% ground, it should be bound to plain; if it is non-ground, it should
% be bound to pseudo.
:- type rtti_maybe_pseudo_type_info
---> pseudo(rtti_pseudo_type_info)
; plain(rtti_type_info).
% An rtti_type_ctor uniquely identifies a fixed arity type constructor.
:- type rtti_type_ctor
---> rtti_type_ctor(
module_name, % module name
string, % type ctor's name
arity % type ctor's arity
).
% A var_arity_ctor_id uniquely identifies a variable arity type
% constructor.
:- type var_arity_ctor_id
---> pred_type_info
; func_type_info
; tuple_type_info.
%-----------------------------------------------------------------------------%
%
% The data structures representing type constructors.
% A type_ctor_data structure contains all the information that the
% runtime system needs to know about a type constructor.
:- type type_ctor_data
---> type_ctor_data(
tcr_version :: int,
tcr_module_name :: module_name,
tcr_type_name :: string,
tcr_arity :: int,
tcr_unify_pred :: univ,
tcr_compare_pred :: univ,
tcr_flags :: set(type_ctor_flag),
tcr_rep_details :: type_ctor_details
).
% Each of the following values corresponds to one of the
% MR_TYPE_CTOR_FLAG_* macros in runtime/mercury_type_info.h.
% Their meanings are documented there.
:- type type_ctor_flag
---> reserve_tag_flag
; variable_arity_flag
; kind_of_du_flag
; typeinfo_fake_arity_flag.
% A type_ctor_details structure contains all the information that the
% runtime system needs to know about the data representation scheme
% used by a type constructor.
%
% There are four alternatives that correspond to discriminated union:
% enum, du, reserved and notag. Enum is for types that define only
% constants. Notag is for types that define only one unary functor.
% Reserved is for types in which at least one functor is represented
% using a reserved value, which may be the address of an object or a
% small integer (including zero). Du is for all other types.
%
% All four alternatives have four kinds of information.
%
% First, an indication of whether the type has user-defined equality or
% not.
%
% Second, a list of descriptors containing all the function symbols
% defined by the type, in declaration order.
%
% Third, a table that allows the runtime system to map a value in
% memory to a printable representation (i.e. to implement the
% deconstruct operation).
%
% Fourth, a table that allows the runtime system to map a printable
% representation to a value in memory (i.e. to implement the
% construct operation).
%
% For types in which some function symbols are represented by reserved
% addresses, the third component is in two parts: a list of function
% symbols so represented, and a table indexed by the primary tag for
% all the other function symbols. The runtime system must check every
% element on the list before looking at the primary tag.
%
% For notag types, the single functor descriptor fills the roles of
% the second, third and fourth components.
:- type type_ctor_details
---> enum(
enum_axioms :: equality_axioms,
enum_functors :: list(enum_functor),
enum_value_table :: map(int, enum_functor),
enum_name_table :: map(string, enum_functor)
)
; du(
du_axioms :: equality_axioms,
du_functors :: list(du_functor),
du_value_table :: ptag_map,
du_name_table :: map(string, map(int,
du_functor))
)
; reserved(
res_axioms :: equality_axioms,
res_functors :: list(maybe_reserved_functor),
res_value_table_res :: list(reserved_functor),
res_value_table_du :: ptag_map,
res_name_table :: map(string, map(int,
maybe_reserved_functor))
)
; notag(
notag_axioms :: equality_axioms,
notag_functor :: notag_functor
)
; eqv(
eqv_type :: rtti_maybe_pseudo_type_info
)
; builtin(
builtin_ctor :: builtin_ctor
)
; impl_artifact(
impl_ctor :: impl_ctor
)
; foreign(
is_stable :: is_stable
).
% For a given du family type, this says whether the user has defined
% their own unification predicate for the type.
:- type equality_axioms
---> standard
; user_defined.
% Descriptor for a functor in an enum type.
%
% This type corresponds to the C type MR_EnumFunctorDesc.
:- type enum_functor
---> enum_functor(
enum_name :: string,
enum_ordinal :: int
).
% Descriptor for a functor in a notag type.
%
% This type corresponds to the C type MR_NotagFunctorDesc.
:- type notag_functor
---> notag_functor(
nt_name :: string,
nt_arg_type :: rtti_maybe_pseudo_type_info,
nt_arg_name :: maybe(string)
).
% Descriptor for a functor in a du type. Also used for functors in
% reserved address types which are not represented by a reserved
% address.
%
% This type mostly corresponds to the C type MR_DuFunctorDesc.
:- type du_functor
---> du_functor(
du_name :: string,
du_orig_arity :: int,
du_ordinal :: int,
du_rep :: du_rep,
du_arg_infos :: list(du_arg_info),
du_exist_info :: maybe(exist_info)
).
% Descriptor for a functor represented by a reserved address.
%
% This type corresponds to the C type MR_ReservedAddrFunctorDesc.
:- type reserved_functor
---> reserved_functor(
res_name :: string,
res_ordinal :: int,
res_rep :: reserved_address
).
% Descriptor for a functor in reserved address type.
%
% This type corresponds to the C type MR_MaybeResAddrFunctorDesc,
% although their structure is slightly different in order to make
% searches on an array of the C structures as convenient as searches
% on a list of values of this Mercury type.
:- type maybe_reserved_functor
---> res_func(
mrf_res :: reserved_functor
)
; du_func(
mrf_du :: du_functor
).
% Describes the representation of a functor in a general
% discriminated union type.
%
% Will probably need modification for the Java and IL back ends.
:- type du_rep
---> du_ll_rep(
du_ll_ptag :: int,
du_ll_sec_tag :: sectag_and_locn
)
; du_hl_rep(
remote_sec_tag :: int
).
% Describes the types of the existentially typed arguments of a
% discriminated union functor.
%
% This type corresponds to the C type MR_DuExistInfo.
:- type exist_info
---> exist_info(
exist_num_plain_typeinfos :: int,
exist_num_typeinfos_in_tcis :: int,
exist_typeclass_constraints :: list(tc_constraint),
exist_typeinfo_locns ::
list(exist_typeinfo_locn)
).
% Describes the location at which one can find the typeinfo for the
% type bound to an existentially quantified type variable in a
% discriminated union functor.
%
% This type corresponds to the C type MR_DuExistLocn.
:- type exist_typeinfo_locn
---> plain_typeinfo(
int % The typeinfo is stored
% directly in the cell, at this
% offset.
)
; typeinfo_in_tci(
int, % The typeinfo is stored
% indirectly in the typeclass
% info stored at this offset
% in the cell.
int % To find the typeinfo inside
% the typeclass info structure,
% give this integer to the
% MR_typeclass_info_type_info
% macro.
).
% These tables let the runtime system interpret values in memory
% of general discriminated union types.
%
% The runtime system should first use the primary tag to index into
% the type's ptag_map. It can then find the location (if any) of the
% secondary tag, and use the secondary tag (or zero if there isn't one)
% to index into the stag_map to find the functor descriptor.
%
% The type sectag_table corresponds to the C type MR_DuPtagLayout.
% The two maps are implemented in C as simple arrays.
:- type ptag_map == map(int, sectag_table). % key is primary tag
:- type stag_map == map(int, du_functor). % key is secondary tag
:- type sectag_table
---> sectag_table(
sectag_locn :: sectag_locn,
sectag_num_sharers :: int,
sectag_map :: stag_map
).
% Describes the location of the secondary tag for a given primary tag
% value in a given type.
:- type sectag_locn
---> sectag_none
; sectag_local
; sectag_remote.
% Describes the location of the secondary tag and its value for a
% given functor in a given type.
:- type sectag_and_locn
---> sectag_none
; sectag_local(int)
; sectag_remote(int).
% Information about an argument of a functor in a discriminated union
% type.
:- type du_arg_info
---> du_arg_info(
du_arg_name :: maybe(string),
du_arg_type :: rtti_maybe_pseudo_type_info_or_self
).
% An rtti_maybe_pseudo_type_info identifies the type of a function
% symbol's argument. If the type of the argument is the same as the
% type of the whole term, it should be bound to self. Otherwise, if
% the argument's type is ground, it should be bound to plain; if it
% is non-ground, it should be bound to pseudo.
:- type rtti_maybe_pseudo_type_info_or_self
---> pseudo(rtti_pseudo_type_info)
; plain(rtti_type_info)
; self.
% The list of type constructors for types that are built into the
% Mercury language or the Mercury standard library.
:- type builtin_ctor
---> int
; float
; char
; string
; void
; c_pointer(is_stable)
; pred_ctor
; func_ctor
; tuple
; ref
; type_desc
; pseudo_type_desc
; type_ctor_desc.
% The list of type constructors that are used behind the scenes by
% the Mercury implementation.
:- type impl_ctor
---> hp
; succip
; maxfr
; curfr
; redofr
; redoip
; ticket
; trail_ptr
; type_info
; type_ctor_info
; typeclass_info
; base_typeclass_info
; subgoal. % coming soon
:- type is_stable
---> is_stable
; is_not_stable.
%-----------------------------------------------------------------------------%
%
% The data structures representing type class dictionaries.
% A base_typeclass_info holds information about a typeclass instance.
% See notes/type_class_transformation.html for details.
:- type base_typeclass_info --->
base_typeclass_info(
% num_extra = num_unconstrained + num_constraints,
% where num_unconstrained is the number of
% unconstrained type variables from the head
% of the instance declaration.
num_extra :: int,
% num_constraints is the number of constraints
% on the instance declaration
num_constraints :: int,
% num_superclasses is the number of constraints
% on the typeclass declaration.
num_superclasses :: int,
% class_arity is the number of type variables
% in the head of the class declaration
class_arity :: int,
% num_methods is the number of procedures
% in the typeclass declaration
num_methods :: int,
% methods is a list of length num_methods
% containing the addresses of the methods
% for this instance declaration.
methods :: list(rtti_proc_label)
).
%-----------------------------------------------------------------------------%
% The types in this block (until the next horizontal line) will eventually
% replace base_typeclass_infos. For now, the C data structures they describe
% are generated only on request, and used only by the debugger.
% This type corresponds to the C type MR_TypeClassMethod.
:- type tc_method_id
---> tc_method_id(
tcm_name :: string,
tcm_arity :: int,
tcm_pred_or_func :: pred_or_func
).
% Uniquely identifies a type class.
:- type tc_name
---> tc_name(
tcn_module :: module_name,
tcn_name :: string,
tcn_arity :: int
).
% Values of the tc_id and tc_decl types contain the information about
% a type class declaration that we need to interpret other data
% structures related to the type class.
%
% The tc_id type corresponds to the C type MR_TypeClassId, while
% the tc_decl type corresponds to the C type MR_TypeClassDecl.
%
% The reason for splitting the information between two C structures
% is to make it easier to allow us to maintain binary compatibility
% even if the amount of information we want to record about type class
% declarations changes.
:- type tc_id
---> tc_id(
tc_id_name :: tc_name,
tc_id_type_var_names :: list(string),
tc_id_methods :: list(tc_method_id)
).
:- type tc_decl
---> tc_decl(
tc_decl_id :: tc_id,
tc_decl_version_number :: int,
tc_decl_supers :: list(tc_constraint)
).
:- type tc_type == rtti_maybe_pseudo_type_info.
% This type corresponds to the C type MR_TypeClassConstraint_NStruct,
% where N is the length of the list in the tcc_types field.
:- type tc_constraint
---> tc_constraint(
tcc_class_name :: tc_name,
tcc_types :: list(tc_type)
).
% Uniquely identifies an instance declaration, and gives information
% about the declaration that we need to interpret other data
% structures related to the type class.
%
% This type corresponds to the C type MR_Instance.
:- type tc_instance
---> tc_instance(
tci_type_class :: tc_name,
tci_types :: list(tc_type),
tci_num_type_vars :: int,
tci_constraints :: list(tc_constraint),
tci_methods :: list(rtti_proc_label)
).
% This type corresponds to the C type MR_ClassDict.
%
% XXX We don't yet use this type.
:- type tc_dict
---> tc_dict(
tcd_class :: tc_name,
tcd_types :: list(rtti_type_info),
tcd_methods :: list(rtti_proc_label)
).
%-----------------------------------------------------------------------------%
%
% The data structures representing the top-level global data structures
% generated by the Mercury compiler. Usually readonly, with one exception:
% data containing code addresses must be initialized at runtime in grades
% that don't support static code initializers.
:- type rtti_data
---> type_ctor_info(
type_ctor_data
)
; type_info(
rtti_type_info
)
; pseudo_type_info(
rtti_pseudo_type_info
)
; base_typeclass_info(
tc_name, % identifies the type class
module_name, % module containing instance decl.
string, % encodes the names and arities of the
% types in the instance declaration
base_typeclass_info
)
; type_class_decl(
tc_decl
)
; type_class_instance(
tc_instance
)
% A procedure to be called top-down by Aditi when
% evaluating a join condition. These procedures
% only have one input and one output argument,
% both of which must have a ground {}/N type.
; aditi_proc_info(
rtti_proc_label, % The procedure to call.
rtti_type_info, % Type of the input argument.
rtti_type_info % Type of the output argument.
).
% All rtti_data data structures and all their components are identified
% by an rtti_id. For data structures that are part of the description
% of a single type constructor, we use the ctor_rtti_id functor, and make the
% id of that type constructor part of the id of the data structure.
% For data structures that are not necessarily associated with a single type,
% which for the foreseeable future are all associated with typeclasses,
% we use the tc_rtti_id functor.
:- type rtti_id
---> ctor_rtti_id(rtti_type_ctor, ctor_rtti_name)
; tc_rtti_id(tc_name, tc_rtti_name)
; aditi_rtti_id(rtti_proc_label).
:- type ctor_rtti_name
---> exist_locns(int) % functor ordinal
; exist_locn
; exist_tc_constr(int, int, int) % functor ordinal,
% constraint ordinal,
% constraint arity
; exist_tc_constrs(int) % functor ordinal
; exist_info(int) % functor ordinal
; field_names(int) % functor ordinal
; field_types(int) % functor ordinal
; res_addrs
; res_addr_functors
; enum_functor_desc(int) % functor ordinal
; notag_functor_desc
; du_functor_desc(int) % functor ordinal
; res_functor_desc(int) % functor ordinal
; enum_name_ordered_table
; enum_value_ordered_table
; du_name_ordered_table
; du_stag_ordered_table(int) % primary tag
; du_ptag_ordered_table
; du_ptag_layout(int) % primary tag
; res_value_ordered_table
; res_name_ordered_table
; maybe_res_addr_functor_desc
; type_functors
; type_layout
; type_ctor_info
; type_info(rtti_type_info)
; pseudo_type_info(rtti_pseudo_type_info)
; type_hashcons_pointer.
:- type tc_rtti_name
---> base_typeclass_info(
module_name, % module containing instance decl.
string % encodes the names and arities of the
% types in the instance declaration
)
; type_class_id
; type_class_id_var_names
; type_class_id_method_ids
; type_class_decl
; type_class_decl_super(int, int)
% superclass ordinal, constraint arity
; type_class_decl_supers
; type_class_instance(list(tc_type))
; type_class_instance_tc_type_vector(list(tc_type))
; type_class_instance_constraint(list(tc_type),
int, int)
% constraint ordinal, constraint arity
; type_class_instance_constraints(list(tc_type))
; type_class_instance_methods(list(tc_type)).
%-----------------------------------------------------------------------------%
%
% The functions operating on RTTI data.
:- func encode_type_ctor_flags(set(type_ctor_flag)) = int.
% Return the id of the type constructor.
:- func tcd_get_rtti_type_ctor(type_ctor_data) = rtti_type_ctor.
% Convert a rtti_data to an rtti_id.
% This calls error/1 if the argument is a type_var/1 rtti_data,
% since there is no rtti_id to return in that case.
:- pred rtti_data_to_id(rtti_data::in, rtti_id::out) is det.
% Convert an id that specifies a kind of variable arity type_info
% or pseudo_type_info into the type_ctor of the canonical (arity-zero)
% type of that kind.
:- func var_arity_id_to_rtti_type_ctor(var_arity_ctor_id) = rtti_type_ctor.
:- type rtti_id_maybe_element
---> item_type(rtti_id)
% The type is the type of the data structure identified by the
% rtti_id.
; element_type(rtti_id).
% The type is the type of the elements of the data structure
% identified by the rtti_id, which must be an array.
% Return yes iff the specified entity is an array.
:- func rtti_id_maybe_element_has_array_type(rtti_id_maybe_element) = bool.
:- func rtti_id_has_array_type(rtti_id) = bool.
:- func ctor_rtti_name_has_array_type(ctor_rtti_name) = bool.
:- func tc_rtti_name_has_array_type(tc_rtti_name) = bool.
% Return yes iff the specified entity should be exported
% for use by other modules.
:- func rtti_id_is_exported(rtti_id) = bool.
:- func ctor_rtti_name_is_exported(ctor_rtti_name) = bool.
:- func tc_rtti_name_is_exported(tc_rtti_name) = bool.
% Construct an rtti_proc_label for a given procedure.
:- func rtti__make_rtti_proc_label(module_info, pred_id, proc_id)
= rtti_proc_label.
% The inverse of rtti__make_rtti_proc_label.
:- pred rtti__proc_label_pred_proc_id(rtti_proc_label::in,
pred_id::out, proc_id::out) is det.
% Construct an aditi_proc_info for a given procedure.
:- func make_aditi_proc_info(module_info, pred_id, proc_id) = rtti_data.
% Return the C variable name of the RTTI data structure identified
% by the input argument.
:- pred rtti__id_to_c_identifier(rtti_id::in, string::out) is det.
% Return the C representation of a pred_or_func indication.
:- pred rtti__pred_or_func_to_string(pred_or_func::in, string::out) is det.
% Return the C representation of a secondary tag location.
:- pred rtti__sectag_locn_to_string(sectag_locn::in, string::out) is det.
% Return the C representation of a secondary tag location.
:- pred rtti__sectag_and_locn_to_locn_string(sectag_and_locn::in, string::out)
is det.
% Return the C representation of the type_ctor_rep value of the given
% type_ctor.
:- pred rtti__type_ctor_rep_to_string(type_ctor_data::in, string::out)
is det.
% Return the rtti_data containing the given type_info.
:- func type_info_to_rtti_data(rtti_type_info) = rtti_data.
% Return the rtti_data containing the given type_info or
% pseudo_type_info.
:- func maybe_pseudo_type_info_to_rtti_data(rtti_maybe_pseudo_type_info)
= rtti_data.
% Return the rtti_data containing the given type_info or
% pseudo_type_info or self.
:- func maybe_pseudo_type_info_or_self_to_rtti_data(
rtti_maybe_pseudo_type_info_or_self) = rtti_data.
% Given a type constructor with the given details, return the number
% of primary tag values used by the type. The return value will be
% negative if the type constructor doesn't reserve primary tags.
:- func type_ctor_details_num_ptags(type_ctor_details) = int.
% Given a type constructor with the given details, return the number
% of function symbols defined by the type. The return value will be
% negative if the type constructor doesn't define any function symbols.
:- func type_ctor_details_num_functors(type_ctor_details) = int.
% Extract the argument name (if any) from a du_arg_info.
:- func du_arg_info_name(du_arg_info) = maybe(string).
% Extract the argument type from a du_arg_info.
:- func du_arg_info_type(du_arg_info) = rtti_maybe_pseudo_type_info_or_self.
% If the given value is bound to yes, return its argument.
:- func project_yes(maybe(T)) = T is semidet.
% Return the symbolic representation of the address of the given
% functor descriptor.
:- func enum_functor_rtti_name(enum_functor) = ctor_rtti_name.
:- func du_functor_rtti_name(du_functor) = ctor_rtti_name.
:- func res_functor_rtti_name(reserved_functor) = ctor_rtti_name.
:- func maybe_res_functor_rtti_name(maybe_reserved_functor) = ctor_rtti_name.
% Extract the reserved address from a reserved address functor
% descriptor.
:- func res_addr_rep(reserved_functor) = reserved_address.
% Reserved addresses can be numeric or symbolic. Succeed if the
% one passed is numeric.
:- pred res_addr_is_numeric(reserved_address::in) is semidet.
% Return true iff the given type of RTTI data structure includes
% code addresses.
:- func rtti_id_would_include_code_addr(rtti_id) = bool.
:- func ctor_rtti_name_would_include_code_addr(ctor_rtti_name) = bool.
:- func tc_rtti_name_would_include_code_addr(tc_rtti_name) = bool.
% Return true iff the given type_info's or pseudo_type_info's RTTI
% data structure includes code addresses.
:- func type_info_would_incl_code_addr(rtti_type_info) = bool.
:- func pseudo_type_info_would_incl_code_addr(rtti_pseudo_type_info) = bool.
% rtti_id_c_type(RttiId, Type, IsArray):
% To declare a variable of the type specified by RttiId,
% put Type before the name of the variable; if IsArray is true,
% also put "[]" after the name.
:- pred rtti_id_maybe_element_c_type(rtti_id_maybe_element::in, string::out,
bool::out) is det.
:- pred rtti_id_c_type(rtti_id::in, string::out, bool::out) is det.
:- pred ctor_rtti_name_c_type(ctor_rtti_name::in, string::out, bool::out)
is det.
:- pred tc_rtti_name_c_type(tc_rtti_name::in, string::out, bool::out)
is det.
% Analogous to rtti_id_c_type.
:- pred rtti_id_maybe_element_java_type(rtti_id_maybe_element::in, string::out,
bool::out) is det.
:- pred rtti_id_java_type(rtti_id::in, string::out, bool::out) is det.
:- pred ctor_rtti_name_java_type(ctor_rtti_name::in, string::out, bool::out)
is det.
:- pred tc_rtti_name_java_type(tc_rtti_name::in, string::out, bool::out)
is det.
% Given a type in a type vector in a type class instance declaration,
% return its string encoding for use in RTTI data structures, e.g. as
% part of C identifiers.
:- func rtti__encode_tc_instance_type(tc_type) = string.
% Return yes iff the name of the given data structure should be module
% qualified.
:- func module_qualify_name_of_rtti_id(rtti_id) = bool.
:- func module_qualify_name_of_ctor_rtti_name(ctor_rtti_name) = bool.
:- func module_qualify_name_of_tc_rtti_name(tc_rtti_name) = bool.
% If the given rtti_id is implemented as a single MR_TypeCtorInfo,
% return the identity of the type constructor.
:- pred rtti_id_emits_type_ctor_info(rtti_id::in, rtti_type_ctor::out)
is semidet.
:- implementation.
:- import_module backend_libs__name_mangle.
:- import_module backend_libs__proc_label.
:- import_module backend_libs__pseudo_type_info.
:- import_module check_hlds__mode_util.
:- import_module check_hlds__type_util.
:- import_module hlds__hlds_data.
:- import_module parse_tree__prog_foreign.
:- import_module parse_tree__prog_util. % for mercury_public_builtin_module
:- import_module parse_tree__prog_out.
:- import_module int.
:- import_module require.
:- import_module string.
:- import_module varset.
encode_type_ctor_flags(FlagSet) =
list__foldl(encode_type_ctor_flag, FlagList, 0) :-
set__to_sorted_list(FlagSet, FlagList).
:- func encode_type_ctor_flag(type_ctor_flag, int) = int.
% The encoding here must match the one in runtime/mercury_type_info.h.
encode_type_ctor_flag(reserve_tag_flag, N) = N + 1.
encode_type_ctor_flag(variable_arity_flag, N) = N + 2.
encode_type_ctor_flag(kind_of_du_flag, N) = N + 4.
encode_type_ctor_flag(typeinfo_fake_arity_flag, N) = N + 8.
rtti_data_to_id(type_ctor_info(TypeCtorData),
ctor_rtti_id(RttiTypeCtor, type_ctor_info)) :-
RttiTypeCtor = tcd_get_rtti_type_ctor(TypeCtorData).
rtti_data_to_id(type_info(TypeInfo),
ctor_rtti_id(RttiTypeCtor, type_info(TypeInfo))) :-
RttiTypeCtor = ti_get_rtti_type_ctor(TypeInfo).
rtti_data_to_id(pseudo_type_info(PseudoTypeInfo),
ctor_rtti_id(RttiTypeCtor, pseudo_type_info(PseudoTypeInfo))) :-
RttiTypeCtor = pti_get_rtti_type_ctor(PseudoTypeInfo).
rtti_data_to_id(base_typeclass_info(TCName, Module, Instance, _),
tc_rtti_id(TCName, base_typeclass_info(Module, Instance))).
rtti_data_to_id(type_class_decl(tc_decl(TCId, _, _)),
tc_rtti_id(TCName, type_class_decl)) :-
TCId = tc_id(TCName, _, _).
rtti_data_to_id(type_class_instance(tc_instance(TCName, TCTypes, _, _, _)),
tc_rtti_id(TCName, type_class_instance(TCTypes))).
rtti_data_to_id(aditi_proc_info(ProcLabel, _, _), aditi_rtti_id(ProcLabel)).
tcd_get_rtti_type_ctor(TypeCtorData) = RttiTypeCtor :-
ModuleName = TypeCtorData ^ tcr_module_name,
TypeName = TypeCtorData ^ tcr_type_name,
Arity = TypeCtorData ^ tcr_arity,
RttiTypeCtor = rtti_type_ctor(ModuleName, TypeName, Arity).
:- func maybe_pseudo_get_rtti_type_ctor(rtti_maybe_pseudo_type_info)
= rtti_type_ctor.
maybe_pseudo_get_rtti_type_ctor(plain(TypeInfo)) =
ti_get_rtti_type_ctor(TypeInfo).
maybe_pseudo_get_rtti_type_ctor(pseudo(PseudoTypeInfo)) =
pti_get_rtti_type_ctor(PseudoTypeInfo).
:- func ti_get_rtti_type_ctor(rtti_type_info) = rtti_type_ctor.
ti_get_rtti_type_ctor(plain_arity_zero_type_info(RttiTypeCtor))
= RttiTypeCtor.
ti_get_rtti_type_ctor(plain_type_info(RttiTypeCtor, _))
= RttiTypeCtor.
ti_get_rtti_type_ctor(var_arity_type_info(RttiVarArityId, _)) =
var_arity_id_to_rtti_type_ctor(RttiVarArityId).
:- func pti_get_rtti_type_ctor(rtti_pseudo_type_info) = rtti_type_ctor.
pti_get_rtti_type_ctor(plain_arity_zero_pseudo_type_info(RttiTypeCtor))
= RttiTypeCtor.
pti_get_rtti_type_ctor(plain_pseudo_type_info(RttiTypeCtor, _))
= RttiTypeCtor.
pti_get_rtti_type_ctor(var_arity_pseudo_type_info(RttiVarArityId, _)) =
var_arity_id_to_rtti_type_ctor(RttiVarArityId).
pti_get_rtti_type_ctor(type_var(_)) = _ :-
% there's no rtti_type_ctor associated with a type_var
error("rtti_data_to_name: type_var").
var_arity_id_to_rtti_type_ctor(pred_type_info) = Ctor :-
mercury_public_builtin_module(Builtin),
Ctor = rtti_type_ctor(Builtin, "pred", 0).
var_arity_id_to_rtti_type_ctor(func_type_info) = Ctor :-
mercury_public_builtin_module(Builtin),
Ctor = rtti_type_ctor(Builtin, "func", 0).
var_arity_id_to_rtti_type_ctor(tuple_type_info) = Ctor :-
mercury_public_builtin_module(Builtin),
Ctor = rtti_type_ctor(Builtin, "tuple", 0).
rtti_id_maybe_element_has_array_type(item_type(RttiId)) =
rtti_id_has_array_type(RttiId).
rtti_id_maybe_element_has_array_type(element_type(RttiId)) = no :-
require(unify(rtti_id_has_array_type(RttiId), yes),
"rtti_id_maybe_element_has_array_type: base is not array").
rtti_id_has_array_type(ctor_rtti_id(_, RttiName)) =
ctor_rtti_name_has_array_type(RttiName).
rtti_id_has_array_type(tc_rtti_id(_, TCRttiName)) =
tc_rtti_name_has_array_type(TCRttiName).
rtti_id_has_array_type(aditi_rtti_id(_)) = no.
ctor_rtti_name_has_array_type(RttiName) = IsArray :-
ctor_rtti_name_type(RttiName, _, IsArray).
tc_rtti_name_has_array_type(TCRttiName) = IsArray :-
tc_rtti_name_type(TCRttiName, _, IsArray).
rtti_id_is_exported(ctor_rtti_id(_, RttiName)) =
ctor_rtti_name_is_exported(RttiName).
rtti_id_is_exported(tc_rtti_id(_, TCRttiName)) =
tc_rtti_name_is_exported(TCRttiName).
% MR_AditiProcInfos must be exported to be visible to dlsym().
rtti_id_is_exported(aditi_rtti_id(_)) = yes.
ctor_rtti_name_is_exported(exist_locns(_)) = no.
ctor_rtti_name_is_exported(exist_locn) = no.
ctor_rtti_name_is_exported(exist_tc_constr(_, _, _)) = no.
ctor_rtti_name_is_exported(exist_tc_constrs(_)) = no.
ctor_rtti_name_is_exported(exist_info(_)) = no.
ctor_rtti_name_is_exported(field_names(_)) = no.
ctor_rtti_name_is_exported(field_types(_)) = no.
ctor_rtti_name_is_exported(res_addrs) = no.
ctor_rtti_name_is_exported(res_addr_functors) = no.
ctor_rtti_name_is_exported(enum_functor_desc(_)) = no.
ctor_rtti_name_is_exported(notag_functor_desc) = no.
ctor_rtti_name_is_exported(du_functor_desc(_)) = no.
ctor_rtti_name_is_exported(res_functor_desc(_)) = no.
ctor_rtti_name_is_exported(enum_name_ordered_table) = no.
ctor_rtti_name_is_exported(enum_value_ordered_table) = no.
ctor_rtti_name_is_exported(du_name_ordered_table) = no.
ctor_rtti_name_is_exported(du_stag_ordered_table(_)) = no.
ctor_rtti_name_is_exported(du_ptag_ordered_table) = no.
ctor_rtti_name_is_exported(du_ptag_layout(_)) = no.
ctor_rtti_name_is_exported(res_value_ordered_table) = no.
ctor_rtti_name_is_exported(res_name_ordered_table) = no.
ctor_rtti_name_is_exported(maybe_res_addr_functor_desc) = no.
ctor_rtti_name_is_exported(type_functors) = no.
ctor_rtti_name_is_exported(type_layout) = no.
ctor_rtti_name_is_exported(type_ctor_info) = yes.
ctor_rtti_name_is_exported(type_info(TypeInfo)) =
type_info_is_exported(TypeInfo).
ctor_rtti_name_is_exported(pseudo_type_info(PseudoTypeInfo)) =
pseudo_type_info_is_exported(PseudoTypeInfo).
ctor_rtti_name_is_exported(type_hashcons_pointer) = no.
tc_rtti_name_is_exported(base_typeclass_info(_, _)) = yes.
tc_rtti_name_is_exported(type_class_id) = no.
tc_rtti_name_is_exported(type_class_id_var_names) = no.
tc_rtti_name_is_exported(type_class_id_method_ids) = no.
tc_rtti_name_is_exported(type_class_decl) = yes.
tc_rtti_name_is_exported(type_class_decl_super(_, _)) = no.
tc_rtti_name_is_exported(type_class_decl_supers) = no.
tc_rtti_name_is_exported(type_class_instance(_)) = yes.
tc_rtti_name_is_exported(type_class_instance_tc_type_vector(_)) = no.
tc_rtti_name_is_exported(type_class_instance_constraint(_, _, _)) = no.
tc_rtti_name_is_exported(type_class_instance_constraints(_)) = no.
tc_rtti_name_is_exported(type_class_instance_methods(_)) = no.
:- func type_info_is_exported(rtti_type_info) = bool.
type_info_is_exported(plain_arity_zero_type_info(_)) = yes.
type_info_is_exported(plain_type_info(_, _)) = no.
type_info_is_exported(var_arity_type_info(_, _)) = no.
:- func pseudo_type_info_is_exported(rtti_pseudo_type_info) = bool.
pseudo_type_info_is_exported(plain_arity_zero_pseudo_type_info(_)) = yes.
pseudo_type_info_is_exported(plain_pseudo_type_info(_, _)) = no.
pseudo_type_info_is_exported(var_arity_pseudo_type_info(_, _)) = no.
pseudo_type_info_is_exported(type_var(_)) = no.
rtti__make_rtti_proc_label(ModuleInfo, PredId, ProcId) = ProcLabel :-
module_info_name(ModuleInfo, ThisModule),
module_info_pred_proc_info(ModuleInfo, PredId, ProcId,
PredInfo, ProcInfo),
PredOrFunc = pred_info_is_pred_or_func(PredInfo),
PredModule = pred_info_module(PredInfo),
PredName = pred_info_name(PredInfo),
Arity = pred_info_orig_arity(PredInfo),
pred_info_arg_types(PredInfo, ArgTypes),
proc_info_varset(ProcInfo, ProcVarSet),
proc_info_headvars(ProcInfo, ProcHeadVars),
proc_info_argmodes(ProcInfo, ProcModes),
proc_info_interface_determinism(ProcInfo, ProcDetism),
modes_to_arg_modes(ModuleInfo, ProcModes, ArgTypes, ProcArgModes),
PredIsImported = (pred_info_is_imported(PredInfo) -> yes ; no),
PredIsPseudoImp = (pred_info_is_pseudo_imported(PredInfo) -> yes ; no),
ProcIsExported = (procedure_is_exported(ModuleInfo, PredInfo, ProcId)
-> yes ; no),
pred_info_get_origin(PredInfo, Origin),
ProcHeadVarsWithNames = list__map((func(Var) = Var - Name :-
Name = varset__lookup_name(ProcVarSet, Var)
), ProcHeadVars),
(
(
PredIsImported = yes
;
PredIsPseudoImp = yes,
hlds_pred__in_in_unification_proc_id(ProcId)
)
->
ProcIsImported = yes
;
ProcIsImported = no
),
ProcLabel = rtti_proc_label(PredOrFunc, ThisModule, PredModule,
PredName, Arity, ArgTypes, PredId, ProcId,
ProcHeadVarsWithNames, ProcArgModes, ProcDetism,
PredIsImported, PredIsPseudoImp, Origin,
ProcIsExported, ProcIsImported).
rtti__proc_label_pred_proc_id(ProcLabel, PredId, ProcId) :-
PredId = ProcLabel ^ pred_id,
ProcId = ProcLabel ^ proc_id.
make_aditi_proc_info(ModuleInfo, PredId, ProcId) =
aditi_proc_info(ProcLabel, InputTypeInfo, OutputTypeInfo) :-
ProcLabel = rtti__make_rtti_proc_label(ModuleInfo, PredId, ProcId),
% The types of the arguments must be ground.
( ProcLabel ^ proc_arg_types = [InputArgType, OutputArgType] ->
pseudo_type_info__construct_type_info(
InputArgType, InputTypeInfo),
pseudo_type_info__construct_type_info(
OutputArgType, OutputTypeInfo)
;
error("make_aditi_proc_info: incorrect number of arguments")
).
rtti__id_to_c_identifier(ctor_rtti_id(RttiTypeCtor, RttiName), Str) :-
rtti__name_to_string(RttiTypeCtor, RttiName, Str).
rtti__id_to_c_identifier(tc_rtti_id(TCName, TCRttiName), Str) :-
rtti__tc_name_to_string(TCName, TCRttiName, Str).
rtti__id_to_c_identifier(aditi_rtti_id(RttiProcLabel), Str) :-
Str = "AditiProcInfo_For_" ++
proc_label_to_c_string(make_proc_label_from_rtti(RttiProcLabel), no).
:- pred rtti__name_to_string(rtti_type_ctor::in, ctor_rtti_name::in,
string::out) is det.
rtti__name_to_string(RttiTypeCtor, RttiName, Str) :-
rtti__mangle_rtti_type_ctor(RttiTypeCtor, ModuleName, TypeName, A_str),
(
RttiName = exist_locns(Ordinal),
string__int_to_string(Ordinal, O_str),
string__append_list([ModuleName, "__exist_locns_",
TypeName, "_", A_str, "_", O_str], Str)
;
RttiName = exist_locn,
string__append_list([ModuleName, "__exist_locn_",
TypeName, "_", A_str], Str)
;
RttiName = exist_tc_constr(Ordinal, TCCNum, _),
string__int_to_string(Ordinal, O_str),
string__int_to_string(TCCNum, N_str),
string__append_list([ModuleName, "__exist_tc_constr_",
TypeName, "_", A_str, "_", O_str, "_", N_str], Str)
;
RttiName = exist_tc_constrs(Ordinal),
string__int_to_string(Ordinal, O_str),
string__append_list([ModuleName, "__exist_tc_constrs_",
TypeName, "_", A_str, "_", O_str], Str)
;
RttiName = exist_info(Ordinal),
string__int_to_string(Ordinal, O_str),
string__append_list([ModuleName, "__exist_info_",
TypeName, "_", A_str, "_", O_str], Str)
;
RttiName = field_names(Ordinal),
string__int_to_string(Ordinal, O_str),
string__append_list([ModuleName, "__field_names_",
TypeName, "_", A_str, "_", O_str], Str)
;
RttiName = field_types(Ordinal),
string__int_to_string(Ordinal, O_str),
string__append_list([ModuleName, "__field_types_",
TypeName, "_", A_str, "_", O_str], Str)
;
RttiName = res_addrs,
string__append_list([ModuleName, "__reserved_addrs_",
TypeName, "_", A_str], Str)
;
RttiName = res_addr_functors,
string__append_list([ModuleName, "__reserved_addr_functors_",
TypeName, "_", A_str], Str)
;
RttiName = enum_functor_desc(Ordinal),
string__int_to_string(Ordinal, O_str),
string__append_list([ModuleName, "__enum_functor_desc_",
TypeName, "_", A_str, "_", O_str], Str)
;
RttiName = notag_functor_desc,
string__append_list([ModuleName, "__notag_functor_desc_",
TypeName, "_", A_str], Str)
;
RttiName = du_functor_desc(Ordinal),
string__int_to_string(Ordinal, O_str),
string__append_list([ModuleName, "__du_functor_desc_",
TypeName, "_", A_str, "_", O_str], Str)
;
RttiName = res_functor_desc(Ordinal),
string__int_to_string(Ordinal, O_str),
string__append_list([ModuleName,
"__reserved_addr_functor_desc_",
TypeName, "_", A_str, "_", O_str], Str)
;
RttiName = enum_name_ordered_table,
string__append_list([ModuleName, "__enum_name_ordered_",
TypeName, "_", A_str], Str)
;
RttiName = enum_value_ordered_table,
string__append_list([ModuleName, "__enum_value_ordered_",
TypeName, "_", A_str], Str)
;
RttiName = du_name_ordered_table,
string__append_list([ModuleName, "__du_name_ordered_",
TypeName, "_", A_str], Str)
;
RttiName = du_stag_ordered_table(Ptag),
string__int_to_string(Ptag, P_str),
string__append_list([ModuleName, "__du_stag_ordered_",
TypeName, "_", A_str, "_", P_str], Str)
;
RttiName = du_ptag_ordered_table,
string__append_list([ModuleName, "__du_ptag_ordered_",
TypeName, "_", A_str], Str)
;
RttiName = du_ptag_layout(Ptag),
string__int_to_string(Ptag, P_str),
string__append_list([ModuleName,
"__du_ptag_layout_",
TypeName, "_", A_str, "_", P_str], Str)
;
RttiName = res_value_ordered_table,
string__append_list([ModuleName, "__res_layout_ordered_table_",
TypeName, "_", A_str], Str)
;
RttiName = res_name_ordered_table,
string__append_list([ModuleName, "__res_name_ordered_table_",
TypeName, "_", A_str], Str)
;
RttiName = maybe_res_addr_functor_desc,
string__append_list([ModuleName,
"__maybe_res_addr_functor_desc_",
TypeName, "_", A_str], Str)
;
RttiName = type_functors,
string__append_list([ModuleName, "__type_functors",
TypeName, "_", A_str], Str)
;
RttiName = type_layout,
string__append_list([ModuleName, "__type_layout",
TypeName, "_", A_str], Str)
;
RttiName = type_ctor_info,
string__append_list([ModuleName, "__type_ctor_info_",
TypeName, "_", A_str], Str)
;
RttiName = type_info(TypeInfo),
Str = rtti__type_info_to_string(TypeInfo)
;
RttiName = pseudo_type_info(PseudoTypeInfo),
Str = rtti__pseudo_type_info_to_string(PseudoTypeInfo)
;
RttiName = type_hashcons_pointer,
string__append_list([ModuleName, "__hashcons_ptr_",
TypeName, "_", A_str], Str)
).
:- pred rtti__tc_name_to_string(tc_name::in, tc_rtti_name::in, string::out)
is det.
rtti__tc_name_to_string(TCName, TCRttiName, Str) :-
TCRttiName = base_typeclass_info(_ModuleName, InstanceStr),
Str = make_base_typeclass_info_name(TCName, InstanceStr).
rtti__tc_name_to_string(TCName, TCRttiName, Str) :-
TCRttiName = type_class_id,
rtti__mangle_rtti_type_class_name(TCName, ModuleName, ClassName,
ArityStr),
string__append_list([ModuleName, "__type_class_id_",
ClassName, "_", ArityStr], Str).
rtti__tc_name_to_string(TCName, TCRttiName, Str) :-
TCRttiName = type_class_id_method_ids,
rtti__mangle_rtti_type_class_name(TCName, ModuleName, ClassName,
ArityStr),
string__append_list([ModuleName, "__type_class_id_method_ids_",
ClassName, "_", ArityStr], Str).
rtti__tc_name_to_string(TCName, TCRttiName, Str) :-
TCRttiName = type_class_id_var_names,
rtti__mangle_rtti_type_class_name(TCName, ModuleName, ClassName,
ArityStr),
string__append_list([ModuleName, "__type_class_id_var_names_",
ClassName, "_", ArityStr], Str).
rtti__tc_name_to_string(TCName, TCRttiName, Str) :-
TCRttiName = type_class_decl,
rtti__mangle_rtti_type_class_name(TCName, ModuleName, ClassName,
ArityStr),
string__append_list([ModuleName, "__type_class_decl_",
ClassName, "_", ArityStr], Str).
rtti__tc_name_to_string(TCName, TCRttiName, Str) :-
TCRttiName = type_class_decl_supers,
rtti__mangle_rtti_type_class_name(TCName, ModuleName, ClassName,
ArityStr),
string__append_list([ModuleName, "__type_class_decl_supers_",
ClassName, "_", ArityStr], Str).
rtti__tc_name_to_string(TCName, TCRttiName, Str) :-
TCRttiName = type_class_decl_super(Ordinal, _),
rtti__mangle_rtti_type_class_name(TCName, ModuleName, ClassName,
ArityStr),
string__int_to_string(Ordinal, OrdinalStr),
string__append_list([ModuleName, "__type_class_decl_super_",
ClassName, "_", ArityStr, "_", OrdinalStr], Str).
rtti__tc_name_to_string(TCName, TCRttiName, Str) :-
TCRttiName = type_class_instance(TCTypes),
rtti__mangle_rtti_type_class_name(TCName, ModuleName, ClassName,
ArityStr),
TypeStrs = list__map(rtti__encode_tc_instance_type, TCTypes),
TypeVectorStr = string__append_list(TypeStrs),
string__append_list([ModuleName, "__type_class_instance_",
ClassName, "_", ArityStr, "_", TypeVectorStr], Str).
rtti__tc_name_to_string(TCName, TCRttiName, Str) :-
TCRttiName = type_class_instance_tc_type_vector(TCTypes),
rtti__mangle_rtti_type_class_name(TCName, ModuleName, ClassName,
ArityStr),
TypeStrs = list__map(rtti__encode_tc_instance_type, TCTypes),
TypeVectorStr = string__append_list(TypeStrs),
string__append_list([ModuleName,
"__type_class_instance_tc_type_vector_",
ClassName, "_", ArityStr, "_", TypeVectorStr], Str).
rtti__tc_name_to_string(TCName, TCRttiName, Str) :-
TCRttiName = type_class_instance_constraint(TCTypes, Ordinal, _),
rtti__mangle_rtti_type_class_name(TCName, ModuleName, ClassName,
ArityStr),
TypeStrs = list__map(rtti__encode_tc_instance_type, TCTypes),
TypeVectorStr = string__append_list(TypeStrs),
string__int_to_string(Ordinal, OrdinalStr),
string__append_list([ModuleName, "__type_class_instance_constraint_",
ClassName, "_", ArityStr, "_", OrdinalStr, "_", TypeVectorStr],
Str).
rtti__tc_name_to_string(TCName, TCRttiName, Str) :-
TCRttiName = type_class_instance_constraints(TCTypes),
rtti__mangle_rtti_type_class_name(TCName, ModuleName, ClassName,
ArityStr),
TypeStrs = list__map(rtti__encode_tc_instance_type, TCTypes),
TypeVectorStr = string__append_list(TypeStrs),
string__append_list([ModuleName, "__type_class_instance_constraints_",
ClassName, "_", ArityStr, "_", TypeVectorStr], Str).
rtti__tc_name_to_string(TCName, TCRttiName, Str) :-
TCRttiName = type_class_instance_methods(TCTypes),
rtti__mangle_rtti_type_class_name(TCName, ModuleName, ClassName,
ArityStr),
TypeStrs = list__map(rtti__encode_tc_instance_type, TCTypes),
TypeVectorStr = string__append_list(TypeStrs),
string__append_list([ModuleName, "__type_class_instance_methods_",
ClassName, "_", ArityStr, "_", TypeVectorStr], Str).
% The encoding we use here depends on the types in instance declarations
% being type constructors applied to vectors of distinct variables. When
% we lift that restriction, we will have to change this scheme.
%
% The code here is based on the code of base_typeclass_info__type_to_string,
% but its input is of type `maybe_pseudo_type_info', not of type `type'.
rtti__encode_tc_instance_type(TCType) = Str :-
(
TCType = plain(TI),
(
TI = plain_arity_zero_type_info(RttiTypeCtor),
ArgTIs = []
;
TI = plain_type_info(RttiTypeCtor, ArgTIs)
;
TI = var_arity_type_info(VarArityId, ArgTIs),
RttiTypeCtor =
var_arity_id_to_rtti_type_ctor(VarArityId)
),
Arity = list__length(ArgTIs)
% XXX We may wish to check that all arguments are variables.
% (possible only if Arity = 0)
;
TCType = pseudo(PTI),
(
PTI = plain_arity_zero_pseudo_type_info(RttiTypeCtor),
ArgPTIs = []
;
PTI = plain_pseudo_type_info(RttiTypeCtor, ArgPTIs)
;
PTI = var_arity_pseudo_type_info(VarArityId, ArgPTIs),
RttiTypeCtor =
var_arity_id_to_rtti_type_ctor(VarArityId)
;
PTI = type_var(_),
error("rtti__encode_tc_instance_type: type_var")
),
Arity = list__length(ArgPTIs)
% XXX We may wish to check that all arguments are variables.
),
RttiTypeCtor = rtti_type_ctor(ModuleName, TypeName, _CtorArity),
mdbcomp__prim_data__sym_name_to_string(qualified(ModuleName,
TypeName), "__", TypeStr),
string__int_to_string(Arity, ArityStr),
% XXX This naming scheme is the same as for base_typeclass_infos.
% We should think about
% - whether encoding guarantees different names for different instance
% declarations;
% - whether the encoding is uniquely invertible, and
% - whether the encoding may ever need to be uniquely invertible.
string__append_list([TypeStr, "__arity", ArityStr, "__"], Str).
:- pred rtti__mangle_rtti_type_ctor(rtti_type_ctor::in,
string::out, string::out, string::out) is det.
rtti__mangle_rtti_type_ctor(RttiTypeCtor, ModuleName, TypeName, ArityStr) :-
RttiTypeCtor = rtti_type_ctor(ModuleNameSym0, TypeName0, TypeArity),
% This predicate will be invoked only at stages of compilation
% that are after everything has been module qualified. The only
% things with an empty module name should be the builtins.
( ModuleNameSym0 = unqualified("") ->
mercury_public_builtin_module(ModuleNameSym)
;
ModuleNameSym = ModuleNameSym0
),
ModuleName = sym_name_mangle(ModuleNameSym),
TypeName = name_mangle(TypeName0),
string__int_to_string(TypeArity, ArityStr).
:- pred rtti__mangle_rtti_type_class_name(tc_name::in,
string::out, string::out, string::out) is det.
rtti__mangle_rtti_type_class_name(TCName, ModuleName, ClassName, ArityStr) :-
TCName = tc_name(ModuleNameSym, ClassName0, Arity),
ModuleName = sym_name_mangle(ModuleNameSym),
ClassName = name_mangle(ClassName0),
string__int_to_string(Arity, ArityStr).
%-----------------------------------------------------------------------------%
:- func rtti__type_info_to_string(rtti_type_info) = string.
rtti__type_info_to_string(TypeInfo) = Str :-
(
TypeInfo = plain_arity_zero_type_info(RttiTypeCtor),
rtti__id_to_c_identifier(
ctor_rtti_id(RttiTypeCtor, type_ctor_info), Str)
;
TypeInfo = plain_type_info(RttiTypeCtor, Args),
rtti__mangle_rtti_type_ctor(RttiTypeCtor,
ModuleName, TypeName, ArityStr),
ArgsStr = type_info_list_to_string(Args),
string__append_list([ModuleName, "__ti_",
TypeName, "_", ArityStr, ArgsStr], Str)
;
TypeInfo = var_arity_type_info(VarArityId, Args),
RealArity = list__length(Args),
ArgsStr = type_info_list_to_string(Args),
string__int_to_string(RealArity, RealArityStr),
IdStr = var_arity_ctor_id_to_string(VarArityId),
string__append_list(["__vti_", IdStr, "_",
RealArityStr, ArgsStr], Str)
).
:- func rtti__pseudo_type_info_to_string(rtti_pseudo_type_info) = string.
rtti__pseudo_type_info_to_string(PseudoTypeInfo) = Str :-
(
PseudoTypeInfo =
plain_arity_zero_pseudo_type_info(RttiTypeCtor),
rtti__id_to_c_identifier(
ctor_rtti_id(RttiTypeCtor, type_ctor_info), Str)
;
PseudoTypeInfo = plain_pseudo_type_info(RttiTypeCtor, Args),
rtti__mangle_rtti_type_ctor(RttiTypeCtor,
ModuleName, TypeName, ArityStr),
ArgsStr = maybe_pseudo_type_info_list_to_string(Args),
string__append_list([ModuleName, "__pti_",
TypeName, "_", ArityStr, ArgsStr], Str)
;
PseudoTypeInfo = var_arity_pseudo_type_info(VarArityId, Args),
RealArity = list__length(Args),
ArgsStr = maybe_pseudo_type_info_list_to_string(Args),
string__int_to_string(RealArity, RealArityStr),
IdStr = var_arity_ctor_id_to_string(VarArityId),
string__append_list(["__vpti_", IdStr, "_",
RealArityStr, ArgsStr], Str)
;
PseudoTypeInfo = type_var(VarNum),
string__int_to_string(VarNum, Str)
).
:- func maybe_pseudo_type_info_to_string(rtti_maybe_pseudo_type_info) = string.
maybe_pseudo_type_info_to_string(plain(TypeInfo)) =
string__append("__plain_", type_info_to_string(TypeInfo)).
maybe_pseudo_type_info_to_string(pseudo(PseudoTypeInfo)) =
string__append("__pseudo_", pseudo_type_info_to_string(PseudoTypeInfo)).
:- func var_arity_ctor_id_to_string(var_arity_ctor_id) = string.
var_arity_ctor_id_to_string(pred_type_info) = "pred".
var_arity_ctor_id_to_string(func_type_info) = "func".
var_arity_ctor_id_to_string(tuple_type_info) = "tuple".
%-----------------------------------------------------------------------------%
:- func maybe_pseudo_type_info_list_to_string(list(rtti_maybe_pseudo_type_info))
= string.
maybe_pseudo_type_info_list_to_string(MaybePseudoTypeInfoList) =
string__append_list(
list__map(maybe_pseudo_type_info_to_string,
MaybePseudoTypeInfoList)).
:- func pseudo_type_info_list_to_string(list(rtti_pseudo_type_info)) = string.
pseudo_type_info_list_to_string(PseudoTypeInfoList) =
string__append_list(
list__map(pseudo_type_info_to_string, PseudoTypeInfoList)).
:- func type_info_list_to_string(list(rtti_type_info)) = string.
type_info_list_to_string(TypeInfoList) =
string__append_list(list__map(type_info_to_string, TypeInfoList)).
%-----------------------------------------------------------------------------%
rtti__pred_or_func_to_string(predicate, "MR_PREDICATE").
rtti__pred_or_func_to_string(function, "MR_FUNCTION").
rtti__sectag_locn_to_string(sectag_none, "MR_SECTAG_NONE").
rtti__sectag_locn_to_string(sectag_local, "MR_SECTAG_LOCAL").
rtti__sectag_locn_to_string(sectag_remote, "MR_SECTAG_REMOTE").
rtti__sectag_and_locn_to_locn_string(sectag_none, "MR_SECTAG_NONE").
rtti__sectag_and_locn_to_locn_string(sectag_local(_), "MR_SECTAG_LOCAL").
rtti__sectag_and_locn_to_locn_string(sectag_remote(_), "MR_SECTAG_REMOTE").
rtti__type_ctor_rep_to_string(TypeCtorData, RepStr) :-
TypeCtorDetails = TypeCtorData ^ tcr_rep_details,
(
TypeCtorDetails = enum(TypeCtorUserEq, _, _, _),
(
TypeCtorUserEq = standard,
RepStr = "MR_TYPECTOR_REP_ENUM"
;
TypeCtorUserEq = user_defined,
RepStr = "MR_TYPECTOR_REP_ENUM_USEREQ"
)
;
TypeCtorDetails = du(TypeCtorUserEq, _, _, _),
(
TypeCtorUserEq = standard,
RepStr = "MR_TYPECTOR_REP_DU"
;
TypeCtorUserEq = user_defined,
RepStr = "MR_TYPECTOR_REP_DU_USEREQ"
)
;
TypeCtorDetails = reserved(TypeCtorUserEq, _, _, _, _),
(
TypeCtorUserEq = standard,
RepStr = "MR_TYPECTOR_REP_RESERVED_ADDR"
;
TypeCtorUserEq = user_defined,
RepStr = "MR_TYPECTOR_REP_RESERVED_ADDR_USEREQ"
)
;
TypeCtorDetails = notag(TypeCtorUserEq, NotagFunctor),
NotagEqvType = NotagFunctor ^ nt_arg_type,
(
TypeCtorUserEq = standard,
(
NotagEqvType = pseudo(_),
RepStr = "MR_TYPECTOR_REP_NOTAG"
;
NotagEqvType = plain(_),
RepStr = "MR_TYPECTOR_REP_NOTAG_GROUND"
)
;
TypeCtorUserEq = user_defined,
(
NotagEqvType = pseudo(_),
RepStr = "MR_TYPECTOR_REP_NOTAG_USEREQ"
;
NotagEqvType = plain(_),
RepStr = "MR_TYPECTOR_REP_NOTAG_GROUND_USEREQ"
)
)
;
TypeCtorDetails = eqv(EqvType),
(
EqvType = pseudo(_),
RepStr = "MR_TYPECTOR_REP_EQUIV"
;
EqvType = plain(_),
RepStr = "MR_TYPECTOR_REP_EQUIV_GROUND"
)
;
TypeCtorDetails = builtin(BuiltinCtor),
builtin_ctor_rep_to_string(BuiltinCtor, RepStr)
;
TypeCtorDetails = impl_artifact(ImplCtor),
impl_ctor_rep_to_string(ImplCtor, RepStr)
;
TypeCtorDetails = foreign(IsStable),
(
type_ctor_is_array(
qualified(TypeCtorData ^ tcr_module_name,
TypeCtorData ^ tcr_type_name) -
TypeCtorData ^ tcr_arity)
->
% XXX This is a kludge to allow accurate GC
% to trace arrays. We should allow users to
% provide tracing functions for foreign types.
RepStr = "MR_TYPECTOR_REP_ARRAY"
;
(
IsStable = is_stable,
RepStr = "MR_TYPECTOR_REP_STABLE_FOREIGN"
;
IsStable = is_not_stable,
RepStr = "MR_TYPECTOR_REP_FOREIGN"
)
)
).
:- pred builtin_ctor_rep_to_string(builtin_ctor::in, string::out) is det.
builtin_ctor_rep_to_string(int, "MR_TYPECTOR_REP_INT").
builtin_ctor_rep_to_string(string, "MR_TYPECTOR_REP_STRING").
builtin_ctor_rep_to_string(float, "MR_TYPECTOR_REP_FLOAT").
builtin_ctor_rep_to_string(char, "MR_TYPECTOR_REP_CHAR").
builtin_ctor_rep_to_string(void, "MR_TYPECTOR_REP_VOID").
builtin_ctor_rep_to_string(c_pointer(is_not_stable),
"MR_TYPECTOR_REP_C_POINTER").
builtin_ctor_rep_to_string(c_pointer(is_stable),
"MR_TYPECTOR_REP_STABLE_C_POINTER").
builtin_ctor_rep_to_string(pred_ctor, "MR_TYPECTOR_REP_PRED").
builtin_ctor_rep_to_string(func_ctor, "MR_TYPECTOR_REP_FUNC").
builtin_ctor_rep_to_string(tuple, "MR_TYPECTOR_REP_TUPLE").
builtin_ctor_rep_to_string(ref, "MR_TYPECTOR_REP_REFERENCE").
builtin_ctor_rep_to_string(type_ctor_desc, "MR_TYPECTOR_REP_TYPECTORDESC").
builtin_ctor_rep_to_string(pseudo_type_desc, "MR_TYPECTOR_REP_PSEUDOTYPEDESC").
builtin_ctor_rep_to_string(type_desc, "MR_TYPECTOR_REP_TYPEDESC").
:- pred impl_ctor_rep_to_string(impl_ctor::in, string::out) is det.
impl_ctor_rep_to_string(type_ctor_info, "MR_TYPECTOR_REP_TYPECTORINFO").
impl_ctor_rep_to_string(type_info, "MR_TYPECTOR_REP_TYPEINFO").
impl_ctor_rep_to_string(typeclass_info, "MR_TYPECTOR_REP_TYPECLASSINFO").
impl_ctor_rep_to_string(base_typeclass_info,
"MR_TYPECTOR_REP_BASETYPECLASSINFO").
impl_ctor_rep_to_string(hp, "MR_TYPECTOR_REP_HP").
impl_ctor_rep_to_string(succip, "MR_TYPECTOR_REP_SUCCIP").
impl_ctor_rep_to_string(curfr, "MR_TYPECTOR_REP_CURFR").
impl_ctor_rep_to_string(maxfr, "MR_TYPECTOR_REP_MAXFR").
impl_ctor_rep_to_string(redofr, "MR_TYPECTOR_REP_REDOFR").
impl_ctor_rep_to_string(redoip, "MR_TYPECTOR_REP_REDOIP").
impl_ctor_rep_to_string(trail_ptr, "MR_TYPECTOR_REP_TRAIL_PTR").
impl_ctor_rep_to_string(ticket, "MR_TYPECTOR_REP_TICKET").
impl_ctor_rep_to_string(subgoal, "MR_TYPECTOR_REP_SUBGOAL").
type_info_to_rtti_data(TypeInfo) = type_info(TypeInfo).
maybe_pseudo_type_info_to_rtti_data(pseudo(PseudoTypeInfo)) =
pseudo_type_info(PseudoTypeInfo).
maybe_pseudo_type_info_to_rtti_data(plain(TypeInfo)) =
type_info(TypeInfo).
maybe_pseudo_type_info_or_self_to_rtti_data(pseudo(PseudoTypeInfo)) =
pseudo_type_info(PseudoTypeInfo).
maybe_pseudo_type_info_or_self_to_rtti_data(plain(TypeInfo)) =
type_info(TypeInfo).
maybe_pseudo_type_info_or_self_to_rtti_data(self) =
pseudo_type_info(type_var(0)).
type_ctor_details_num_ptags(enum(_, _, _, _)) = -1.
type_ctor_details_num_ptags(du(_, _, PtagMap, _)) = LastPtag + 1 :-
map__keys(PtagMap, Ptags),
list__last_det(Ptags, LastPtag).
type_ctor_details_num_ptags(reserved(_, _, _, PtagMap, _)) = NumPtags :-
map__keys(PtagMap, Ptags),
( Ptags = [] ->
NumPtags = -1
;
list__last_det(Ptags, LastPtag),
NumPtags = LastPtag + 1
).
type_ctor_details_num_ptags(notag(_, _)) = -1.
type_ctor_details_num_ptags(eqv(_)) = -1.
type_ctor_details_num_ptags(builtin(_)) = -1.
type_ctor_details_num_ptags(impl_artifact(_)) = -1.
type_ctor_details_num_ptags(foreign(_)) = -1.
type_ctor_details_num_functors(enum(_, Functors, _, _)) =
list__length(Functors).
type_ctor_details_num_functors(du(_, Functors, _, _)) =
list__length(Functors).
type_ctor_details_num_functors(reserved(_, Functors, _, _, _)) =
list__length(Functors).
type_ctor_details_num_functors(notag(_, _)) = 1.
type_ctor_details_num_functors(eqv(_)) = -1.
type_ctor_details_num_functors(builtin(_)) = -1.
type_ctor_details_num_functors(impl_artifact(_)) = -1.
type_ctor_details_num_functors(foreign(_)) = -1.
du_arg_info_name(ArgInfo) = ArgInfo ^ du_arg_name.
du_arg_info_type(ArgInfo) = ArgInfo ^ du_arg_type.
project_yes(yes(X)) = X.
enum_functor_rtti_name(EnumFunctor) =
enum_functor_desc(EnumFunctor ^ enum_ordinal).
du_functor_rtti_name(DuFunctor) = du_functor_desc(DuFunctor ^ du_ordinal).
res_functor_rtti_name(ResFunctor) =
res_functor_desc(ResFunctor ^ res_ordinal).
maybe_res_functor_rtti_name(du_func(DuFunctor)) =
du_functor_desc(DuFunctor ^ du_ordinal).
maybe_res_functor_rtti_name(res_func(ResFunctor)) =
res_functor_desc(ResFunctor ^ res_ordinal).
res_addr_rep(ResFunctor) = ResFunctor ^ res_rep.
res_addr_is_numeric(null_pointer).
res_addr_is_numeric(small_pointer(_)).
rtti_id_would_include_code_addr(ctor_rtti_id(_, RttiName)) =
ctor_rtti_name_would_include_code_addr(RttiName).
rtti_id_would_include_code_addr(tc_rtti_id(_, TCRttiName)) =
tc_rtti_name_would_include_code_addr(TCRttiName).
rtti_id_would_include_code_addr(aditi_rtti_id(_)) = yes.
ctor_rtti_name_would_include_code_addr(exist_locns(_)) = no.
ctor_rtti_name_would_include_code_addr(exist_locn) = no.
ctor_rtti_name_would_include_code_addr(exist_tc_constr(_, _, _)) = no.
ctor_rtti_name_would_include_code_addr(exist_tc_constrs(_)) = no.
ctor_rtti_name_would_include_code_addr(exist_info(_)) = no.
ctor_rtti_name_would_include_code_addr(field_names(_)) = no.
ctor_rtti_name_would_include_code_addr(field_types(_)) = no.
ctor_rtti_name_would_include_code_addr(res_addrs) = no.
ctor_rtti_name_would_include_code_addr(res_addr_functors) = no.
ctor_rtti_name_would_include_code_addr(enum_functor_desc(_)) = no.
ctor_rtti_name_would_include_code_addr(notag_functor_desc) = no.
ctor_rtti_name_would_include_code_addr(du_functor_desc(_)) = no.
ctor_rtti_name_would_include_code_addr(res_functor_desc(_)) = no.
ctor_rtti_name_would_include_code_addr(enum_name_ordered_table) = no.
ctor_rtti_name_would_include_code_addr(enum_value_ordered_table) = no.
ctor_rtti_name_would_include_code_addr(du_name_ordered_table) = no.
ctor_rtti_name_would_include_code_addr(du_stag_ordered_table(_)) = no.
ctor_rtti_name_would_include_code_addr(du_ptag_ordered_table) = no.
ctor_rtti_name_would_include_code_addr(du_ptag_layout(_)) = no.
ctor_rtti_name_would_include_code_addr(res_value_ordered_table) = no.
ctor_rtti_name_would_include_code_addr(res_name_ordered_table) = no.
ctor_rtti_name_would_include_code_addr(maybe_res_addr_functor_desc) = no.
ctor_rtti_name_would_include_code_addr(type_hashcons_pointer) = no.
ctor_rtti_name_would_include_code_addr(type_functors) = no.
ctor_rtti_name_would_include_code_addr(type_layout) = no.
ctor_rtti_name_would_include_code_addr(type_ctor_info) = yes.
ctor_rtti_name_would_include_code_addr(type_info(TypeInfo)) =
type_info_would_incl_code_addr(TypeInfo).
ctor_rtti_name_would_include_code_addr(pseudo_type_info(PseudoTypeInfo)) =
pseudo_type_info_would_incl_code_addr(PseudoTypeInfo).
tc_rtti_name_would_include_code_addr(base_typeclass_info(_, _)) = yes.
tc_rtti_name_would_include_code_addr(type_class_id) = no.
tc_rtti_name_would_include_code_addr(type_class_id_var_names) = no.
tc_rtti_name_would_include_code_addr(type_class_id_method_ids) = no.
tc_rtti_name_would_include_code_addr(type_class_decl) = no.
tc_rtti_name_would_include_code_addr(type_class_decl_super(_, _)) = no.
tc_rtti_name_would_include_code_addr(type_class_decl_supers) = no.
tc_rtti_name_would_include_code_addr(type_class_instance(_)) = no.
tc_rtti_name_would_include_code_addr(type_class_instance_tc_type_vector(_))
= no.
tc_rtti_name_would_include_code_addr(type_class_instance_constraint(_, _, _))
= no.
tc_rtti_name_would_include_code_addr(type_class_instance_constraints(_)) = no.
tc_rtti_name_would_include_code_addr(type_class_instance_methods(_)) = no.
type_info_would_incl_code_addr(plain_arity_zero_type_info(_)) = yes.
type_info_would_incl_code_addr(plain_type_info(_, _)) = no.
type_info_would_incl_code_addr(var_arity_type_info(_, _)) = no.
pseudo_type_info_would_incl_code_addr(plain_arity_zero_pseudo_type_info(_))
= yes.
pseudo_type_info_would_incl_code_addr(plain_pseudo_type_info(_, _)) = no.
pseudo_type_info_would_incl_code_addr(var_arity_pseudo_type_info(_, _)) = no.
pseudo_type_info_would_incl_code_addr(type_var(_)) = no.
rtti_id_maybe_element_c_type(item_type(RttiId), CTypeName, IsArray) :-
rtti_id_c_type(RttiId, CTypeName, IsArray).
rtti_id_maybe_element_c_type(element_type(RttiId), CTypeName, IsArray) :-
rtti_id_c_type(RttiId, CTypeName, IsArray0),
(
IsArray0 = no,
error("rtti_id_maybe_element_c_type: base is not array")
;
IsArray0 = yes,
IsArray = no
).
rtti_id_c_type(ctor_rtti_id(_, RttiName), CTypeName, IsArray) :-
ctor_rtti_name_c_type(RttiName, CTypeName, IsArray).
rtti_id_c_type(tc_rtti_id(_, TCRttiName), CTypeName, IsArray) :-
tc_rtti_name_c_type(TCRttiName, CTypeName, IsArray).
rtti_id_c_type(aditi_rtti_id(_), "MR_Aditi_Proc_Info", no).
ctor_rtti_name_c_type(RttiName, CTypeName, IsArray) :-
ctor_rtti_name_type(RttiName, GenTypeName, IsArray),
CTypeName = string__append("MR_", GenTypeName).
tc_rtti_name_c_type(TCRttiName, CTypeName, IsArray) :-
tc_rtti_name_type(TCRttiName, GenTypeName, IsArray),
CTypeName = string__append("MR_", GenTypeName).
rtti_id_maybe_element_java_type(item_type(RttiId), CTypeName, IsArray) :-
rtti_id_java_type(RttiId, CTypeName, IsArray).
rtti_id_maybe_element_java_type(element_type(RttiId), CTypeName, IsArray) :-
rtti_id_java_type(RttiId, CTypeName, IsArray0),
(
IsArray0 = no,
error("rtti_id_maybe_element_java_type: base is not array")
;
IsArray0 = yes,
IsArray = no
).
rtti_id_java_type(ctor_rtti_id(_, RttiName), JavaTypeName, IsArray) :-
ctor_rtti_name_java_type(RttiName, JavaTypeName, IsArray).
rtti_id_java_type(tc_rtti_id(_, TCRttiName), JavaTypeName, IsArray) :-
tc_rtti_name_java_type(TCRttiName, JavaTypeName, IsArray).
rtti_id_java_type(aditi_rtti_id(_), _, _) :-
error("Aditi not supported for the Java back-end").
ctor_rtti_name_java_type(RttiName, JavaTypeName, IsArray) :-
ctor_rtti_name_type(RttiName, GenTypeName0, IsArray),
(
% Java doesn't have typedefs (or "const"),
% so we need to use "String" rather than "ConstString"
GenTypeName0 = "ConstString"
->
JavaTypeName = "java.lang.String"
;
% In Java, every non-builtin type is a pointer,
% so there's no need for the "Ptr" suffixes.
string__remove_suffix(GenTypeName0, "Ptr", GenTypeName1)
->
JavaTypeName = string__append("mercury.runtime.", GenTypeName1)
;
% In C, we do some nasty hacks to represent type class
% constraints of different arities as different structures
% ending with arrays of the appropriate length, but in
% Java we just use a single type for all of them
% (with an extra level of indirection for the array).
string__prefix(GenTypeName0, "TypeClassConstraint_")
->
JavaTypeName = "mercury.runtime.TypeClassConstraint"
;
% In C, we do some nasty hacks to represent type infos
% different arities as different structures
% ending with arrays of the appropriate length, but in
% Java we just use a single type for all of them
% (with an extra level of indirection for the array).
( string__prefix(GenTypeName0, "FA_PseudoTypeInfo_Struct")
; string__prefix(GenTypeName0, "FA_TypeInfo_Struct")
; string__prefix(GenTypeName0, "VA_PseudoTypeInfo_Struct")
; string__prefix(GenTypeName0, "VA_TypeInfo_Struct")
)
->
JavaTypeName = "mercury.runtime.TypeInfo_Struct"
;
JavaTypeName = string__append("mercury.runtime.", GenTypeName0)
).
tc_rtti_name_java_type(TCRttiName, JavaTypeName, IsArray) :-
tc_rtti_name_type(TCRttiName, GenTypeName, IsArray),
(
% BaseTypeClassInfo in C is represented using a
% variable-length array as the last field,
% so we need to handle it specially in Java
GenTypeName = "BaseTypeclassInfo"
->
JavaTypeName = "java.lang.Object" /* & IsArray = yes */
;
% Java doesn't have typedefs (or "const"),
% so we need to use "String" rather than "ConstString"
GenTypeName = "ConstString"
->
JavaTypeName = "java.lang.String"
;
% In C, we do some nasty hacks to represent type class
% constraints of different arities as different structures
% ending with arrays of the appropriate length, but in
% Java we just use a single type for all of them
% (with an extra level of indirection for the array).
string__prefix(GenTypeName, "TypeClassConstraint_")
->
JavaTypeName = "mercury.runtime.TypeClassConstraint"
;
% The rest are all defined in Mercury's Java runtime
% (java/runtime/*.java).
JavaTypeName = string__append("mercury.runtime.",
GenTypeName)
).
% ctor_rtti_name_type(RttiName, Type, IsArray):
:- pred ctor_rtti_name_type(ctor_rtti_name::in, string::out, bool::out) is det.
ctor_rtti_name_type(exist_locns(_), "DuExistLocn", yes).
ctor_rtti_name_type(exist_locn, "DuExistLocn", no).
ctor_rtti_name_type(exist_tc_constr(_, _, N), TypeName, no) :-
TypeName = tc_constraint_type_name(N).
ctor_rtti_name_type(exist_tc_constrs(_), "TypeClassConstraint", yes).
ctor_rtti_name_type(exist_info(_), "DuExistInfo", no).
ctor_rtti_name_type(field_names(_), "ConstString", yes).
ctor_rtti_name_type(field_types(_), "PseudoTypeInfo", yes).
ctor_rtti_name_type(res_addrs, "ReservedAddr", yes).
ctor_rtti_name_type(res_addr_functors, "ReservedAddrFunctorDescPtr",
yes).
ctor_rtti_name_type(enum_functor_desc(_), "EnumFunctorDesc", no).
ctor_rtti_name_type(notag_functor_desc, "NotagFunctorDesc", no).
ctor_rtti_name_type(du_functor_desc(_), "DuFunctorDesc", no).
ctor_rtti_name_type(res_functor_desc(_), "ReservedAddrFunctorDesc", no).
ctor_rtti_name_type(enum_name_ordered_table, "EnumFunctorDescPtr", yes).
ctor_rtti_name_type(enum_value_ordered_table, "EnumFunctorDescPtr", yes).
ctor_rtti_name_type(du_name_ordered_table, "DuFunctorDescPtr", yes).
ctor_rtti_name_type(du_stag_ordered_table(_), "DuFunctorDescPtr", yes).
ctor_rtti_name_type(du_ptag_ordered_table, "DuPtagLayout", yes).
ctor_rtti_name_type(du_ptag_layout(_), "DuPtagLayout", no).
ctor_rtti_name_type(res_value_ordered_table, "ReservedAddrTypeLayout", no).
ctor_rtti_name_type(res_name_ordered_table, "MaybeResAddrFunctorDesc", yes).
ctor_rtti_name_type(maybe_res_addr_functor_desc,
"MaybeResAddrFunctorDesc", no).
ctor_rtti_name_type(type_functors, "TypeFunctors", no).
ctor_rtti_name_type(type_layout, "TypeLayout", no).
ctor_rtti_name_type(type_ctor_info, "TypeCtorInfo_Struct", no).
ctor_rtti_name_type(type_hashcons_pointer, "TrieNodePtr", no).
ctor_rtti_name_type(type_info(TypeInfo), TypeName, no) :-
TypeName = type_info_name_type(TypeInfo).
ctor_rtti_name_type(pseudo_type_info(PseudoTypeInfo), TypeName, no) :-
TypeName = pseudo_type_info_name_type(PseudoTypeInfo).
% tc_rtti_name_type(RttiName, Type, IsArray):
:- pred tc_rtti_name_type(tc_rtti_name::in, string::out, bool::out) is det.
tc_rtti_name_type(base_typeclass_info(_, _), "BaseTypeclassInfo", yes).
tc_rtti_name_type(type_class_id, "TypeClassId", no).
tc_rtti_name_type(type_class_id_var_names, "ConstString", yes).
tc_rtti_name_type(type_class_id_method_ids, "TypeClassMethod", yes).
tc_rtti_name_type(type_class_decl, "TypeClassDeclStruct", no).
tc_rtti_name_type(type_class_decl_super(_, N), TypeName, no) :-
TypeName = tc_constraint_type_name(N).
tc_rtti_name_type(type_class_decl_supers, "TypeClassConstraint", yes).
tc_rtti_name_type(type_class_instance(_), "InstanceStruct", no).
tc_rtti_name_type(type_class_instance_tc_type_vector(_),
"PseudoTypeInfo", yes).
tc_rtti_name_type(type_class_instance_constraint(_, _, N), TypeName, no) :-
TypeName = tc_constraint_type_name(N).
tc_rtti_name_type(type_class_instance_constraints(_),
"TypeClassConstraint", yes).
tc_rtti_name_type(type_class_instance_methods(_),
"CodePtr", yes).
:- func tc_constraint_type_name(int) = string.
tc_constraint_type_name(N) = TypeName :-
string__int_to_string(N, NStr),
string__append_list(["TypeClassConstraint_", NStr, "Struct"],
TypeName).
:- func type_info_name_type(rtti_type_info) = string.
type_info_name_type(plain_arity_zero_type_info(_)) =
"TypeCtorInfo_Struct".
type_info_name_type(plain_type_info(_, ArgTypes)) =
string__format("FA_TypeInfo_Struct%d", [i(list__length(ArgTypes))]).
type_info_name_type(var_arity_type_info(_, ArgTypes)) =
string__format("VA_TypeInfo_Struct%d", [i(list__length(ArgTypes))]).
:- func pseudo_type_info_name_type(rtti_pseudo_type_info) = string.
pseudo_type_info_name_type(plain_arity_zero_pseudo_type_info(_)) =
"TypeCtorInfo_Struct".
pseudo_type_info_name_type(plain_pseudo_type_info(_TypeCtor, ArgTypes)) =
string__format("FA_PseudoTypeInfo_Struct%d",
[i(list__length(ArgTypes))]).
pseudo_type_info_name_type(var_arity_pseudo_type_info(_TypeCtor, ArgTypes)) =
string__format("VA_PseudoTypeInfo_Struct%d",
[i(list__length(ArgTypes))]).
pseudo_type_info_name_type(type_var(_)) = _ :-
% we use small integers to represent type_vars,
% rather than pointers, so there is no pointed-to type
error("pseudo_type_info_name_type: type_var").
module_qualify_name_of_rtti_id(RttiId) = ShouldModuleQualify :-
(
RttiId = ctor_rtti_id(_, CtorRttiName),
ShouldModuleQualify =
module_qualify_name_of_ctor_rtti_name(CtorRttiName)
;
RttiId = tc_rtti_id(_, TCRttiName),
ShouldModuleQualify =
module_qualify_name_of_tc_rtti_name(TCRttiName)
;
RttiId = aditi_rtti_id(_),
ShouldModuleQualify = yes
).
module_qualify_name_of_ctor_rtti_name(_) = yes.
% We don't want to include the module name as part of the name for
% base_typeclass_infos, since we _want_ to cause a link error for
% overlapping instance decls, even if they are in a different modules.
%
% When we start generating data structures replacing base_typeclass_infos,
% we should include their names here.
%
% This decision is implemented separately in rtti__tc_name_to_string.
module_qualify_name_of_tc_rtti_name(TCRttiName) =
( TCRttiName = base_typeclass_info(_, _) ->
no
;
yes
).
rtti_id_emits_type_ctor_info(RttiId, TypeCtor) :-
RttiId = ctor_rtti_id(RttiTypeCtor, RttiName),
(
RttiName = type_ctor_info,
TypeCtor = RttiTypeCtor
;
RttiName = type_info(TypeInfo),
TypeInfo = plain_arity_zero_type_info(TypeCtor)
;
RttiName = pseudo_type_info(PseudoTypeInfo),
PseudoTypeInfo = plain_arity_zero_pseudo_type_info(TypeCtor)
).
%-----------------------------------------------------------------------------%