Files
mercury/compiler/prog_util.m
Mark Brown 3fc6b3f128 Change the representation of types in the compiler.
Estimated hours taken: 30
Branches: main

Change the representation of types in the compiler.

We also add some support for handling kinds, which will be used later when we
have a kind system.  There are a number of places where kinds are not yet
handled correctly -- we assume that all kinds will be `star'.  Each of these
locations is flagged with a comment that contains "XXX kind inference:".


compiler/prog_data.m:
	Implement the new version of type (type).

	Change the definition of type_param to be a variable instead of a
	term, since all parameters must be variables anyway.

	Implement versions of varset.merge_* which work with tvarsets and
	produce renamings instead of substitutions.  Renamings are more
	convenient than substitutions because we don't need to know the
	kinds of type variables in order to build the renaming, and in any
	case the substitutions shouldn't have anything other than variables
	in the range so renamings will be more efficient and safe.

	Define the type of kinds, and provide a couple of utility predicates
	to operate on them.

compiler/prog_io.m:
	Parse type definition heads as a sym_name and list of type_params,
	rather than a functor.  Handle this change in other predicates.

	Allow parse errors to be returned by get_with_type/3, and handle
	these errors.

	Remove parse_type/2.  This predicate didn't do any processing, it
	just forwarded handling to convert_type/2.

compiler/prog_io_typeclass.m:
	Change type_is_functor_and_vars to handle the new representation
	of types.  In doing so, we retain the old behaviour that pure
	predicates pass this test, but no other pred or func types.  This
	behaviour is arguably incorrect, but there is little point changing
	the behaviour at the moment.  Instead we should remove these kind of
	restrictions entirely, but that should be done later.

compiler/prog_io_util.m:
	Provide predicates to both parse and unparse types.  We need to
	unparse types before printing them out, since we do a lot of special
	case handling when printing out terms and we don't want to duplicate
	this functionality for types.

compiler/module_qual.m:
	Remove report_invalid_type.  We now report ill-formed types during
	parsing.

compiler/superhomogeneous.m:
	Handle errors from the parsing of type expressions.

compiler/prog_out.m:
	Provide a predicate to convert builtin_types to their string names,
	and vice-versa.

compiler/prog_type.m:
	Add a bunch of simple tests to use on types which may have kind
	annotations present.  In such cases, types do not have a canonical
	representation so the simple handling of these tests is not what we
	want.  (Note that these are only required in early phases.  The kind
	annotations -- when they are implemented -- will be removed before
	type checking.)

	Consistently handle the application of renamings, substitutions and
	recursive substitutions to various data structures.

compiler/mercury_to_mercury.m:
	Implement mercury_output_type, mercury_format_type and
	mercury_type_to_string.  These convert the type to a term before
	formatting -- the reason for this is so that appropriate parentheses
	are used when formatting operators.  This results in some slight
	changes to error messages, which are reflected in changes to the
	expected output files in the tests.

	Remove the old version of mercury_type_to_string.

	Change the argument ordering of mercury_format_var to be consistent
	with mercury_format_type.  (Other predicates in this module should
	probably be changed in a similar way, since this argument ordering
	is more amenable to higher-order programming.  But that can be left
	for another change.)

compiler/type_util.m:
	Implement type unification.  The behaviour is much the same as the
	previous behaviour, except that we now handle apply/N types properly,
	and we also allow for kind annotations.

	Implement an occurs check for types.

	Remove the example definition of replace_eqv_type.  It isn't used and
	would no longer work anyway even if it would have worked before.

	Add a tvar_kind_map field to ctor_defn.

	The functions type_info_type and type_ctor_info_type now return
	types with `void' as their argument, rather than the type that the
	type_info or type_ctor_info was for.

	Remove type_util.real_vars/2, since it no longer does anything
	different from prog_type.vars/2.

	Remove the commented out implementation of type_to_ctor_and_args/3.
	Its implementation is in prog_type.m, and has changed significantly
	in any case.

compiler/add_clause.m:
	Move parse_purity_annotation/3 to prog_io_util.m.

compiler/check_typeclass.m:
	Remove apply_substitution_to_var_list/3, since we now have predicates
	in prog_type.m to handle such things.

compiler/continuation_info.m:
compiler/trace.m:
	Use prog_type.vars/2 instead of type_util.real_vars/2.  The two
	predicates have the same meaning now since type_infos don't contain
	any type variables.

compiler/hlds_data.m:
	Add tvar_kind_map fields to hlds_type_defn and hlds_class_defn.

compiler/hlds_pred.m:
	Add a tvar_kind_map field to pred_info.

compiler/polymorphism.m:
	Add a tvar_kind_map field to poly_info.

	Remove unify_corresponding_types, which is no longer used.

compiler/hlds_out.m:
	Use mercury_output_type/5 instead of term_io__write_term/4 and
	mercury_output_term/5.

compiler/post_typecheck.m:
	Build the void substitution directly rather than building intermediate
	lists.

compiler/recompilation.version.m:
	Use term__list_subsumes instead of type_list_subsumes, which now
	operates only on types.  This follows up on what was suggested in
	an XXX comment.

compiler/typecheck_errors.m:
	Use unparse_type/2 to format error messages.

compiler/typecheck_info.m:
	Don't export write_type_with_bindings/5.  It is no longer used
	outside of this module.

compiler/*.m:
	Conform to the above changes.

library/rtti_implementation.m:
	Fix a syntax error that went undetected in our previous
	implementation, and amazingly enough was compiled correctly anyway.

library/term.m:
	Move the versions of term__unify, term__unify_list and
	term__list_subsumes that were implemented specifically for types
	to here.  The version of term_unify that takes a list of bound
	variables (i.e., variables that should not be bound any further)
	is used by the subsumption check, which in turn is used by
	recompilation.version.m.

tests/invalid/kind.err_exp:
tests/invalid/tc_err1.err_exp:
tests/invalid/tc_err2.err_exp:
tests/misc_tests/pretty_print_test.exp:
	Update the expected output of these tests to match what we now do.
2005-09-12 05:25:01 +00:00

749 lines
29 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 1994-2001, 2003-2005 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% main author: fjh
% various utility predicates acting on the parse tree data
% structure defined in prog_data.m.
:- module parse_tree__prog_util.
:- interface.
:- import_module mdbcomp__prim_data.
:- import_module parse_tree__prog_data.
:- import_module list.
:- import_module std_util.
:- import_module term.
:- import_module varset.
%-----------------------------------------------------------------------------%
% Given a symbol name, return its unqualified name.
%
:- pred unqualify_name(sym_name::in, string::out) is det.
% sym_name_get_module_name(SymName, ModName):
%
% Given a symbol name, return the module qualifiers(s).
% Fails if the symbol is unqualified.
%
:- pred sym_name_get_module_name(sym_name::in, module_name::out) is semidet.
% sym_name_get_module_name(SymName, DefaultModName, ModName):
%
% Given a symbol name, return the module qualifier(s).
% If the symbol is unqualified, then return the specified default
% module name.
%
:- pred sym_name_get_module_name(sym_name::in, module_name::in,
module_name::out) is det.
% match_sym_name(PartialSymName, CompleteSymName):
%
% Succeeds iff there is some sequence of module qualifiers
% which when prefixed to PartialSymName gives CompleteSymName.
%
:- pred match_sym_name(sym_name::in, sym_name::in) is semidet.
% remove_sym_name_prefix(SymName0, Prefix, SymName)
% succeeds iff
% SymName and SymName0 have the same module qualifier
% and the unqualified part of SymName0 has the given prefix
% and the unqualified part of SymName is the unqualified
% part of SymName0 with the prefix removed.
%
:- pred remove_sym_name_prefix(sym_name, string, sym_name).
:- mode remove_sym_name_prefix(in, in, out) is semidet.
:- mode remove_sym_name_prefix(out, in, in) is det.
% remove_sym_name_suffix(SymName0, Suffix, SymName)
% succeeds iff
% SymName and SymName0 have the same module qualifier
% and the unqualified part of SymName0 has the given suffix
% and the unqualified part of SymName is the unqualified
% part of SymName0 with the suffix removed.
%
:- pred remove_sym_name_suffix(sym_name::in, string::in, sym_name::out)
is semidet.
% add_sym_name_suffix(SymName0, Suffix, SymName)
% succeeds iff
% SymName and SymName0 have the same module qualifier
% and the unqualified part of SymName is the unqualified
% part of SymName0 with the suffix added.
%
:- pred add_sym_name_suffix(sym_name::in, string::in, sym_name::out) is det.
% transform_sym_base_name(TransformFunc, SymName0) = SymName
% succeeds iff
% SymName and SymName0 have the same module qualifier
% and the unqualified part of SymName is the result of applying
% TransformFunc to the unqualified part of SymName0.
%
:- func transform_sym_base_name(func(string) = string, sym_name) = sym_name.
% Given a possible module qualified sym_name and a list of
% argument types and a context, construct a term. This is
% used to construct types.
%
:- pred construct_qualified_term(sym_name::in, list(term(T))::in,
term(T)::out) is det.
:- pred construct_qualified_term(sym_name::in, list(term(T))::in,
prog_context::in, term(T)::out) is det.
% Given a sym_name return the top level qualifier of that name.
%
:- func outermost_qualifier(sym_name) = string.
%-----------------------------------------------------------------------------%
% adjust_func_arity(PredOrFunc, FuncArity, PredArity).
%
% We internally store the arity as the length of the argument
% list including the return value, which is one more than the
% arity of the function reported in error messages.
%
:- pred adjust_func_arity(pred_or_func, int, int).
:- mode adjust_func_arity(in, in, out) is det.
:- mode adjust_func_arity(in, out, in) is det.
%-----------------------------------------------------------------------------%
% make_pred_name_with_context(ModuleName, Prefix, PredOrFunc, PredName,
% Line, Counter, SymName).
%
% Create a predicate name with context, e.g. for introduced
% lambda or deforestation predicates.
%
:- pred make_pred_name(module_name::in, string::in, maybe(pred_or_func)::in,
string::in, new_pred_id::in, sym_name::out) is det.
% make_pred_name_with_context(ModuleName, Prefix, PredOrFunc, PredName,
% Line, Counter, SymName).
%
% Create a predicate name with context, e.g. for introduced
% lambda or deforestation predicates.
%
:- pred make_pred_name_with_context(module_name::in, string::in,
pred_or_func::in, string::in, int::in, int::in, sym_name::out) is det.
:- type new_pred_id
---> counter(int, int) % Line number, Counter
; type_subst(tvarset, type_subst)
; unused_args(list(int)).
%-----------------------------------------------------------------------------%
% A pred declaration may contains just types, as in
% :- pred list__append(list(T), list(T), list(T)).
% or it may contain both types and modes, as in
% :- pred list__append(list(T)::in, list(T)::in, list(T)::output).
%
% This predicate takes the argument list of a pred declaration, splits it
% into two separate lists for the types and (if present) the modes.
:- type maybe_modes == maybe(list(mode)).
:- pred split_types_and_modes(list(type_and_mode)::in, list(type)::out,
maybe_modes::out) is det.
:- pred split_type_and_mode(type_and_mode::in, (type)::out, maybe(mode)::out)
is det.
%-----------------------------------------------------------------------------%
% Perform a substitution on a goal.
%
:- pred prog_util__rename_in_goal(prog_var::in, prog_var::in,
goal::in, goal::out) is det.
%-----------------------------------------------------------------------------%
% Various predicates for accessing the cons_id type.
% Given a cons_id and a list of argument terms, convert it into a
% term. Fails if the cons_id is a pred_const, or type_ctor_info_const.
%
:- pred cons_id_and_args_to_term(cons_id::in, list(term(T))::in, term(T)::out)
is semidet.
% Get the arity of a cons_id, aborting on pred_const and
% type_ctor_info_const.
%
:- func cons_id_arity(cons_id) = arity.
% Get the arity of a cons_id. Return a `no' on those cons_ids
% where cons_id_arity/2 would normally abort.
%
:- func cons_id_maybe_arity(cons_id) = maybe(arity).
% The reverse conversion - make a cons_id for a functor.
% Given a const and an arity for the functor, create a cons_id.
%
:- func make_functor_cons_id(const, arity) = cons_id.
% Another way of making a cons_id from a functor.
% Given the name, argument types, and type_ctor of a functor,
% create a cons_id for that functor.
%
:- func make_cons_id(sym_name, list(constructor_arg), type_ctor) = cons_id.
% Another way of making a cons_id from a functor.
% Given the name, argument types, and type_ctor of a functor,
% create a cons_id for that functor.
%
% Differs from make_cons_id in that (a) it requires the sym_name
% to be already module qualified, which means that it does not
% need the module qualification of the type, (b) it can compute the
% arity from any list of the right length.
%
:- func make_cons_id_from_qualified_sym_name(sym_name, list(_)) = cons_id.
%-----------------------------------------------------------------------------%
% make_n_fresh_vars(Name, N, VarSet0, Vars, VarSet):
% `Vars' is a list of `N' fresh variables allocated from
% `VarSet0'. The variables will be named "<Name>1", "<Name>2",
% "<Name>3", and so on, where <Name> is the value of `Name'.
% `VarSet' is the resulting varset.
%
:- pred make_n_fresh_vars(string::in, int::in, list(var(T))::out,
varset(T)::in, varset(T)::out) is det.
% Given the list of predicate arguments for a predicate that
% is really a function, split that list into the function arguments
% and the function return type.
%
:- pred pred_args_to_func_args(list(T)::in, list(T)::out, T::out) is det.
% Get the last two arguments from the list, failing if there
% aren't at least two arguments.
%
:- pred get_state_args(list(T)::in, list(T)::out, T::out, T::out) is semidet.
% Get the last two arguments from the list, aborting if there
% aren't at least two arguments.
%
:- pred get_state_args_det(list(T)::in, list(T)::out, T::out, T::out) is det.
% Parse a term of the form `Head :- Body', treating a term not in that form
% as `Head :- true'.
%
:- pred parse_rule_term(term__context::in, term(T)::in, term(T)::out,
term(T)::out) is det.
%-----------------------------------------------------------------------------%
% Add new type variables for those introduced by a type qualification.
%
:- pred get_new_tvars(list(tvar)::in, tvarset::in, tvarset::in, tvarset::out,
tvar_name_map::in, tvar_name_map::out,
tvar_renaming::in, tvar_renaming::out) is det.
% substitute_vars(Vars0, Subst, Vars):
%
% Apply substitution `Subst' (which must only rename vars) to `Vars0',
% and return the result in `Vars'.
%
:- pred substitute_vars(list(var(T))::in, substitution(T)::in,
list(var(T))::out) is det.
%-----------------------------------------------------------------------------%
% We need to "unparse" the sym_name to construct the properly
% module qualified term.
%
:- func sym_name_and_args_to_term(sym_name, list(term(T)), prog_context) =
term(T).
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module parse_tree__mercury_to_mercury.
:- import_module parse_tree__prog_io.
:- import_module parse_tree__prog_out.
:- import_module bool.
:- import_module int.
:- import_module map.
:- import_module require.
:- import_module string.
:- import_module svmap.
:- import_module varset.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
unqualify_name(unqualified(PredName), PredName).
unqualify_name(qualified(_ModuleName, PredName), PredName).
sym_name_get_module_name(unqualified(_), _) :- fail.
sym_name_get_module_name(qualified(ModuleName, _), ModuleName).
sym_name_get_module_name(unqualified(_), ModuleName, ModuleName).
sym_name_get_module_name(qualified(ModuleName, _PredName), _, ModuleName).
construct_qualified_term(qualified(Module, Name), Args, Context, Term) :-
construct_qualified_term(Module, [], Context, ModuleTerm),
UnqualifiedTerm = term__functor(term__atom(Name), Args, Context),
Term = term__functor(term__atom("."),
[ModuleTerm, UnqualifiedTerm], Context).
construct_qualified_term(unqualified(Name), Args, Context, Term) :-
Term = term__functor(term__atom(Name), Args, Context).
construct_qualified_term(SymName, Args, Term) :-
term__context_init(Context),
construct_qualified_term(SymName, Args, Context, Term).
outermost_qualifier(unqualified(Name)) = Name.
outermost_qualifier(qualified(Module, _Name)) = outermost_qualifier(Module).
%-----------------------------------------------------------------------------%
adjust_func_arity(predicate, Arity, Arity).
adjust_func_arity(function, Arity - 1, Arity).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
split_types_and_modes(TypesAndModes, Types, MaybeModes) :-
split_types_and_modes_2(TypesAndModes, yes, Types, Modes, Result),
( Result = yes ->
MaybeModes = yes(Modes)
;
MaybeModes = no
).
:- pred split_types_and_modes_2(list(type_and_mode)::in, bool::in,
list(type)::out, list(mode)::out, bool::out) is det.
% T = type, M = mode, TM = combined type and mode
split_types_and_modes_2([], Result, [], [], Result).
split_types_and_modes_2([TM|TMs], Result0, [T|Ts], [M|Ms], Result) :-
split_type_and_mode(TM, Result0, T, M, Result1),
split_types_and_modes_2(TMs, Result1, Ts, Ms, Result).
% If a pred declaration specifies modes for some but not all of the
% arguments, then the modes are ignored - should this be an error instead?
% trd: this should never happen because prog_io.m will detect these cases.
%
:- pred split_type_and_mode(type_and_mode::in, bool::in,
(type)::out, (mode)::out, bool::out) is det.
split_type_and_mode(type_only(T), _, T, (free -> free), no).
split_type_and_mode(type_and_mode(T,M), R, T, M, R).
split_type_and_mode(type_only(T), T, no).
split_type_and_mode(type_and_mode(T,M), T, yes(M)).
%-----------------------------------------------------------------------------%
prog_util__rename_in_goal(OldVar, NewVar, Goal0 - Context, Goal - Context) :-
prog_util__rename_in_goal_expr(OldVar, NewVar, Goal0, Goal).
:- pred prog_util__rename_in_goal_expr(prog_var::in, prog_var::in,
goal_expr::in, goal_expr::out) is det.
prog_util__rename_in_goal_expr(OldVar, NewVar, (GoalA0, GoalB0),
(GoalA, GoalB)) :-
prog_util__rename_in_goal(OldVar, NewVar, GoalA0, GoalA),
prog_util__rename_in_goal(OldVar, NewVar, GoalB0, GoalB).
prog_util__rename_in_goal_expr(OldVar, NewVar, (GoalA0 & GoalB0),
(GoalA & GoalB)) :-
prog_util__rename_in_goal(OldVar, NewVar, GoalA0, GoalA),
prog_util__rename_in_goal(OldVar, NewVar, GoalB0, GoalB).
prog_util__rename_in_goal_expr(_OldVar, _NewVar, true, true).
prog_util__rename_in_goal_expr(OldVar, NewVar, (GoalA0; GoalB0),
(GoalA; GoalB)) :-
prog_util__rename_in_goal(OldVar, NewVar, GoalA0, GoalA),
prog_util__rename_in_goal(OldVar, NewVar, GoalB0, GoalB).
prog_util__rename_in_goal_expr(_Var, _NewVar, fail, fail).
prog_util__rename_in_goal_expr(OldVar, NewVar, not(Goal0), not(Goal)) :-
prog_util__rename_in_goal(OldVar, NewVar, Goal0, Goal).
prog_util__rename_in_goal_expr(OldVar, NewVar, some(Vars0, Goal0),
some(Vars, Goal)) :-
prog_util__rename_in_vars(OldVar, NewVar, Vars0, Vars),
prog_util__rename_in_goal(OldVar, NewVar, Goal0, Goal).
prog_util__rename_in_goal_expr(OldVar, NewVar, some_state_vars(Vars0, Goal0),
some_state_vars(Vars, Goal)) :-
prog_util__rename_in_vars(OldVar, NewVar, Vars0, Vars),
prog_util__rename_in_goal(OldVar, NewVar, Goal0, Goal).
prog_util__rename_in_goal_expr(OldVar, NewVar, all(Vars0, Goal0),
all(Vars, Goal)) :-
prog_util__rename_in_vars(OldVar, NewVar, Vars0, Vars),
prog_util__rename_in_goal(OldVar, NewVar, Goal0, Goal).
prog_util__rename_in_goal_expr(OldVar, NewVar, all_state_vars(Vars0, Goal0),
all_state_vars(Vars, Goal)) :-
prog_util__rename_in_vars(OldVar, NewVar, Vars0, Vars),
prog_util__rename_in_goal(OldVar, NewVar, Goal0, Goal).
prog_util__rename_in_goal_expr(OldVar, NewVar,
promise_purity(Implicit, Purity, Goal0),
promise_purity(Implicit, Purity, Goal)) :-
prog_util__rename_in_goal(OldVar, NewVar, Goal0, Goal).
prog_util__rename_in_goal_expr(OldVar, NewVar,
promise_equivalent_solutions(Vars0, DotSVars0, ColonSVars0,
Goal0),
promise_equivalent_solutions(Vars, DotSVars, ColonSVars,
Goal)) :-
prog_util__rename_in_vars(OldVar, NewVar, Vars0, Vars),
prog_util__rename_in_vars(OldVar, NewVar, DotSVars0, DotSVars),
prog_util__rename_in_vars(OldVar, NewVar, ColonSVars0, ColonSVars),
prog_util__rename_in_goal(OldVar, NewVar, Goal0, Goal).
prog_util__rename_in_goal_expr(OldVar, NewVar, implies(GoalA0, GoalB0),
implies(GoalA, GoalB)) :-
prog_util__rename_in_goal(OldVar, NewVar, GoalA0, GoalA),
prog_util__rename_in_goal(OldVar, NewVar, GoalB0, GoalB).
prog_util__rename_in_goal_expr(OldVar, NewVar, equivalent(GoalA0, GoalB0),
equivalent(GoalA, GoalB)) :-
prog_util__rename_in_goal(OldVar, NewVar, GoalA0, GoalA),
prog_util__rename_in_goal(OldVar, NewVar, GoalB0, GoalB).
prog_util__rename_in_goal_expr(OldVar, NewVar,
if_then(Vars0, StateVars0, Cond0, Then0),
if_then(Vars, StateVars, Cond, Then)) :-
prog_util__rename_in_vars(OldVar, NewVar, Vars0, Vars),
prog_util__rename_in_vars(OldVar, NewVar, StateVars0, StateVars),
prog_util__rename_in_goal(OldVar, NewVar, Cond0, Cond),
prog_util__rename_in_goal(OldVar, NewVar, Then0, Then).
prog_util__rename_in_goal_expr(OldVar, NewVar,
if_then_else(Vars0, StateVars0, Cond0, Then0, Else0),
if_then_else(Vars, StateVars, Cond, Then, Else)) :-
prog_util__rename_in_vars(OldVar, NewVar, Vars0, Vars),
prog_util__rename_in_vars(OldVar, NewVar, StateVars0, StateVars),
prog_util__rename_in_goal(OldVar, NewVar, Cond0, Cond),
prog_util__rename_in_goal(OldVar, NewVar, Then0, Then),
prog_util__rename_in_goal(OldVar, NewVar, Else0, Else).
prog_util__rename_in_goal_expr(OldVar, NewVar, call(SymName, Terms0, Purity),
call(SymName, Terms, Purity)) :-
term__substitute_list(Terms0, OldVar, term__variable(NewVar), Terms).
prog_util__rename_in_goal_expr(OldVar, NewVar, unify(TermA0, TermB0, Purity),
unify(TermA, TermB, Purity)) :-
term__substitute(TermA0, OldVar, term__variable(NewVar), TermA),
term__substitute(TermB0, OldVar, term__variable(NewVar), TermB).
:- pred prog_util__rename_in_vars(prog_var::in, prog_var::in,
list(prog_var)::in, list(prog_var)::out) is det.
prog_util__rename_in_vars(_, _, [], []).
prog_util__rename_in_vars(OldVar, NewVar, [Var0 | Vars0], [Var | Vars]) :-
( Var0 = OldVar ->
Var = NewVar
;
Var = Var0
),
prog_util__rename_in_vars(OldVar, NewVar, Vars0, Vars).
%-----------------------------------------------------------------------------%
% match_sym_name(PartialSymName, CompleteSymName):
%
% Succeeds iff there is some sequence of module qualifiers
% which when prefixed to PartialSymName gives CompleteSymName.
%
match_sym_name(qualified(Module1, Name), qualified(Module2, Name)) :-
match_sym_name(Module1, Module2).
match_sym_name(unqualified(Name), unqualified(Name)).
match_sym_name(unqualified(Name), qualified(_, Name)).
%-----------------------------------------------------------------------------%
remove_sym_name_prefix(qualified(Module, Name0), Prefix,
qualified(Module, Name)) :-
string__append(Prefix, Name, Name0).
remove_sym_name_prefix(unqualified(Name0), Prefix, unqualified(Name)) :-
string__append(Prefix, Name, Name0).
remove_sym_name_suffix(qualified(Module, Name0), Suffix,
qualified(Module, Name)) :-
string__remove_suffix(Name0, Suffix, Name).
remove_sym_name_suffix(unqualified(Name0), Suffix, unqualified(Name)) :-
string__remove_suffix(Name0, Suffix, Name).
add_sym_name_suffix(qualified(Module, Name0), Suffix,
qualified(Module, Name)) :-
string__append(Name0, Suffix, Name).
add_sym_name_suffix(unqualified(Name0), Suffix, unqualified(Name)) :-
string__append(Name0, Suffix, Name).
transform_sym_base_name(TransformFunc, qualified(Module, Name0)) =
qualified(Module, TransformFunc(Name0)).
transform_sym_base_name(TransformFunc, unqualified(Name0)) =
unqualified(TransformFunc(Name0)).
%-----------------------------------------------------------------------------%
make_pred_name_with_context(ModuleName, Prefix,
PredOrFunc, PredName, Line, Counter, SymName) :-
make_pred_name(ModuleName, Prefix, yes(PredOrFunc), PredName,
counter(Line, Counter), SymName).
make_pred_name(ModuleName, Prefix, MaybePredOrFunc, PredName,
NewPredId, SymName) :-
(
MaybePredOrFunc = yes(PredOrFunc),
(
PredOrFunc = predicate,
PFS = "pred"
;
PredOrFunc = function,
PFS = "func"
)
;
MaybePredOrFunc = no,
PFS = "pred_or_func"
),
(
NewPredId = counter(Line, Counter),
string__format("%d__%d", [i(Line), i(Counter)], PredIdStr)
;
NewPredId = type_subst(VarSet, TypeSubst),
SubstToString = (pred(SubstElem::in, SubstStr::out) is det :-
SubstElem = Var - Type,
varset__lookup_name(VarSet, Var, VarName),
TypeString = mercury_type_to_string(VarSet, no, Type),
string__append_list([VarName, " = ", TypeString], SubstStr)
),
list_to_string(SubstToString, TypeSubst, PredIdStr)
;
NewPredId = unused_args(Args),
list_to_string(int_to_string, Args, PredIdStr)
),
string__format("%s__%s__%s__%s",
[s(Prefix), s(PFS), s(PredName), s(PredIdStr)], Name),
SymName = qualified(ModuleName, Name).
:- pred list_to_string(pred(T, string)::in(pred(in, out) is det),
list(T)::in, string::out) is det.
list_to_string(Pred, List, String) :-
list_to_string_2(Pred, List, Strings, ["]"]),
string__append_list(["[" | Strings], String).
:- pred list_to_string_2(pred(T, string)::in(pred(in, out) is det),
list(T)::in, list(string)::out, list(string)::in) is det.
list_to_string_2(_, []) --> [].
list_to_string_2(Pred, [T | Ts]) -->
{ call(Pred, T, String) },
[String],
( { Ts = [] } ->
[]
;
[", "],
list_to_string_2(Pred, Ts)
).
%-----------------------------------------------------------------------------%
cons_id_and_args_to_term(int_const(Int), [], Term) :-
term__context_init(Context),
Term = term__functor(term__integer(Int), [], Context).
cons_id_and_args_to_term(float_const(Float), [], Term) :-
term__context_init(Context),
Term = term__functor(term__float(Float), [], Context).
cons_id_and_args_to_term(string_const(String), [], Term) :-
term__context_init(Context),
Term = term__functor(term__string(String), [], Context).
cons_id_and_args_to_term(cons(SymName, _Arity), Args, Term) :-
construct_qualified_term(SymName, Args, Term).
cons_id_arity(cons(_, Arity)) = Arity.
cons_id_arity(int_const(_)) = 0.
cons_id_arity(string_const(_)) = 0.
cons_id_arity(float_const(_)) = 0.
cons_id_arity(pred_const(_, _)) =
func_error("cons_id_arity: can't get arity of pred_const").
cons_id_arity(type_ctor_info_const(_, _, _)) =
func_error("cons_id_arity: can't get arity of type_ctor_info_const").
cons_id_arity(base_typeclass_info_const(_, _, _, _)) =
func_error("cons_id_arity: " ++
"can't get arity of base_typeclass_info_const").
cons_id_arity(type_info_cell_constructor(_)) =
func_error("cons_id_arity: " ++
"can't get arity of type_info_cell_constructor").
cons_id_arity(typeclass_info_cell_constructor) =
func_error("cons_id_arity: " ++
"can't get arity of typeclass_info_cell_constructor").
cons_id_arity(tabling_pointer_const(_)) =
func_error("cons_id_arity: can't get arity of tabling_pointer_const").
cons_id_arity(deep_profiling_proc_layout(_)) =
func_error("cons_id_arity: " ++
"can't get arity of deep_profiling_proc_layout").
cons_id_arity(table_io_decl(_)) =
func_error("cons_id_arity: can't get arity of table_io_decl").
cons_id_maybe_arity(cons(_, Arity)) = yes(Arity).
cons_id_maybe_arity(int_const(_)) = yes(0).
cons_id_maybe_arity(string_const(_)) = yes(0).
cons_id_maybe_arity(float_const(_)) = yes(0).
cons_id_maybe_arity(pred_const(_, _)) = no.
cons_id_maybe_arity(type_ctor_info_const(_, _, _)) = no.
cons_id_maybe_arity(base_typeclass_info_const(_, _, _, _)) = no.
cons_id_maybe_arity(type_info_cell_constructor(_)) = no.
cons_id_maybe_arity(typeclass_info_cell_constructor) = no.
cons_id_maybe_arity(tabling_pointer_const(_)) = no.
cons_id_maybe_arity(deep_profiling_proc_layout(_)) = no.
cons_id_maybe_arity(table_io_decl(_)) = no.
make_functor_cons_id(term__atom(Name), Arity) = cons(unqualified(Name), Arity).
make_functor_cons_id(term__integer(Int), _) = int_const(Int).
make_functor_cons_id(term__string(String), _) = string_const(String).
make_functor_cons_id(term__float(Float), _) = float_const(Float).
make_cons_id(SymName0, Args, TypeCtor) = cons(SymName, Arity) :-
% Use the module qualifier on the SymName, if there is one,
% otherwise use the module qualifier on the Type, if there is one,
% otherwise leave it unqualified.
% XXX is that the right thing to do?
(
SymName0 = qualified(_, _),
SymName = SymName0
;
SymName0 = unqualified(ConsName),
(
TypeCtor = unqualified(_) - _,
SymName = SymName0
;
TypeCtor = qualified(TypeModule, _) - _,
SymName = qualified(TypeModule, ConsName)
)
),
list__length(Args, Arity).
make_cons_id_from_qualified_sym_name(SymName, Args) = cons(SymName, Arity) :-
list__length(Args, Arity).
%-----------------------------------------------------------------------------%
make_n_fresh_vars(BaseName, N, Vars, VarSet0, VarSet) :-
make_n_fresh_vars_2(BaseName, 0, N, Vars, VarSet0, VarSet).
:- pred make_n_fresh_vars_2(string::in, int::in, int::in, list(var(T))::out,
varset(T)::in, varset(T)::out) is det.
make_n_fresh_vars_2(BaseName, N, Max, Vars, !VarSet) :-
( N = Max ->
Vars = []
;
N1 = N + 1,
varset__new_var(!.VarSet, Var, !:VarSet),
string__int_to_string(N1, Num),
string__append(BaseName, Num, VarName),
varset__name_var(!.VarSet, Var, VarName, !:VarSet),
Vars = [Var | Vars1],
make_n_fresh_vars_2(BaseName, N1, Max, Vars1, !VarSet)
).
pred_args_to_func_args(PredArgs, FuncArgs, FuncReturn) :-
list__length(PredArgs, NumPredArgs),
NumFuncArgs = NumPredArgs - 1,
( list__split_list(NumFuncArgs, PredArgs, FuncArgs0, [FuncReturn0]) ->
FuncArgs = FuncArgs0,
FuncReturn = FuncReturn0
;
error("pred_args_to_func_args: function missing return value?")
).
get_state_args(Args0, Args, State0, State) :-
list__reverse(Args0, RevArgs0),
RevArgs0 = [State, State0 | RevArgs],
list__reverse(RevArgs, Args).
get_state_args_det(Args0, Args, State0, State) :-
( get_state_args(Args0, Args1, State0A, StateA) ->
Args = Args1,
State0 = State0A,
State = StateA
;
error("hlds_pred__get_state_args_det")
).
%-----------------------------------------------------------------------------%
parse_rule_term(Context, RuleTerm, HeadTerm, GoalTerm) :-
( RuleTerm = term__functor(term__atom(":-"), [HeadTerm0, GoalTerm0], _) ->
HeadTerm = HeadTerm0,
GoalTerm = GoalTerm0
;
HeadTerm = RuleTerm,
GoalTerm = term__functor(term__atom("true"), [], Context)
).
get_new_tvars([], _, !TVarSet, !TVarNameMap, !TVarRenaming).
get_new_tvars([TVar | TVars], VarSet, !TVarSet, !TVarNameMap, !TVarRenaming) :-
( map__contains(!.TVarRenaming, TVar) ->
true
;
( varset__search_name(VarSet, TVar, TVarName) ->
( map__search(!.TVarNameMap, TVarName, TVarSetVar) ->
svmap__det_insert(TVar, TVarSetVar, !TVarRenaming)
;
varset__new_var(!.TVarSet, NewTVar, !:TVarSet),
varset__name_var(!.TVarSet, NewTVar, TVarName, !:TVarSet),
svmap__det_insert(TVarName, NewTVar, !TVarNameMap),
svmap__det_insert(TVar, NewTVar, !TVarRenaming)
)
;
varset__new_var(!.TVarSet, NewTVar, !:TVarSet),
svmap__det_insert(TVar, NewTVar, !TVarRenaming)
)
),
get_new_tvars(TVars, VarSet, !TVarSet, !TVarNameMap, !TVarRenaming).
%-----------------------------------------------------------------------------%
substitute_vars(Vars0, Subst, Vars) :-
Vars = list__map(substitute_var(Subst), Vars0).
:- func substitute_var(substitution(T), var(T)) = var(T).
substitute_var(Subst, Var0) = Var :-
term__apply_substitution(term__variable(Var0), Subst, Term),
( Term = term__variable(Var1) ->
Var = Var1
;
error("substitute_var: invalid substitution")
).
%-----------------------------------------------------------------------------%
sym_name_and_args_to_term(unqualified(Name), Xs, Context) =
term__functor(term__atom(Name), Xs, Context).
sym_name_and_args_to_term(qualified(ModuleNames, Name), Xs, Context) =
sym_name_and_term_to_term(ModuleNames,
term__functor(term__atom(Name), Xs, Context), Context).
:- func sym_name_and_term_to_term(module_specifier, term(T), prog_context) =
term(T).
sym_name_and_term_to_term(unqualified(ModuleName), Term, Context) =
term__functor(
term__atom("."),
[term__functor(term__atom(ModuleName), [], Context), Term],
Context
).
sym_name_and_term_to_term(qualified(ModuleNames, ModuleName), Term, Context) =
term__functor(
term__atom("."),
[sym_name_and_term_to_term(
ModuleNames,
term__functor(term__atom(ModuleName), [], Context),
Context),
Term],
Context
).
%-----------------------------------------------------------------------------%
:- end_module prog_util.
%-----------------------------------------------------------------------------%