Files
mercury/compiler/prog_io_pragma.m
Julien Fischer f3ecb78195 Remove supported for deprecated syntax. The syntax removed is:
Estimated hours taken: 0.5
Branches: main

Remove supported for deprecated syntax.  The syntax removed is:

	- ':' as a module qualifier.
	- '::' and '->' for mode definitions.
	- the old-style pragma syntax.

The 0.12 release issues warnings for uses of this syntax.

XXX This also needs to be mentioned in the news file, but since I need to
clean up the main branch news file I'll do that as a separate change.

compiler/prog_io.m:
compiler/prog_io_pragma.m:
compiler/prog_io_util.m:
	Remove support for the syntax mentioned above.

	Break up an overlong line.

doc_reference_manual.texi:
	Remove the documentation for the above syntax.

compiler/recompilation.m:
compiler/rl_info.m:
compiler/fact_table.m:
	Remove deprecated syntax from these modules.
2005-09-12 08:20:27 +00:00

1914 lines
75 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim:ts=4 sw=4 expandtab
%-----------------------------------------------------------------------------%
% Copyright (C) 1996-2005 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: prog_io_pragma.m.
% Main authors: fjh, dgj.
%
% This module handles the parsing of pragma directives.
:- module parse_tree__prog_io_pragma.
:- interface.
:- import_module mdbcomp__prim_data.
:- import_module parse_tree__prog_data.
:- import_module parse_tree__prog_io_util.
:- import_module list.
:- import_module term.
:- import_module varset.
%-----------------------------------------------------------------------------%
% Parse the pragma declaration.
%
:- pred parse_pragma(module_name::in, varset::in, list(term)::in,
maybe1(item)::out) is semidet.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module libs__globals.
:- import_module libs__lp_rational.
:- import_module libs__rat.
:- import_module parse_tree__prog_io.
:- import_module parse_tree__prog_io_goal.
:- import_module parse_tree__prog_util.
:- import_module bool.
:- import_module int.
:- import_module map.
:- import_module require.
:- import_module set.
:- import_module std_util.
:- import_module string.
%-----------------------------------------------------------------------------%
parse_pragma(ModuleName, VarSet, PragmaTerms, Result) :-
(
PragmaTerms = [SinglePragmaTerm0],
parse_type_decl_where_part_if_present(non_solver_type, ModuleName,
SinglePragmaTerm0, SinglePragmaTerm, WherePartResult),
SinglePragmaTerm = term__functor(term__atom(PragmaType),
PragmaArgs, _),
parse_pragma_type(ModuleName, PragmaType, PragmaArgs, SinglePragmaTerm,
VarSet, Result0)
->
(
% The code to process `where' attributes will return an error
% result if solver attributes are given for a non-solver type.
% Because this is a non-solver type, if the unification with
% WhereResult succeeds then _NoSolverTypeDetails is guaranteed to
% be `no'.
WherePartResult = ok(_NoSolverTypeDetails, MaybeUserEqComp),
(
MaybeUserEqComp = yes(_),
Result0 = ok(Item0)
->
(
Item0 = type_defn(_, _, _, _, _),
foreign_type(Type, _, Assertions) = Item0 ^ td_ctor_defn
->
Result = ok(Item0 ^ td_ctor_defn :=
foreign_type(Type, MaybeUserEqComp, Assertions))
;
Result = error("unexpected `where equality/comparison is'",
SinglePragmaTerm0)
)
;
Result = Result0
)
;
WherePartResult = error(String, Term),
Result = error(String, Term)
)
;
fail
).
:- pred parse_pragma_type(module_name::in, string::in, list(term)::in,
term::in, varset::in, maybe1(item)::out) is semidet.
parse_pragma_type(_, "source_file", PragmaTerms, ErrorTerm, _VarSet, Result) :-
( PragmaTerms = [SourceFileTerm] ->
(
SourceFileTerm = term__functor(term__string(SourceFile), [], _)
->
Result = ok(pragma(user, source_file(SourceFile)))
;
Result = error("string expected in `:- pragma " ++
"source_file' declaration", SourceFileTerm)
)
;
Result = error("wrong number of arguments in " ++
"`:- pragma source_file' declaration", ErrorTerm)
).
parse_pragma_type(ModuleName, "foreign_type", PragmaTerms, ErrorTerm, VarSet,
Result) :-
(
(
PragmaTerms = [LangTerm, MercuryTypeTerm, ForeignTypeTerm],
MaybeAssertionTerm = no
;
PragmaTerms = [LangTerm, MercuryTypeTerm, ForeignTypeTerm,
AssertionTerm],
MaybeAssertionTerm = yes(AssertionTerm)
)
->
(
parse_foreign_language(LangTerm, Language)
->
parse_foreign_language_type(ForeignTypeTerm, Language,
MaybeForeignType),
(
MaybeForeignType = ok(ForeignType),
parse_type_defn_head(ModuleName, MercuryTypeTerm, ErrorTerm,
MaybeTypeDefnHead),
(
MaybeTypeDefnHead = ok(MercuryTypeSymName, MercuryParams),
varset__coerce(VarSet, TVarSet),
(
parse_maybe_foreign_type_assertions(MaybeAssertionTerm,
Assertions)
->
% rafe: XXX I'm not sure that `no' here is right
% - we might need some more parsing...
Result = ok(type_defn(TVarSet, MercuryTypeSymName,
MercuryParams,
foreign_type( ForeignType, no, Assertions),
true))
;
MaybeAssertionTerm = yes(ErrorAssertionTerm)
->
Result = error("invalid assertion in " ++
"`:- pragma foreign_type' declaration",
ErrorAssertionTerm)
;
error("parse_pragma_type: unexpected failure of " ++
"parse_maybe_foreign_type_assertion")
)
;
MaybeTypeDefnHead = error(String, Term),
Result = error(String, Term)
)
;
MaybeForeignType = error(String, Term),
Result = error(String, Term)
)
;
Result = error("invalid foreign language in " ++
"`:- pragma foreign_type' declaration", LangTerm)
)
;
Result = error("wrong number of arguments in " ++
"`:- pragma foreign_type' declaration", ErrorTerm)
).
parse_pragma_type(ModuleName, "foreign_decl", PragmaTerms, ErrorTerm,
VarSet, Result) :-
parse_pragma_foreign_decl_pragma(ModuleName, "foreign_decl",
PragmaTerms, ErrorTerm, VarSet, Result).
parse_pragma_type(ModuleName, "c_header_code", PragmaTerms, ErrorTerm,
VarSet, Result) :-
(
PragmaTerms = [term__functor(_, _, Context) | _]
->
LangC = term__functor(term__string("C"), [], Context),
parse_pragma_foreign_decl_pragma(ModuleName, "c_header_code",
[LangC | PragmaTerms], ErrorTerm, VarSet, Result)
;
Result = error("wrong number of arguments or unexpected " ++
"variable in `:- pragma c_header_code' declaration",
ErrorTerm)
).
parse_pragma_type(ModuleName, "foreign_code", PragmaTerms, ErrorTerm,
VarSet, Result) :-
parse_pragma_foreign_code_pragma(ModuleName, "foreign_code",
PragmaTerms, ErrorTerm, VarSet, Result).
parse_pragma_type(ModuleName, "foreign_proc", PragmaTerms, ErrorTerm,
VarSet, Result) :-
parse_pragma_foreign_proc_pragma(ModuleName, "foreign_proc",
PragmaTerms, ErrorTerm, VarSet, Result).
% pragma c_code is almost as if we have written foreign_code
% or foreign_proc with the language set to "C".
% There are a few differences (error messages, some deprecated
% syntax is still supported for c_code) so we pass the original
% pragma name to parse_pragma_foreign_code_pragma.
parse_pragma_type(ModuleName, "c_code", PragmaTerms, ErrorTerm,
VarSet, Result) :-
(
% arity = 1 (same as foreign_code)
PragmaTerms = [term__functor(_, _, Context)]
->
LangC = term__functor(term__string("C"), [], Context),
parse_pragma_foreign_code_pragma(ModuleName, "c_code",
[LangC | PragmaTerms], ErrorTerm, VarSet, Result)
;
% arity > 1 (same as foreign_proc)
PragmaTerms = [term__functor(_, _, Context) | _]
->
LangC = term__functor(term__string("C"), [], Context),
parse_pragma_foreign_proc_pragma(ModuleName, "c_code",
[LangC | PragmaTerms], ErrorTerm, VarSet, Result)
;
Result = error("wrong number of arguments or unexpected " ++
"variable in `:- pragma c_code' declaration", ErrorTerm)
).
parse_pragma_type(_ModuleName, "c_import_module", PragmaTerms, ErrorTerm,
_VarSet, Result) :-
(
PragmaTerms = [ImportTerm],
sym_name_and_args(ImportTerm, Import, [])
->
Result = ok(pragma(user, foreign_import_module(c, Import)))
;
Result = error("wrong number of arguments or invalid " ++
"module name in `:- pragma c_import_module' " ++
"declaration", ErrorTerm)
).
parse_pragma_type(_ModuleName, "foreign_import_module", PragmaTerms, ErrorTerm,
_VarSet, Result) :-
(
PragmaTerms = [LangTerm, ImportTerm],
sym_name_and_args(ImportTerm, Import, [])
->
( parse_foreign_language(LangTerm, Language) ->
Result = ok(pragma(user,
foreign_import_module(Language, Import)))
;
Result = error("invalid foreign language in " ++
"`:- pragma foreign_import_module' declaration", LangTerm)
)
;
Result = error("wrong number of arguments or invalid module name " ++
"in `:- pragma foreign_import_module' declaration", ErrorTerm)
).
:- pred parse_foreign_decl_is_local(term::in, foreign_decl_is_local::out)
is semidet.
parse_foreign_decl_is_local(term__functor(Functor, [], _), IsLocal) :-
(
Functor = term__string(String)
;
Functor = term__atom(String)
),
(
String = "local",
IsLocal = foreign_decl_is_local
;
String = "exported",
IsLocal = foreign_decl_is_exported
).
:- pred parse_foreign_language(term::in, foreign_language::out) is semidet.
parse_foreign_language(term__functor(term__string(String), _, _), Lang) :-
globals__convert_foreign_language(String, Lang).
parse_foreign_language(term__functor(term__atom(String), _, _), Lang) :-
globals__convert_foreign_language(String, Lang).
:- pred parse_foreign_language_type(term::in, foreign_language::in,
maybe1(foreign_language_type)::out) is det.
parse_foreign_language_type(InputTerm, Language, Result) :-
( Language = il ->
( InputTerm = term__functor(term__string(ILTypeName), [], _) ->
parse_il_type_name(ILTypeName, InputTerm, Result)
;
Result = error("invalid backend specification term", InputTerm)
)
; Language = c ->
( InputTerm = term__functor(term__string(CTypeName), [], _) ->
Result = ok(c(c(CTypeName)))
;
Result = error("invalid backend specification term", InputTerm)
)
; Language = java ->
( InputTerm = term__functor(term__string(JavaTypeName), [], _) ->
Result = ok(java(java(JavaTypeName)))
;
Result = error("invalid backend specification term", InputTerm)
)
;
Result = error("unsupported language specified, " ++
"unable to parse backend type", InputTerm)
).
:- pred parse_il_type_name(string::in, term::in,
maybe1(foreign_language_type)::out) is det.
parse_il_type_name(String0, ErrorTerm, ForeignType) :-
(
parse_special_il_type_name(String0, ForeignTypeResult)
->
ForeignType = ok(il(ForeignTypeResult))
;
string__append("class [", String1, String0),
string__sub_string_search(String1, "]", Index)
->
string__left(String1, Index, AssemblyName),
string__split(String1, Index + 1, _, TypeNameStr),
string_to_sym_name(TypeNameStr, ".", TypeSymName),
ForeignType = ok(il(il(reference, AssemblyName, TypeSymName)))
;
string__append("valuetype [", String1, String0),
string__sub_string_search(String1, "]", Index)
->
string__left(String1, Index, AssemblyName),
string__split(String1, Index + 1, _, TypeNameStr),
string_to_sym_name(TypeNameStr, ".", TypeSymName),
ForeignType = ok(il(il(value, AssemblyName, TypeSymName)))
;
ForeignType = error("invalid foreign language type description",
ErrorTerm)
).
% Parse all the special assembler names for all the builtin types.
% See Partition I 'Built-In Types' (Section 8.2.2) for the list
% of all builtin types.
%
:- pred parse_special_il_type_name(string::in, il_foreign_type::out) is semidet.
parse_special_il_type_name("bool", il(value, "mscorlib",
qualified(unqualified("System"), "Boolean"))).
parse_special_il_type_name("char", il(value, "mscorlib",
qualified(unqualified("System"), "Char"))).
parse_special_il_type_name("object", il(reference, "mscorlib",
qualified(unqualified("System"), "Object"))).
parse_special_il_type_name("string", il(reference, "mscorlib",
qualified(unqualified("System"), "String"))).
parse_special_il_type_name("float32", il(value, "mscorlib",
qualified(unqualified("System"), "Single"))).
parse_special_il_type_name("float64", il(value, "mscorlib",
qualified(unqualified("System"), "Double"))).
parse_special_il_type_name("int8", il(value, "mscorlib",
qualified(unqualified("System"), "SByte"))).
parse_special_il_type_name("int16", il(value, "mscorlib",
qualified(unqualified("System"), "Int16"))).
parse_special_il_type_name("int32", il(value, "mscorlib",
qualified(unqualified("System"), "Int32"))).
parse_special_il_type_name("int64", il(value, "mscorlib",
qualified(unqualified("System"), "Int64"))).
parse_special_il_type_name("natural int", il(value, "mscorlib",
qualified(unqualified("System"), "IntPtr"))).
parse_special_il_type_name("native int", il(value, "mscorlib",
qualified(unqualified("System"), "IntPtr"))).
parse_special_il_type_name("natural unsigned int", il(value, "mscorlib",
qualified(unqualified("System"), "UIntPtr"))).
parse_special_il_type_name("native unsigned int", il(value, "mscorlib",
qualified(unqualified("System"), "UIntPtr"))).
parse_special_il_type_name("refany", il(value, "mscorlib",
qualified(unqualified("System"), "TypedReference"))).
parse_special_il_type_name("typedref", il(value, "mscorlib",
qualified(unqualified("System"), "TypedReference"))).
parse_special_il_type_name("unsigned int8", il(value, "mscorlib",
qualified(unqualified("System"), "Byte"))).
parse_special_il_type_name("unsigned int16", il(value, "mscorlib",
qualified(unqualified("System"), "UInt16"))).
parse_special_il_type_name("unsigned int32", il(value, "mscorlib",
qualified(unqualified("System"), "UInt32"))).
parse_special_il_type_name("unsigned int64", il(value, "mscorlib",
qualified(unqualified("System"), "UInt64"))).
:- pred parse_maybe_foreign_type_assertions(maybe(term)::in,
list(foreign_type_assertion)::out) is semidet.
parse_maybe_foreign_type_assertions(no, []).
parse_maybe_foreign_type_assertions(yes(Term), Assertions) :-
parse_foreign_type_assertions(Term, Assertions).
:- pred parse_foreign_type_assertions(term::in,
list(foreign_type_assertion)::out) is semidet.
parse_foreign_type_assertions(Term, Assertions) :-
( Term = term__functor(term__atom("[]"), [], _) ->
Assertions = []
;
Term = term__functor(term__atom("[|]"), [Head, Tail], _),
parse_foreign_type_assertion(Head, HeadAssertion),
parse_foreign_type_assertions(Tail, TailAssertions),
Assertions = [HeadAssertion | TailAssertions]
).
:- pred parse_foreign_type_assertion(term::in,
foreign_type_assertion::out) is semidet.
parse_foreign_type_assertion(Term, Assertion) :-
Term = term__functor(term__atom(Constant), [], _),
Constant = "can_pass_as_mercury_type",
Assertion = can_pass_as_mercury_type.
parse_foreign_type_assertion(Term, Assertion) :-
Term = term__functor(term__atom(Constant), [], _),
Constant = "stable",
Assertion = stable.
% This predicate parses both c_header_code and foreign_decl pragmas.
%
:- pred parse_pragma_foreign_decl_pragma(module_name::in, string::in,
list(term)::in, term::in, varset::in, maybe1(item)::out) is det.
parse_pragma_foreign_decl_pragma(_ModuleName, Pragma, PragmaTerms,
ErrorTerm, _VarSet, Result) :-
string__format("invalid `:- pragma %s' declaration ", [s(Pragma)],
InvalidDeclStr),
(
(
PragmaTerms = [LangTerm, HeaderTerm],
IsLocal = foreign_decl_is_exported
;
PragmaTerms = [LangTerm, IsLocalTerm, HeaderTerm],
parse_foreign_decl_is_local(IsLocalTerm, IsLocal)
)
->
( parse_foreign_language(LangTerm, ForeignLanguage) ->
( HeaderTerm = term__functor(term__string( HeaderCode), [], _) ->
DeclCode = foreign_decl(ForeignLanguage, IsLocal, HeaderCode),
Result = ok(pragma(user, DeclCode))
;
ErrMsg = "-- expected string for foreign declaration code",
Result = error(string__append(InvalidDeclStr, ErrMsg),
HeaderTerm)
)
;
ErrMsg = "-- invalid language parameter",
Result = error(InvalidDeclStr ++ ErrMsg, LangTerm)
)
;
string__format("invalid `:- pragma %s' declaration ",
[s(Pragma)], ErrorStr),
Result = error(ErrorStr, ErrorTerm)
).
% This predicate parses both c_code and foreign_code pragmas.
% Processing of foreign_proc (or c_code that defines a procedure)
% is handled in parse_pragma_foreign_proc_pragma below.
%
:- pred parse_pragma_foreign_code_pragma(module_name::in, string::in,
list(term)::in, term::in, varset::in, maybe1(item)::out) is det.
parse_pragma_foreign_code_pragma(_ModuleName, Pragma, PragmaTerms,
ErrorTerm, _VarSet, Result) :-
string__format("invalid `:- pragma %s' declaration ", [s(Pragma)],
InvalidDeclStr),
Check1 = (func(PTerms1, ForeignLanguage) = Res is semidet :-
PTerms1 = [Just_Code_Term],
( Just_Code_Term = term__functor(term__string(Just_Code), [], _) ->
Res = ok(pragma(user, foreign_code(ForeignLanguage, Just_Code)))
;
ErrMsg = "-- expected string for foreign code",
Res = error(string__append(InvalidDeclStr, ErrMsg), ErrorTerm)
)
),
CheckLength = (func(PTermsLen, ForeignLanguage) = Res :-
( Res0 = Check1(PTermsLen, ForeignLanguage) ->
Res = Res0
;
ErrMsg = "-- wrong number of arguments",
Res = error(string__append(InvalidDeclStr, ErrMsg), ErrorTerm)
)
),
CheckLanguage = (func(PTermsLang) = Res is semidet :-
PTermsLang = [Lang | Rest],
( parse_foreign_language(Lang, ForeignLanguage) ->
Res = CheckLength(Rest, ForeignLanguage)
;
ErrMsg = "-- invalid language parameter",
Res = error(string__append(InvalidDeclStr, ErrMsg), Lang)
)
),
( Result0 = CheckLanguage(PragmaTerms) ->
Result = Result0
;
ErrMsg0 = "-- wrong number of arguments",
Result = error(string__append(InvalidDeclStr, ErrMsg0), ErrorTerm)
).
% This predicate parses both c_code and foreign_proc pragmas.
%
:- pred parse_pragma_foreign_proc_pragma(module_name::in, string::in,
list(term)::in, term::in, varset::in, maybe1(item)::out) is det.
parse_pragma_foreign_proc_pragma(ModuleName, Pragma, PragmaTerms,
ErrorTerm, VarSet, Result) :-
string__format("invalid `:- pragma %s' declaration ", [s(Pragma)],
InvalidDeclStr),
Check6 = (func(PTerms6, ForeignLanguage) = Res is semidet :-
PTerms6 = [PredAndVarsTerm, FlagsTerm, FieldsTerm,
FirstTerm, LaterTerm, SharedTerm],
parse_pragma_foreign_proc_attributes_term(ForeignLanguage, Pragma,
FlagsTerm, MaybeFlags),
( MaybeFlags = ok(Flags) ->
(
parse_pragma_keyword("local_vars", FieldsTerm, Fields,
FieldsContext)
->
(
parse_pragma_keyword("first_code", FirstTerm, First,
FirstContext)
->
(
parse_pragma_keyword("retry_code", LaterTerm,
Later, LaterContext)
->
(
parse_pragma_keyword("shared_code", SharedTerm,
Shared, SharedContext)
->
parse_pragma_foreign_code(ModuleName, Flags,
PredAndVarsTerm,
nondet(Fields, yes(FieldsContext),
First, yes(FirstContext),
Later, yes(LaterContext),
share, Shared, yes(SharedContext)),
VarSet, Res)
;
parse_pragma_keyword("duplicated_code",
SharedTerm, Shared, SharedContext)
->
parse_pragma_foreign_code(ModuleName, Flags,
PredAndVarsTerm,
nondet(Fields, yes(FieldsContext),
First, yes(FirstContext),
Later, yes(LaterContext),
duplicate, Shared, yes(SharedContext)),
VarSet, Res)
;
parse_pragma_keyword("common_code", SharedTerm,
Shared, SharedContext)
->
parse_pragma_foreign_code(ModuleName, Flags,
PredAndVarsTerm,
nondet(Fields, yes(FieldsContext),
First, yes(FirstContext),
Later, yes(LaterContext),
automatic, Shared, yes(SharedContext)),
VarSet, Res)
;
ErrMsg = "-- invalid seventh argument, "
++ "expecting `common_code(<code>)'",
Res = error(string__append(InvalidDeclStr,
ErrMsg), SharedTerm)
)
;
ErrMsg = "-- invalid sixth argument, "
++ "expecting `retry_code(<code>)'",
Res = error(string__append(InvalidDeclStr, ErrMsg),
LaterTerm)
)
;
ErrMsg = "-- invalid fifth argument, "
++ "expecting `first_code(<code>)'",
Res = error(string__append(InvalidDeclStr, ErrMsg),
FirstTerm)
)
;
ErrMsg = "-- invalid fourth argument, "
++ "expecting `local_vars(<fields>)'",
Res = error(string__append(InvalidDeclStr, ErrMsg),
FieldsTerm)
)
;
MaybeFlags = error(FlagsErrorStr, ErrorTerm),
ErrMsg = "-- invalid third argument: " ++ FlagsErrorStr,
Res = error(string__append(InvalidDeclStr, ErrMsg), ErrorTerm)
)
),
Check5 = (func(PTerms5, ForeignLanguage) = Res is semidet :-
PTerms5 = [PredAndVarsTerm, FlagsTerm, FieldsTerm,
FirstTerm, LaterTerm],
term__context_init(DummyContext),
SharedTerm = term__functor(term__atom("common_code"),
[term__functor(term__string(""), [], DummyContext)],
DummyContext),
Res = Check6([PredAndVarsTerm, FlagsTerm, FieldsTerm, FirstTerm,
LaterTerm, SharedTerm], ForeignLanguage)
),
Check3 = (func(PTerms3, ForeignLanguage) = Res is semidet :-
PTerms3 = [PredAndVarsTerm, FlagsTerm, CodeTerm],
( CodeTerm = term__functor(term__string(Code), [], Context) ->
parse_pragma_foreign_proc_attributes_term(ForeignLanguage,
Pragma, FlagsTerm, MaybeFlags),
(
MaybeFlags = ok(Flags),
parse_pragma_foreign_code(ModuleName, Flags,
PredAndVarsTerm, ordinary(Code, yes(Context)),
VarSet, Res)
;
MaybeFlags = error(FlagsErr, FlagsErrTerm),
parse_pragma_foreign_proc_attributes_term(
ForeignLanguage, Pragma, PredAndVarsTerm,
MaybeFlags2),
(
MaybeFlags2 = ok(Flags),
% XXX we should issue a warning; this syntax is
% deprecated We will continue to accept this if
% c_code is used, but not with foreign_code
( Pragma = "c_code" ->
parse_pragma_foreign_code(ModuleName,
Flags, FlagsTerm, ordinary(Code, yes(Context)),
VarSet, Res)
;
ErrMsg = "-- invalid second argument, "
++ "expecting predicate "
++ "or function mode",
Res = error(string__append(InvalidDeclStr, ErrMsg),
PredAndVarsTerm)
)
;
MaybeFlags2 = error(_, _),
ErrMsg = "-- invalid third argument: ",
Res = error(InvalidDeclStr ++ ErrMsg ++ FlagsErr,
FlagsErrTerm)
)
)
;
ErrMsg = "-- invalid fourth argument, "
++ "expecting string containing foreign code",
Res = error(string__append(InvalidDeclStr, ErrMsg), CodeTerm)
)
),
Check2 = (func(PTerms2, ForeignLanguage) = Res is semidet :-
PTerms2 = [PredAndVarsTerm, CodeTerm],
% XXX we should issue a warning; this syntax is deprecated.
% We will continue to accept this if c_code is used, but
% not with foreign_code
( Pragma = "c_code" ->
% may_call_mercury is a conservative default.
Attributes0 = default_attributes(ForeignLanguage),
set_legacy_purity_behaviour(yes, Attributes0, Attributes),
( CodeTerm = term__functor(term__string(Code), [], Context) ->
parse_pragma_foreign_code(ModuleName, Attributes,
PredAndVarsTerm, ordinary(Code, yes(Context)), VarSet, Res)
;
ErrMsg = "-- expecting either "
++ "`may_call_mercury' or "
++ "`will_not_call_mercury', "
++ "and a string for foreign code",
Res = error(string__append(InvalidDeclStr, ErrMsg), CodeTerm)
)
;
ErrMsg = "-- doesn't say whether it can call mercury",
Res = error(string__append(InvalidDeclStr, ErrMsg), ErrorTerm)
)
),
CheckLength = (func(PTermsLen, ForeignLanguage) = Res :-
( Res0 = Check2(PTermsLen, ForeignLanguage) ->
Res = Res0
; Res0 = Check3(PTermsLen, ForeignLanguage) ->
Res = Res0
; Res0 = Check5(PTermsLen, ForeignLanguage) ->
Res = Res0
; Res0 = Check6(PTermsLen, ForeignLanguage) ->
Res = Res0
;
ErrMsg = "-- wrong number of arguments",
Res = error(string__append(InvalidDeclStr, ErrMsg), ErrorTerm)
)
),
CheckLanguage = (func(PTermsLang) = Res is semidet :-
PTermsLang = [Lang | Rest],
( parse_foreign_language(Lang, ForeignLanguage) ->
Res = CheckLength(Rest, ForeignLanguage)
;
ErrMsg = "-- invalid language parameter",
Res = error(string__append(InvalidDeclStr, ErrMsg), Lang)
)
),
( Result0 = CheckLanguage(PragmaTerms) ->
Result = Result0
;
ErrMsg0 = "-- wrong number of arguments",
Result = error(string__append(InvalidDeclStr, ErrMsg0), ErrorTerm)
).
parse_pragma_type(ModuleName, "import", PragmaTerms, ErrorTerm, _VarSet,
Result) :-
% XXX we assume all imports are C
ForeignLanguage = c,
(
(
PragmaTerms = [PredAndModesTerm, FlagsTerm, FunctionTerm],
parse_pragma_foreign_proc_attributes_term(ForeignLanguage,
"import", FlagsTerm, MaybeFlags),
(
MaybeFlags = error(FlagError, ErrorTerm),
FlagsResult = error("invalid second argument in "
++ "`:- pragma import/3' declaration : "
++ FlagError, ErrorTerm)
;
MaybeFlags = ok(Flags),
FlagsResult = ok(Flags)
)
;
PragmaTerms = [PredAndModesTerm, FunctionTerm],
Flags0 = default_attributes(ForeignLanguage),
% pragma import uses legacy purity behaviour
set_legacy_purity_behaviour(yes, Flags0, Flags),
FlagsResult = ok(Flags)
)
->
( FunctionTerm = term__functor(term__string(Function), [], _) ->
parse_pred_or_func_and_arg_modes(yes(ModuleName),
PredAndModesTerm, ErrorTerm, "`:- pragma import' declaration",
PredAndArgModesResult),
(
PredAndArgModesResult = ok(PredName - PredOrFunc, ArgModes),
(
FlagsResult = ok(Attributes),
Result = ok(pragma(user, import(PredName, PredOrFunc,
ArgModes, Attributes, Function)))
;
FlagsResult = error(Msg, Term),
Result = error(Msg, Term)
)
;
PredAndArgModesResult = error(Msg, Term),
Result = error(Msg, Term)
)
;
Result = error("expected pragma import(PredName(ModeList), "
++ "Function)", PredAndModesTerm)
)
;
Result = error("wrong number of arguments in " ++
"`:- pragma import' declaration", ErrorTerm)
).
parse_pragma_type(_ModuleName, "export", PragmaTerms, ErrorTerm, _VarSet,
Result) :-
% XXX we implicitly assume exports are only for C
( PragmaTerms = [PredAndModesTerm, FunctionTerm] ->
( FunctionTerm = term__functor(term__string(Function), [], _) ->
parse_pred_or_func_and_arg_modes(no, PredAndModesTerm,
ErrorTerm, "`:- pragma export' declaration",
PredAndModesResult),
(
PredAndModesResult = ok(PredName - PredOrFunc, Modes),
Result = ok(pragma(user, export(PredName, PredOrFunc, Modes,
Function)))
;
PredAndModesResult = error(Msg, Term),
Result = error(Msg, Term)
)
;
Result = error(
"expected pragma export(PredName(ModeList), Function)",
PredAndModesTerm)
)
;
Result = error("wrong number of arguments in " ++
"`:- pragma export' declaration", ErrorTerm)
).
parse_pragma_type(ModuleName, "inline", PragmaTerms, ErrorTerm, _VarSet,
Result) :-
parse_simple_pragma(ModuleName, "inline",
(pred(Name::in, Arity::in, Pragma::out) is det :-
Pragma = inline(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "no_inline", PragmaTerms, ErrorTerm, _VarSet,
Result) :-
parse_simple_pragma(ModuleName, "no_inline",
(pred(Name::in, Arity::in, Pragma::out) is det :-
Pragma = no_inline(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "memo", PragmaTerms, ErrorTerm, _VarSet,
Result) :-
% The eval_memo(all_strict) could be converted to eval_memo(specified(_))
% if the pragma specifies the ways to table the arguments.
parse_tabling_pragma(ModuleName, "memo",
eval_memo(all_strict), PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "fast_loose_memo", PragmaTerms, ErrorTerm,
_VarSet, Result) :-
parse_tabling_pragma(ModuleName, "fast_loose_memo",
eval_memo(all_fast_loose), PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "loop_check", PragmaTerms, ErrorTerm, _VarSet,
Result) :-
parse_tabling_pragma(ModuleName, "loop_check", eval_loop_check,
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "minimal_model", PragmaTerms, ErrorTerm, _VarSet,
Result) :-
% We don't yet know whether we will use the stack_copy or the
% own_stacks technique for computing minimal models. The decision
% depends on the grade, and is made in make_hlds.m; the stack_copy here
% is just a placeholder.
parse_tabling_pragma(ModuleName, "minimal_model",
eval_minimal(stack_copy), PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "obsolete", PragmaTerms, ErrorTerm, _VarSet,
Result) :-
parse_simple_pragma(ModuleName, "obsolete",
(pred(Name::in, Arity::in, Pragma::out) is det :-
Pragma = obsolete(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
% pragma unused_args should never appear in user programs,
% only in .opt files.
parse_pragma_type(ModuleName, "unused_args", PragmaTerms, ErrorTerm, _VarSet,
Result) :-
(
PragmaTerms = [
PredOrFuncTerm,
PredNameTerm,
term__functor(term__integer(Arity), [], _),
term__functor(term__integer(ModeNum), [], _),
UnusedArgsTerm
],
(
PredOrFuncTerm = term__functor(term__atom("predicate"), [], _),
PredOrFunc = predicate
;
PredOrFuncTerm = term__functor(term__atom("function"), [], _),
PredOrFunc = function
),
parse_implicitly_qualified_term(ModuleName, PredNameTerm, ErrorTerm,
"`:- pragma unused_args' declaration", PredNameResult),
PredNameResult = ok(PredName, []),
convert_int_list(UnusedArgsTerm, UnusedArgsResult),
UnusedArgsResult = ok(UnusedArgs)
->
Result = ok(pragma(user, unused_args(PredOrFunc, PredName, Arity, ModeNum,
UnusedArgs)))
;
Result = error("error in `:- pragma unused_args'", ErrorTerm)
).
parse_pragma_type(ModuleName, "type_spec", PragmaTerms, ErrorTerm, VarSet0,
Result) :-
(
(
PragmaTerms = [PredAndModesTerm, TypeSubnTerm],
MaybeName = no
;
PragmaTerms = [PredAndModesTerm, TypeSubnTerm, SpecNameTerm],
SpecNameTerm = term__functor(_, _, SpecContext),
% This form of the pragma should not appear in source files.
term__context_file(SpecContext, FileName),
\+ string__remove_suffix(FileName, ".m", _),
parse_implicitly_qualified_term(ModuleName,
SpecNameTerm, ErrorTerm, "", NameResult),
NameResult = ok(SpecName, []),
MaybeName = yes(SpecName)
)
->
parse_arity_or_modes(ModuleName, PredAndModesTerm, ErrorTerm,
"`:- pragma type_spec' declaration",
ArityOrModesResult),
(
ArityOrModesResult = ok(arity_or_modes(PredName, Arity,
MaybePredOrFunc, MaybeModes)),
conjunction_to_list(TypeSubnTerm, TypeSubnList),
% The varset is actually a tvarset.
varset__coerce(VarSet0, TVarSet),
( list__map(convert_type_spec_pair, TypeSubnList, TypeSubn) ->
(
MaybeName = yes(SpecializedName0),
SpecializedName = SpecializedName0
;
MaybeName = no,
unqualify_name(PredName, UnqualName),
make_pred_name(ModuleName, "TypeSpecOf", MaybePredOrFunc,
UnqualName, type_subst(TVarSet, TypeSubn),
SpecializedName)
),
TypeSpecPragma = type_spec(PredName, SpecializedName, Arity,
MaybePredOrFunc, MaybeModes, TypeSubn, TVarSet,
set__init),
Result = ok(pragma(user, TypeSpecPragma))
;
Result = error("expected type substitution in " ++
"`:- pragma type_spec' declaration", TypeSubnTerm)
)
;
ArityOrModesResult = error(Msg, Term),
Result = error(Msg, Term)
)
;
Result = error("wrong number of arguments in " ++
"`:- pragma type_spec' declaration", ErrorTerm)
).
parse_pragma_type(ModuleName, "reserve_tag", PragmaTerms, ErrorTerm, _VarSet,
Result) :-
parse_simple_type_pragma(ModuleName, "reserve_tag",
(pred(Name::in, Arity::in, Pragma::out) is det :-
Pragma = reserve_tag(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "fact_table", PragmaTerms, ErrorTerm, _VarSet,
Result) :-
( PragmaTerms = [PredAndArityTerm, FileNameTerm] ->
parse_pred_name_and_arity(ModuleName, "fact_table",
PredAndArityTerm, ErrorTerm, NameArityResult),
(
NameArityResult = ok(PredName, Arity),
( FileNameTerm = term__functor(term__string(FileName), [], _) ->
Result = ok(pragma(user,
fact_table(PredName, Arity, FileName)))
;
Result = error("expected string for fact table filename",
FileNameTerm)
)
;
NameArityResult = error(ErrorMsg, _),
Result = error(ErrorMsg, PredAndArityTerm)
)
;
Result = error("wrong number of arguments in " ++
"`:- pragma fact_table' declaration", ErrorTerm)
).
parse_pragma_type(ModuleName, "aditi", PragmaTerms, ErrorTerm, _, Result) :-
parse_simple_pragma(ModuleName, "aditi",
(pred(Name::in, Arity::in, Pragma::out) is det :-
Pragma = aditi(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "base_relation", PragmaTerms, ErrorTerm, _,
Result) :-
parse_simple_pragma(ModuleName, "base_relation",
(pred(Name::in, Arity::in, Pragma::out) is det :-
Pragma = base_relation(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "aditi_index", PragmaTerms, ErrorTerm, _,
Result) :-
( PragmaTerms = [PredNameArityTerm, IndexTypeTerm, AttributesTerm] ->
parse_pred_name_and_arity(ModuleName, "aditi_index",
PredNameArityTerm, ErrorTerm, NameArityResult),
(
NameArityResult = ok(PredName, PredArity),
(
IndexTypeTerm = term__functor(term__atom(IndexTypeStr), [], _),
(
IndexTypeStr = "unique_B_tree",
IndexType = unique_B_tree
;
IndexTypeStr = "non_unique_B_tree",
IndexType = non_unique_B_tree
)
->
convert_int_list(AttributesTerm, AttributeResult),
(
AttributeResult = ok(Attributes),
Result = ok(pragma(user, aditi_index(PredName, PredArity,
index_spec(IndexType, Attributes))))
;
AttributeResult = error(_, AttrErrorTerm),
Result = error("expected attribute list for " ++
"`:- pragma aditi_index' declaration", AttrErrorTerm)
)
;
Result = error("expected index type for " ++
"`:- pragma aditi_index' declaration", IndexTypeTerm)
)
;
NameArityResult = error(NameErrorMsg, NameErrorTerm),
Result = error(NameErrorMsg, NameErrorTerm)
)
;
Result = error("wrong number of arguments in " ++
"`:- pragma aditi_index' declaration", ErrorTerm)
).
parse_pragma_type(ModuleName, "naive", PragmaTerms, ErrorTerm, _, Result) :-
parse_simple_pragma(ModuleName, "naive",
(pred(Name::in, Arity::in, Pragma::out) is det :-
Pragma = naive(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "psn", PragmaTerms, ErrorTerm, _, Result) :-
parse_simple_pragma(ModuleName, "psn",
(pred(Name::in, Arity::in, Pragma::out) is det :-
Pragma = psn(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "aditi_memo", PragmaTerms, ErrorTerm, _,
Result) :-
parse_simple_pragma(ModuleName, "aditi_memo",
(pred(Name::in, Arity::in, Pragma::out) is det :-
Pragma = aditi_memo(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "aditi_no_memo", PragmaTerms, ErrorTerm, _,
Result) :-
parse_simple_pragma(ModuleName, "aditi_no_memo",
(pred(Name::in, Arity::in, Pragma::out) is det :-
Pragma = aditi_no_memo(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "supp_magic", PragmaTerms, ErrorTerm, _,
Result) :-
parse_simple_pragma(ModuleName, "supp_magic",
(pred(Name::in, Arity::in, Pragma::out) is det :-
Pragma = supp_magic(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "context", PragmaTerms, ErrorTerm, _, Result) :-
parse_simple_pragma(ModuleName, "context",
(pred(Name::in, Arity::in, Pragma::out) is det :-
Pragma = context(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "owner", PragmaTerms, ErrorTerm, _, Result) :-
( PragmaTerms = [SymNameAndArityTerm, OwnerTerm] ->
( OwnerTerm = term__functor(term__atom(Owner), [], _) ->
parse_simple_pragma(ModuleName, "owner",
(pred(Name::in, Arity::in, Pragma::out) is det :-
Pragma = owner(Name, Arity, Owner)),
[SymNameAndArityTerm], ErrorTerm, Result)
;
ErrorMsg = "expected owner name for `:- pragma owner' declaration",
Result = error(ErrorMsg, OwnerTerm)
)
;
ErrorMsg = "wrong number of arguments in " ++
"`:- pragma owner' declaration",
Result = error(ErrorMsg, ErrorTerm)
).
parse_pragma_type(ModuleName, "promise_pure", PragmaTerms, ErrorTerm, _VarSet,
Result) :-
parse_simple_pragma(ModuleName, "promise_pure",
(pred(Name::in, Arity::in, Pragma::out) is det :-
Pragma = promise_pure(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "promise_semipure", PragmaTerms, ErrorTerm,
_VarSet, Result) :-
parse_simple_pragma(ModuleName, "promise_semipure",
(pred(Name::in, Arity::in, Pragma::out) is det :-
Pragma = promise_semipure(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "termination_info", PragmaTerms, ErrorTerm,
_VarSet, Result) :-
(
PragmaTerms = [
PredAndModesTerm0,
ArgSizeTerm,
TerminationTerm
],
parse_pred_or_func_and_arg_modes(yes(ModuleName), PredAndModesTerm0,
ErrorTerm, "`:- pragma termination_info' declaration",
NameAndModesResult),
NameAndModesResult = ok(PredName - PredOrFunc, ModeList),
(
ArgSizeTerm = term__functor(term__atom("not_set"), [], _),
MaybeArgSizeInfo = no
;
ArgSizeTerm = term__functor(term__atom("infinite"), [], _),
MaybeArgSizeInfo = yes(infinite(unit))
;
ArgSizeTerm = term__functor(term__atom("finite"),
[IntTerm, UsedArgsTerm], _),
IntTerm = term__functor(term__integer(Int), [], _),
convert_bool_list(UsedArgsTerm, UsedArgs),
MaybeArgSizeInfo = yes(finite(Int, UsedArgs))
),
(
TerminationTerm = term__functor(term__atom("not_set"), [], _),
MaybeTerminationInfo = no
;
TerminationTerm = term__functor(term__atom("can_loop"), [], _),
MaybeTerminationInfo = yes(can_loop(unit))
;
TerminationTerm = term__functor(term__atom("cannot_loop"), [], _),
MaybeTerminationInfo = yes(cannot_loop(unit))
),
Result0 = ok(pragma(user, termination_info(PredOrFunc, PredName,
ModeList, MaybeArgSizeInfo, MaybeTerminationInfo)))
->
Result = Result0
;
Result = error("syntax error in `:- pragma termination_info' " ++
"declaration", ErrorTerm)
).
parse_pragma_type(ModuleName, "termination2_info", PragmaTerms, ErrorTerm,
_VarSet, Result) :-
(
PragmaTerms = [
PredAndModesTerm0,
SuccessArgSizeTerm,
FailureArgSizeTerm,
TerminationTerm
],
parse_pred_or_func_and_arg_modes(yes(ModuleName), PredAndModesTerm0,
ErrorTerm, "`:- pragma termination2_info' declaration",
NameAndModesResult),
NameAndModesResult = ok(PredName - PredOrFunc, ModeList),
parse_arg_size_constraints(SuccessArgSizeTerm, SuccessArgSizeResult),
SuccessArgSizeResult = ok(SuccessArgSizeInfo),
parse_arg_size_constraints(FailureArgSizeTerm, FailureArgSizeResult),
FailureArgSizeResult = ok(FailureArgSizeInfo),
(
TerminationTerm = term__functor(term__atom("not_set"), [], _),
MaybeTerminationInfo = no
;
TerminationTerm = term__functor(term__atom("can_loop"), [], _),
MaybeTerminationInfo = yes(can_loop(unit))
;
TerminationTerm = term__functor(term__atom("cannot_loop"), [], _),
MaybeTerminationInfo = yes(cannot_loop(unit))
),
Result0 = ok(pragma(user, termination2_info(PredOrFunc, PredName,
ModeList, SuccessArgSizeInfo, FailureArgSizeInfo,
MaybeTerminationInfo)))
->
Result = Result0
;
Result = error(
"syntax error in `:- pragma termination2_info' declaration",
ErrorTerm)
).
parse_pragma_type(ModuleName, "terminates", PragmaTerms, ErrorTerm, _VarSet,
Result) :-
parse_simple_pragma(ModuleName, "terminates",
(pred(Name::in, Arity::in, Pragma::out) is det :-
Pragma = terminates(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "does_not_terminate", PragmaTerms, ErrorTerm,
_VarSet, Result) :-
parse_simple_pragma(ModuleName, "does_not_terminate",
(pred(Name::in, Arity::in, Pragma::out) is det :-
Pragma = does_not_terminate(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "check_termination", PragmaTerms, ErrorTerm,
_VarSet, Result) :-
parse_simple_pragma(ModuleName, "check_termination",
(pred(Name::in, Arity::in, Pragma::out) is det :-
Pragma = check_termination(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
parse_pragma_type(ModuleName, "exceptions", PragmaTerms, ErrorTerm, _VarSet,
Result) :-
(
PragmaTerms = [
PredOrFuncTerm,
PredNameTerm,
term.functor(term.integer(Arity), [], _),
term.functor(term.integer(ModeNum), [], _),
ThrowStatusTerm
],
(
PredOrFuncTerm = term.functor(term.atom("predicate"), [], _),
PredOrFunc = predicate
;
PredOrFuncTerm = term.functor(term.atom("function"), [], _),
PredOrFunc = function
),
parse_implicitly_qualified_term(ModuleName, PredNameTerm,
ErrorTerm, "`:- pragma exceptions' declaration",
PredNameResult),
PredNameResult = ok(PredName, []),
(
ThrowStatusTerm = term.functor(term.atom("will_not_throw"), [], _),
ThrowStatus = will_not_throw
;
ThrowStatusTerm = term.functor(term.atom("may_throw"),
[ExceptionTypeTerm], _),
(
ExceptionTypeTerm = term.functor(
term.atom("user_exception"), [], _),
ExceptionType = user_exception
;
ExceptionTypeTerm = term.functor(
term.atom("type_exception"), [], _),
ExceptionType = type_exception
),
ThrowStatus = may_throw(ExceptionType)
;
ThrowStatusTerm = term.functor( term.atom("conditional"), [], _),
ThrowStatus = conditional
)
->
Result = ok(pragma(user, exceptions(PredOrFunc, PredName,
Arity, ModeNum, ThrowStatus)))
;
Result = error("error in `:- pragma exceptions'", ErrorTerm)
).
parse_pragma_type(ModuleName, "mode_check_clauses", PragmaTerms, ErrorTerm,
_VarSet, Result) :-
parse_simple_pragma(ModuleName, "mode_check_clauses",
(pred(Name::in, Arity::in, Pragma::out) is det :-
Pragma = mode_check_clauses(Name, Arity)),
PragmaTerms, ErrorTerm, Result).
% This parses a pragma that refers to a predicate or function.
%
:- pred parse_simple_pragma(module_name::in, string::in,
pred(sym_name, int, pragma_type)::(pred(in, in, out) is det),
list(term)::in, term::in, maybe1(item)::out) is det.
parse_simple_pragma(ModuleName, PragmaType, MakePragma, PragmaTerms, ErrorTerm,
Result) :-
parse_simple_pragma_base(ModuleName, PragmaType,
"predicate or function", MakePragma, PragmaTerms, ErrorTerm, Result).
% This parses a pragma that refers to type.
%
:- pred parse_simple_type_pragma(module_name::in, string::in,
pred(sym_name, int, pragma_type)::(pred(in, in, out) is det),
list(term)::in, term::in, maybe1(item)::out) is det.
parse_simple_type_pragma(ModuleName, PragmaType, MakePragma,
PragmaTerms, ErrorTerm, Result) :-
parse_simple_pragma_base(ModuleName, PragmaType, "type", MakePragma,
PragmaTerms, ErrorTerm, Result).
% This parses a pragma that refers to symbol name / arity.
%
:- pred parse_simple_pragma_base(module_name::in, string::in, string::in,
pred(sym_name, int, pragma_type)::(pred(in, in, out) is det),
list(term)::in, term::in, maybe1(item)::out) is det.
parse_simple_pragma_base(ModuleName, PragmaType, NameKind, MakePragma,
PragmaTerms, ErrorTerm, Result) :-
( PragmaTerms = [PredAndArityTerm] ->
parse_simple_name_and_arity(ModuleName, PragmaType, NameKind,
PredAndArityTerm, ErrorTerm, NameArityResult),
(
NameArityResult = ok(PredName, Arity),
call(MakePragma, PredName, Arity, Pragma),
Result = ok(pragma(user, Pragma))
;
NameArityResult = error(ErrorMsg, _),
Result = error(ErrorMsg, PredAndArityTerm)
)
;
string__append_list(["wrong number of arguments in `:- pragma ",
PragmaType, "' declaration"], ErrorMsg),
Result = error(ErrorMsg, ErrorTerm)
).
:- pred parse_pred_name_and_arity(module_name::in, string::in, term::in,
term::in, maybe2(sym_name, arity)::out) is det.
parse_pred_name_and_arity(ModuleName, PragmaType, NameAndArityTerm, ErrorTerm,
Result) :-
parse_simple_name_and_arity(ModuleName, PragmaType,
"predicate or function", NameAndArityTerm, ErrorTerm, Result).
:- pred parse_simple_name_and_arity(module_name::in, string::in, string::in,
term::in, term::in, maybe2(sym_name, arity)::out) is det.
parse_simple_name_and_arity(ModuleName, PragmaType, NameKind,
NameAndArityTerm, ErrorTerm, Result) :-
( parse_name_and_arity(ModuleName, NameAndArityTerm, Name, Arity) ->
Result = ok(Name, Arity)
;
string__append_list(["expected ", NameKind, " name/arity for `pragma ",
PragmaType, "' declaration"], ErrorMsg),
Result = error(ErrorMsg, ErrorTerm)
).
%-----------------------------------------------------------------------------%
:- pred parse_pragma_keyword(string::in, term::in, string::out,
term__context::out) is semidet.
parse_pragma_keyword(ExpectedKeyword, Term, StringArg, StartContext) :-
Term = term__functor(term__atom(ExpectedKeyword), [Arg], _),
Arg = term__functor(term__string(StringArg), [], StartContext).
%-----------------------------------------------------------------------------%
:- type collected_pragma_foreign_proc_attribute
---> may_call_mercury(may_call_mercury)
; thread_safe(thread_safe)
; tabled_for_io(tabled_for_io)
; purity(purity)
; aliasing
; max_stack_size(int)
; backend(backend)
; terminates(terminates)
; will_not_throw_exception
; ordinary_despite_detism.
:- pred parse_pragma_foreign_proc_attributes_term(foreign_language::in,
string::in, term::in, maybe1(pragma_foreign_proc_attributes)::out)
is det.
parse_pragma_foreign_proc_attributes_term(ForeignLanguage, Pragma, Term,
MaybeAttributes) :-
Attributes0 = default_attributes(ForeignLanguage),
( ( Pragma = "c_code" ; Pragma = "import" ) ->
set_legacy_purity_behaviour(yes, Attributes0, Attributes1),
set_purity(pure, Attributes1, Attributes2)
;
Attributes2 = Attributes0
),
ConflictingAttributes = [
may_call_mercury(will_not_call_mercury) -
may_call_mercury(may_call_mercury),
thread_safe(thread_safe) - thread_safe(not_thread_safe),
tabled_for_io(tabled_for_io) -
tabled_for_io(tabled_for_io_unitize),
tabled_for_io(tabled_for_io) -
tabled_for_io(tabled_for_descendant_io),
tabled_for_io(tabled_for_io) -
tabled_for_io(not_tabled_for_io),
tabled_for_io(tabled_for_io_unitize) -
tabled_for_io(tabled_for_descendant_io),
tabled_for_io(tabled_for_io_unitize) -
tabled_for_io(not_tabled_for_io),
tabled_for_io(tabled_for_descendant_io) -
tabled_for_io(not_tabled_for_io),
purity(pure) - purity(impure),
purity(pure) - purity(semipure),
purity(semipure) - purity(impure),
terminates(terminates) - terminates(does_not_terminate),
terminates(depends_on_mercury_calls) - terminates(terminates),
terminates(depends_on_mercury_calls) - terminates(does_not_terminate)
],
(
parse_pragma_foreign_proc_attributes_term0(Term, AttrList)
->
(
list__member(Conflict1 - Conflict2, ConflictingAttributes),
list__member(Conflict1, AttrList),
list__member(Conflict2, AttrList)
->
MaybeAttributes = error("conflicting attributes " ++
"in attribute list", Term)
;
list__foldl(process_attribute, AttrList, Attributes2, Attributes),
MaybeAttributes = check_required_attributes(ForeignLanguage,
Attributes, Term)
)
;
ErrMsg = "expecting a foreign proc attribute or list of attributes",
MaybeAttributes = error(ErrMsg, Term)
).
% Update the pragma_foreign_proc_attributes according to the given
% collected_pragma_foreign_proc_attribute.
%
:- pred process_attribute(collected_pragma_foreign_proc_attribute::in,
pragma_foreign_proc_attributes::in,
pragma_foreign_proc_attributes::out) is det.
process_attribute(may_call_mercury(MayCallMercury), !Attrs) :-
set_may_call_mercury(MayCallMercury, !Attrs).
process_attribute(thread_safe(ThreadSafe), !Attrs) :-
set_thread_safe(ThreadSafe, !Attrs).
process_attribute(tabled_for_io(TabledForIO), !Attrs) :-
set_tabled_for_io(TabledForIO, !Attrs).
process_attribute(purity(Pure), !Attrs) :-
set_purity(Pure, !Attrs).
process_attribute(terminates(Terminates), !Attrs) :-
set_terminates(Terminates, !Attrs).
process_attribute(will_not_throw_exception, !Attrs) :-
set_may_throw_exception(will_not_throw_exception, !Attrs).
process_attribute(max_stack_size(Size), !Attrs) :-
add_extra_attribute(max_stack_size(Size), !Attrs).
process_attribute(backend(Backend), !Attrs) :-
add_extra_attribute(backend(Backend), !Attrs).
process_attribute(ordinary_despite_detism, !Attrs) :-
set_ordinary_despite_detism(yes, !Attrs).
% Aliasing is currently ignored in the main branch compiler.
%
process_attribute(aliasing, Attrs, Attrs).
% Check whether all the required attributes have been set for
% a particular language
%
:- func check_required_attributes(foreign_language,
pragma_foreign_proc_attributes, term)
= maybe1(pragma_foreign_proc_attributes).
check_required_attributes(c, Attrs, _Term) = ok(Attrs).
check_required_attributes(managed_cplusplus, Attrs, _Term) = ok(Attrs).
check_required_attributes(csharp, Attrs, _Term) = ok(Attrs).
check_required_attributes(il, Attrs, Term) = Res :-
MaxStackAttrs = list__filter_map(
(func(X) = X is semidet :- X = max_stack_size(_)),
Attrs ^ extra_attributes),
(
MaxStackAttrs = [],
Res = error("expecting max_stack_size attribute for IL code", Term)
;
MaxStackAttrs = [_ | _],
Res = ok(Attrs)
).
check_required_attributes(java, Attrs, _Term) = ok(Attrs).
:- pred parse_pragma_foreign_proc_attributes_term0(term::in,
list(collected_pragma_foreign_proc_attribute)::out) is semidet.
parse_pragma_foreign_proc_attributes_term0(Term, Flags) :-
( parse_single_pragma_foreign_proc_attribute(Term, Flag) ->
Flags = [Flag]
;
(
Term = term__functor(term__atom("[]"), [], _),
Flags = []
;
Term = term__functor(term__atom("[|]"), [Head, Tail], _),
parse_single_pragma_foreign_proc_attribute(Head, HeadFlag),
parse_pragma_foreign_proc_attributes_term0(Tail, TailFlags),
Flags = [HeadFlag | TailFlags]
)
).
:- pred parse_single_pragma_foreign_proc_attribute(term::in,
collected_pragma_foreign_proc_attribute::out) is semidet.
parse_single_pragma_foreign_proc_attribute(Term, Flag) :-
( parse_may_call_mercury(Term, MayCallMercury) ->
Flag = may_call_mercury(MayCallMercury)
; parse_threadsafe(Term, ThreadSafe) ->
Flag = thread_safe(ThreadSafe)
; parse_tabled_for_io(Term, TabledForIo) ->
Flag = tabled_for_io(TabledForIo)
; parse_aliasing(Term) ->
Flag = aliasing
; parse_max_stack_size(Term, Size) ->
Flag = max_stack_size(Size)
; parse_backend(Term, Backend) ->
Flag = backend(Backend)
; parse_purity_promise(Term, Purity) ->
Flag = purity(Purity)
; parse_terminates(Term, Terminates) ->
Flag = terminates(Terminates)
; parse_no_exception_promise(Term) ->
Flag = will_not_throw_exception
; parse_ordinary_despite_detism(Term) ->
Flag = ordinary_despite_detism
;
fail
).
:- pred parse_may_call_mercury(term::in, may_call_mercury::out) is semidet.
parse_may_call_mercury(term__functor(term__atom("recursive"), [], _),
may_call_mercury).
parse_may_call_mercury(term__functor(term__atom("non_recursive"), [], _),
will_not_call_mercury).
parse_may_call_mercury(term__functor(term__atom("may_call_mercury"), [], _),
may_call_mercury).
parse_may_call_mercury(term__functor(term__atom("will_not_call_mercury"), [],
_), will_not_call_mercury).
:- pred parse_threadsafe(term::in, thread_safe::out) is semidet.
parse_threadsafe(term__functor(term__atom("thread_safe"), [], _),
thread_safe).
parse_threadsafe(term__functor(term__atom("not_thread_safe"), [], _),
not_thread_safe).
parse_threadsafe(term__functor(term__atom("maybe_thread_safe"), [], _),
maybe_thread_safe).
:- pred parse_tabled_for_io(term::in, tabled_for_io::out) is semidet.
parse_tabled_for_io(term__functor(term__atom(Str), [], _), TabledForIo) :-
(
Str = "tabled_for_io",
TabledForIo = tabled_for_io
;
Str = "tabled_for_io_unitize",
TabledForIo = tabled_for_io_unitize
;
Str = "tabled_for_descendant_io",
TabledForIo = tabled_for_descendant_io
;
Str = "not_tabled_for_io",
TabledForIo = not_tabled_for_io
).
% XXX For the moment we just ignore the following attributes.
% These attributes are used for aliasing on the reuse branch,
% and ignoring them allows the main branch compiler to compile
% the reuse branch.
%
:- pred parse_aliasing(term::in) is semidet.
parse_aliasing(term__functor(term__atom("no_aliasing"), [], _)).
parse_aliasing(term__functor(term__atom("unknown_aliasing"), [], _)).
parse_aliasing(term__functor(term__atom("alias"), [_Types, _Alias], _)).
:- pred parse_max_stack_size(term::in, int::out) is semidet.
parse_max_stack_size(term__functor(
term__atom("max_stack_size"), [SizeTerm], _), Size) :-
SizeTerm = term__functor(term__integer(Size), [], _).
:- pred parse_backend(term::in, backend::out) is semidet.
parse_backend(term__functor(term__atom(Functor), [], _), Backend) :-
(
Functor = "high_level_backend",
Backend = high_level_backend
;
Functor = "low_level_backend",
Backend = low_level_backend
).
:- pred parse_purity_promise(term::in, purity::out) is semidet.
parse_purity_promise(term__functor(term__atom("promise_pure"), [], _),
(pure)).
parse_purity_promise(term__functor(term__atom("promise_semipure"), [], _),
(semipure)).
:- pred parse_terminates(term::in, terminates::out) is semidet.
parse_terminates(term__functor(term__atom("terminates"), [], _),
terminates).
parse_terminates(term__functor(term__atom("does_not_terminate"), [], _),
does_not_terminate).
:- pred parse_no_exception_promise(term::in) is semidet.
parse_no_exception_promise(term.functor(
term.atom("will_not_throw_exception"), [], _)).
:- pred parse_ordinary_despite_detism(term::in) is semidet.
parse_ordinary_despite_detism(
term__functor(term__atom("ordinary_despite_detism"), [], _)).
% Parse a pragma foreign_code declaration.
%
:- pred parse_pragma_foreign_code(module_name::in,
pragma_foreign_proc_attributes::in, term::in,
pragma_foreign_code_impl::in, varset::in, maybe1(item)::out) is det.
parse_pragma_foreign_code(ModuleName, Flags, PredAndVarsTerm0,
PragmaImpl, VarSet0, Result) :-
parse_pred_or_func_and_args(yes(ModuleName), PredAndVarsTerm0,
PredAndVarsTerm0, "`:- pragma c_code' declaration", PredAndArgsResult),
(
PredAndArgsResult = ok(PredName, VarList0 - MaybeRetTerm),
(
% Is this a function or a predicate?
MaybeRetTerm = yes(FuncResultTerm0)
->
PredOrFunc = function,
list__append(VarList0, [FuncResultTerm0], VarList)
;
PredOrFunc = predicate,
VarList = VarList0
),
parse_pragma_c_code_varlist(VarSet0, VarList, PragmaVars, Error),
(
Error = no,
varset__coerce(VarSet0, VarSet),
Result = ok(pragma(user, foreign_proc(Flags, PredName, PredOrFunc,
PragmaVars, VarSet, PragmaImpl)))
;
Error = yes(ErrorMessage),
Result = error(ErrorMessage, PredAndVarsTerm0)
)
;
PredAndArgsResult = error(Msg, Term),
Result = error(Msg, Term)
).
% Parse the variable list in the pragma c code declaration.
% The final argument is 'no' for no error, or 'yes(ErrorMessage)'.
%
:- pred parse_pragma_c_code_varlist(varset::in, list(term)::in,
list(pragma_var)::out, maybe(string)::out) is det.
parse_pragma_c_code_varlist(_, [], [], no).
parse_pragma_c_code_varlist(VarSet, [V|Vars], PragmaVars, Error):-
(
V = term__functor(term__atom("::"), [VarTerm, ModeTerm], _),
VarTerm = term__variable(Var)
->
( varset__search_name(VarSet, Var, VarName) ->
( convert_mode(allow_constrained_inst_var, ModeTerm, Mode0) ->
constrain_inst_vars_in_mode(Mode0, Mode),
term__coerce_var(Var, ProgVar),
P = (pragma_var(ProgVar, VarName, Mode)),
parse_pragma_c_code_varlist(VarSet, Vars, PragmaVars0, Error),
PragmaVars = [P|PragmaVars0]
;
PragmaVars = [],
Error = yes("unknown mode in pragma c_code")
)
;
% If the variable wasn't in the varset it must be an
% underscore variable.
PragmaVars = [], % return any old junk for that.
Error = yes("sorry, not implemented: anonymous " ++
"`_' variable in pragma c_code")
)
;
PragmaVars = [], % Return any old junk in PragmaVars.
Error = yes("arguments not in form 'Var :: mode'")
).
:- pred parse_tabling_pragma(module_name::in, string::in, eval_method::in,
list(term)::in, term::in, maybe1(item)::out) is det.
parse_tabling_pragma(ModuleName, PragmaName, TablingType, PragmaTerms,
ErrorTerm, Result) :-
(
(
PragmaTerms = [PredAndModesTerm0],
MaybeSpec = no
;
PragmaTerms = [PredAndModesTerm0, SpecListTerm0],
TablingType = eval_memo(all_strict),
MaybeSpec = yes(SpecListTerm0)
)
->
string__append_list(["`:- pragma ", PragmaName, "' declaration"],
ParseMsg),
parse_arity_or_modes(ModuleName, PredAndModesTerm0, ErrorTerm,
ParseMsg, ArityModesResult),
(
ArityModesResult = ok(arity_or_modes(PredName, Arity,
MaybePredOrFunc, MaybeModes)),
(
MaybeSpec = yes(SpecListTerm),
convert_list(SpecListTerm, parse_arg_tabling_method,
"expected argument tabling method", MaybeArgMethods),
(
MaybeArgMethods = ok(ArgMethods),
Result = ok(pragma(user,
tabled(eval_memo(specified(ArgMethods)),
PredName, Arity, MaybePredOrFunc, MaybeModes)))
;
MaybeArgMethods = error(Msg, Term),
Result = error(Msg, Term)
)
;
MaybeSpec = no,
Result = ok(pragma(user,
tabled(TablingType, PredName, Arity,
MaybePredOrFunc, MaybeModes)))
)
;
ArityModesResult = error(Msg, Term),
Result = error(Msg, Term)
)
;
string__append_list(["wrong number of arguments in `:- pragma ",
PragmaName, "' declaration"], ErrorMessage),
Result = error(ErrorMessage, ErrorTerm)
).
:- pred parse_arg_tabling_method(term::in, maybe(arg_tabling_method)::out)
is semidet.
parse_arg_tabling_method(term__functor(term__atom("value"), [], _),
yes(arg_value)).
parse_arg_tabling_method(term__functor(term__atom("addr"), [], _),
yes(arg_addr)).
parse_arg_tabling_method(term__functor(term__atom("promise_implied"), [], _),
yes(arg_promise_implied)).
parse_arg_tabling_method(term__functor(term__atom("output"), [], _), no).
:- type arity_or_modes
---> arity_or_modes(
sym_name,
arity,
maybe(pred_or_func),
maybe(list(mode))
).
:- pred parse_arity_or_modes(module_name::in, term::in, term::in,
string::in, maybe1(arity_or_modes)::out) is det.
parse_arity_or_modes(ModuleName, PredAndModesTerm0,
ErrorTerm, ErrorMsg, Result) :-
(
% Is this a simple pred/arity pragma.
PredAndModesTerm0 = term__functor(term__atom("/"),
[PredNameTerm, ArityTerm], _)
->
(
parse_implicitly_qualified_term(ModuleName, PredNameTerm,
PredAndModesTerm0, "", ok(PredName, [])),
ArityTerm = term__functor(term__integer(Arity), [], _)
->
Result = ok(arity_or_modes(PredName, Arity, no, no))
;
string__append("expected predname/arity for", ErrorMsg, Msg),
Result = error(Msg, ErrorTerm)
)
;
parse_pred_or_func_and_arg_modes(yes(ModuleName), PredAndModesTerm0,
PredAndModesTerm0, ErrorMsg, PredAndModesResult),
(
PredAndModesResult = ok(PredName - PredOrFunc, Modes),
list__length(Modes, Arity0),
( PredOrFunc = function ->
Arity = Arity0 - 1
;
Arity = Arity0
),
Result = ok(arity_or_modes(PredName, Arity, yes(PredOrFunc),
yes(Modes)))
;
PredAndModesResult = error(Msg, Term),
Result = error(Msg, Term)
)
).
:- type maybe_pred_or_func_modes ==
maybe2(pair(sym_name, pred_or_func), list(mode)).
:- pred parse_pred_or_func_and_arg_modes(maybe(module_name)::in, term::in,
term::in, string::in, maybe_pred_or_func_modes::out) is det.
parse_pred_or_func_and_arg_modes(MaybeModuleName, PredAndModesTerm,
ErrorTerm, Msg, Result) :-
parse_pred_or_func_and_args(MaybeModuleName, PredAndModesTerm,
ErrorTerm, Msg, PredAndArgsResult),
(
PredAndArgsResult =
ok(PredName, ArgModeTerms - MaybeRetModeTerm),
(
convert_mode_list(allow_constrained_inst_var, ArgModeTerms,
ArgModes0)
->
(
MaybeRetModeTerm = yes(RetModeTerm),
(
convert_mode(allow_constrained_inst_var, RetModeTerm,
RetMode)
->
list__append(ArgModes0, [RetMode], ArgModes1),
list__map(constrain_inst_vars_in_mode, ArgModes1,
ArgModes),
Result = ok(PredName - function, ArgModes)
;
string__append("error in return mode in ", Msg, ErrorMsg),
Result = error(ErrorMsg, ErrorTerm)
)
;
MaybeRetModeTerm = no,
Result = ok(PredName - predicate, ArgModes0)
)
;
string__append("error in argument modes in ", Msg,
ErrorMsg),
Result = error(ErrorMsg, ErrorTerm)
)
;
PredAndArgsResult = error(ErrorMsg, Term),
Result = error(ErrorMsg, Term)
).
:- pred convert_bool(term::in, bool::out) is semidet.
convert_bool(Term, Bool) :-
Term = term__functor(term__atom(Name), [], _),
( Name = "yes", Bool = yes
; Name = "no", Bool = no
).
:- pred convert_bool_list(term::in, list(bool)::out) is semidet.
convert_bool_list(ListTerm, Bools) :-
convert_list(ListTerm, convert_bool, "expected boolean", ok(Bools)).
:- pred convert_int(term::in, int::out) is semidet.
convert_int(Term, Int) :-
Term = term__functor(term__integer(Int), [], _).
:- pred convert_int_list(term::in, maybe1(list(int))::out) is det.
convert_int_list(ListTerm, Result) :-
convert_list(ListTerm, convert_int, "expected integer", Result).
% convert_list(T, P, M) will convert a term T into a list of
% type X where P is a predicate that converts each element of
% the list into the correct type. M will hold the list if the
% conversion succeded for each element of M, otherwise it will
% hold the error.
%
:- pred convert_list(term::in, pred(term, T)::(pred(in, out) is semidet),
string::in, maybe1(list(T))::out) is det.
convert_list(term__variable(V), _, UnrecognizedMsg,
error(UnrecognizedMsg, term__variable(V))).
convert_list(term__functor(Functor, Args, Context), Pred, UnrecognizedMsg,
Result) :-
(
Functor = term__atom("[|]"),
Args = [Term, RestTerm]
->
( call(Pred, Term, Element) ->
convert_list(RestTerm, Pred, UnrecognizedMsg, RestResult),
(
RestResult = ok(List0),
Result = ok([Element | List0])
;
RestResult = error(_, _),
Result = RestResult
)
;
Result = error(UnrecognizedMsg, Term)
)
;
Functor = term__atom("[]"),
Args = []
->
Result = ok([])
;
Result = error("error in list", term__functor(Functor, Args, Context))
).
:- pred convert_type_spec_pair(term::in, pair(tvar, type)::out) is semidet.
convert_type_spec_pair(Term, TypeSpec) :-
Term = term__functor(term__atom("="), [TypeVarTerm, SpecTypeTerm0], _),
TypeVarTerm = term__variable(TypeVar0),
term__coerce_var(TypeVar0, TypeVar),
parse_type(SpecTypeTerm0, ok(SpecType)),
TypeSpec = TypeVar - SpecType.
%------------------------------------------------------------------------------%%
%
% Parsing termination2_info pragmas.
%
:- pred parse_arg_size_constraints(term::in,
maybe1(maybe(list(arg_size_constr)))::out) is semidet.
parse_arg_size_constraints(ArgSizeTerm, Result) :-
(
ArgSizeTerm = term__functor(term__atom("not_set"), [], _),
Result = ok(no)
;
ArgSizeTerm = term__functor(term__atom("constraints"),
[Constraints0], _),
convert_list(Constraints0, parse_arg_size_constraint,
"expected constraint", ConstraintsResult),
ConstraintsResult = ok(Constraints),
Result = ok(yes(Constraints))
).
:- pred parse_arg_size_constraint(term::in, arg_size_constr::out) is semidet.
parse_arg_size_constraint(Term, Constr) :-
(
Term = term__functor(term__atom("le"), [Terms, ConstantTerm], _),
convert_list(Terms, parse_lp_term, "expected linear term",
TermsResult),
TermsResult = ok(LPTerms),
parse_rational(ConstantTerm, Constant),
Constr = le(LPTerms, Constant)
;
Term = term__functor(term__atom("eq"), [Terms, ConstantTerm], _),
convert_list(Terms, parse_lp_term, "expected linear term",
TermsResult),
TermsResult = ok(LPTerms),
parse_rational(ConstantTerm, Constant),
Constr = eq(LPTerms, Constant)
).
:- pred parse_lp_term(term::in, pair(int, rat)::out) is semidet.
parse_lp_term(Term, LpTerm) :-
Term = term__functor(term__atom("term"), [VarIdTerm, CoeffTerm], _),
VarIdTerm = term__functor(term__integer(VarId), [], _),
parse_rational(CoeffTerm, Coeff),
LpTerm = VarId - Coeff.
:- pred parse_rational(term::in, rat::out) is semidet.
parse_rational(Term, Rational) :-
Term = term__functor(term__atom("r"), [NumerTerm, DenomTerm], _),
NumerTerm = term__functor(term__integer(Numer), [], _),
DenomTerm = term__functor(term__integer(Denom), [], _),
Rational = rat__rat(Numer, Denom).
%------------------------------------------------------------------------------%
:- end_module prog_io_pragma.
%------------------------------------------------------------------------------%