Files
mercury/compiler/code_util.m
Zoltan Somogyi fdccd65e30 The debugger's retry command at the moment works only from a final port for
Estimated hours taken: 60

The debugger's retry command at the moment works only from a final port for
the call to be retried, the reason being that the RTTI does not have the
information required to make sure that the state of the stacks is reset
correctly. If you invoke retry from a non-final port, the current
implementation skips forward to a final port and then does the retry;
this does not work if you get a core dump or a infinite loop during the forward
skip. This change adds the required info to the RTTI and thus enables
direct retries from the middle of calls.

The information added has two components. First, if a procedure that lives on
the nondet stack allocates any temporary nondet stack frames, then it must
record the old value of maxfr in a stack slot so that retry can restore it.
Second, if a procedure is tabled, then it must record the call table tip node
corresponding to the actual input arguments, so we can reset this node to
uninitialized (if we don't, then the retried call will find the active call
marker and report an infinite loop error).

The support for retries across minimal model calls is not finished yet.
Finding out what the right thing to do in such cases is a research project,
one that cannot even be started until minimal model tabling works reliably
in the *absence* of retries. However, such retries do grossly wrong things
at the moment; this change is a definite improvement. It attempts to perform
the retry from the fail port, since that is the only time when the minimal
model tabling data structures are quiescent. The "fail" command I added to
the debugger command set to let this be done is not complete yet and is
therefore undocumented; the problem is that a call to a model_non predicate
in a committed choice context will not get to the fail port. I added goal paths
to return layouts so that we will eventually be able to tell when execution
leaves a committed choice context surrounding an ancestor of a model_non
predicate call, but this functionality is not yet implemented.

compiler/stack_layout.m:
	Generate the three new fields: the evaluation method, (maybe) the id
	of the stack slot containing the saved value of maxfr, and (maybe)
	the id of the stack slot containing the call table tip.

compiler/continuation_info.m:
	Record the information about the new fields for later use by
	stack_layout.m.

	Add a new field to record the goal path of calls for their return
	layouts.

	Fix a screwed comment for the continuation_info data structure.

compiler/llds.m:
	Add a new field to call() instructions to hold the goal path of the
	call.

	Add a utility function for use by trace.m.

compiler/call_gen.m:
	Fill in this new field.

compiler/trace.m:
compiler/live_vars.m:
	Reserve the fixed stack slot for the saved maxfr if necessary,
	and if the call table tip node is needed, make sure that the variable
	holding its address is allocated a low-numbered stack slot (otherwise,
	its number may not fit into the MR_int_least8_t field in the
	proc_layout).

compiler/trace.m:
	If necessary, fill in the saved maxfr slot.

	If necessary, initialize the call table tip slot.

compiler/hlds_goal.m:
	Add a goal feature which marks its goal as defining the variable
	representing the call table tip node.

	Add a field to the goal path step representing quantification;
	the field says whether the quantification changes the determinism of
	the goal (i.e. whether it cuts away solutions).

compiler/hlds_pred.m:
compiler/hlds_out.m:
	Add two fields to proc_infos which (a) record which variable, if any,
	holds the call table tip node, and (b) record whether the procedure's
	layout structure needs to reserve a slot for the saved value of maxfr.

compiler/table_gen.m:
	Put this feature on the appropriate goal.

	Also, rename a predicate to make it reflect its purpose better.

compiler/code_gen.m:
	Generate code to put the call table tip variable in its stack slot
	immediately after it has been generated.

	Add a sanity check to ensure that if a procedure that lives on the det
	stack can create a temporary nondet frame, and debugging is enabled,
	then it did have a stack slot reserved for the saved maxfr.

compiler/code_util.m:
	Add a predicate to make a conservative prediction of whether a
	procedure may allocate a temporary nondet stack frame. We cannot
	just generate the code and see, because the code generator needs to
	know which variables live in which stack slots, and we cannot decide
	that until we know whether we need a stack slot for the saved value of
	maxfr.

	Make an unrelated predicate semidet procedure use a det helper, in
	order to make it more robust in the face of changes to the HLDS
	(e.g. it was missing code for handling bi_implications).

compiler/code_info.m:
	Record whether a procedure has in fact created a temporary nondet stack
	frame.

compiler/handle_options.m:
	Disable hijacks if debugging is enabled. The code we now use to
	restore the stacks for direct retries works only if the retry does not
	"backtrack" over a hijacked nondet stack frame whose hijack has not
	been undone. Note that code compiled without debugging may still hijack
	nondet stack frames. Execution may reemerge from the nondebugged region
	in one of two ways. If the nondebugged code returns, then it will have
	undone hijack, and the retry code will work. If the nondebugged code
	calls debugged code, there will be a region on the stacks containing
	no debugging information, and the retry command will refuse to perform
	retries that go into or beyond this region. Both cases preserve
	correctness.

compiler/*.m:
	Trivial changes to conform to changes in data structures.

runtime/mercury_stack_layout.h:
	Add three new fields to proc layouts: the numbers of the stack slots
	(if any) storing the saved maxfr and the call table tip, and a
	representation of the procedure's evaluation method.

runtime/mercury_stack_trace.[ch]:
	Now that return layouts contain goal paths, print them in stack dumps
	only if the include_trace_data flag is set (in mdb, this requires the
	-d flag of the "stack" command).

	Pass this flag around directly, instead of encoding its value in
	the NULL vs non-NULL values of sp and curfr.

runtime/mercury_regorder.h:
	Provide a mechanism to access the values of the first few rN registers
	from a save area, for use in debugging low-level C code in the runtime
	and the trace directories.

trace/mercury_trace.[ch]:
	Reimplement MR_trace_retry to allow retries from the middle.
	If the stack segment being retried over contains minimal model
	procedures, we must still arrange to skip to the end of the retried
	call. If this call is a minimal model generator, skipping to just any
	final port is not sufficient to guarantee correctness on retry; to
	ensure that subgoal is complete, we must skip to a fail port.

trace/mercury_trace.[ch]:
trace/mercury_trace_internal.c:
	Implement a debugger command, "fail", which skips to the fail port or
	the exception port of the specified ancestor. Since procedures that are
	not model_non are not guaranteed to get to such a port, this
	command reports an error if the specified call is not model_non.
	Actually, even calls to model_non procedures may not get to the fail
	port, as explained above; this is why the command is not yet
	documented.

trace/mercury_trace.c:
trace/mercury_trace_util.[ch]:
	Move some functions to print parts of the Mercury abstract machine
	state from mercury_trace to mercury_trace_util, so that they are
	available for use in debugging e.g. mercury_trace_declarative.

trace/mercury_trace_internal.c:
trace/mercury_trace_external.c:
trace/mercury_trace_declarative.c:
	Use the new implementation of retries. At the moment, only the
	internal debugger implements the full functionality. The declarative
	debugger issues retry commands only from situations where the missing
	functionality is not (yet) needed. The external debugger should
	continue to work correctly, but Erwan may wish to update it to
	exploit the availability of the fail command.

trace/mercury_trace*.[ch]:
	Fix MR_prefixes, and a signed/unsigned mismatch.

doc/user_guide.texi:
	Document the new "fail" command, but comment it out for now.

tests/debugger/retry.{m,inp,exp,exp2}:
	A new test case for exercising retry.

tests/debugger/Mmakefile:
	Enable the new test case.

tests/debugger/*.exp:
	Update the expected output, given the extra info now output e.g. for
	exception events and detailed stack traces.
2000-10-13 04:06:52 +00:00

961 lines
34 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1994-2000 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
%
% file: code_util.m.
%
% various utilities routines for code generation and recognition
% of builtins.
%
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- module code_util.
:- interface.
:- import_module prog_data, hlds_module, hlds_pred, hlds_goal, hlds_data.
:- import_module rtti, llds.
:- import_module bool, list, std_util.
% Create a code address which holds the address of the specified
% procedure.
% The `immed' argument should be `no' if the the caller wants the
% returned address to be valid from everywhere in the program.
% If being valid from within the current procedure is enough,
% this argument should be `yes' wrapped around the value of the
% --procs-per-c-function option and the current procedure id.
% Using an address that is only valid from within the current
% procedure may make jumps more efficient.
:- type immed == maybe(pair(int, pred_proc_id)).
:- pred code_util__make_entry_label(module_info, pred_id, proc_id,
immed, code_addr).
:- mode code_util__make_entry_label(in, in, in, in, out) is det.
:- pred code_util__make_entry_label_from_rtti(rtti_proc_label, immed,
code_addr).
:- mode code_util__make_entry_label_from_rtti(in, in, out) is det.
% Create a label which holds the address of the specified procedure,
% which must be defined in the current module (procedures that are
% imported from other modules have representations only as code_addrs,
% not as labels, since their address is not known at C compilation
% time).
% The fourth argument has the same meaning as for
% code_util__make_entry_label.
:- pred code_util__make_local_entry_label(module_info, pred_id, proc_id,
immed, label).
:- mode code_util__make_local_entry_label(in, in, in, in, out) is det.
% Create a label internal to a Mercury procedure.
:- pred code_util__make_internal_label(module_info, pred_id, proc_id, int,
label).
:- mode code_util__make_internal_label(in, in, in, in, out) is det.
:- pred code_util__make_proc_label(module_info, pred_id, proc_id, proc_label).
:- mode code_util__make_proc_label(in, in, in, out) is det.
% code_util__make_user_proc_label(ModuleName, PredIsImported,
% PredOrFunc, ModuleName, PredName, Arity, ProcId, Label):
% Make a proc_label for a user-defined procedure.
%
% The PredIsImported argument should be the result of
% calling pred_info_is_imported.
:- pred code_util__make_user_proc_label(module_name, bool,
pred_or_func, module_name, string, arity, proc_id, proc_label).
:- mode code_util__make_user_proc_label(in, in,
in, in, in, in, in, out) is det.
:- pred code_util__make_uni_label(module_info, type_id, proc_id, proc_label).
:- mode code_util__make_uni_label(in, in, in, out) is det.
:- pred code_util__extract_proc_label_from_code_addr(code_addr, proc_label).
:- mode code_util__extract_proc_label_from_code_addr(in, out) is det.
:- pred code_util__extract_proc_label_from_label(label, proc_label).
:- mode code_util__extract_proc_label_from_label(in, out) is det.
:- pred code_util__arg_loc_to_register(arg_loc, lval).
:- mode code_util__arg_loc_to_register(in, out) is det.
:- pred code_util__max_mentioned_reg(list(lval), int).
:- mode code_util__max_mentioned_reg(in, out) is det.
% Determine whether a goal might allocate some heap space,
% i.e. whether it contains any construction unifications
% or predicate calls. BEWARE that this predicate is only
% an approximation, used to decide whether or not to try to
% reclaim the heap space; currently it fails even for some
% goals which do allocate heap space, such as construction
% of boxed constants.
:- pred code_util__goal_may_allocate_heap(hlds_goal).
:- mode code_util__goal_may_allocate_heap(in) is semidet.
:- pred code_util__goal_list_may_allocate_heap(list(hlds_goal)).
:- mode code_util__goal_list_may_allocate_heap(in) is semidet.
:- pred code_util__goal_may_alloc_temp_frame(hlds_goal).
:- mode code_util__goal_may_alloc_temp_frame(in) is semidet.
% Negate a condition.
% This is used mostly just to make the generated code more readable.
:- pred code_util__neg_rval(rval, rval).
:- mode code_util__neg_rval(in, out) is det.
:- pred code_util__negate_the_test(list(instruction), list(instruction)).
:- mode code_util__negate_the_test(in, out) is det.
% code_util__compiler_generated(PredInfo) succeeds iff
% the PredInfo is for a compiler generated instance of a
% type-specific special_pred (i.e. one of the __Unify__,
% __Index__, or __Compare__ predicates generated as a
% type-specific instance of unify/2, index/2, or compare/3).
%
% XXX The name of this predicate is misleading, because there
% are other kinds of compiler-generated predicates, e.g. those
% for lambda expressions, those generated by higher-order
% specialization, ordinary type specialization, deforestation,
% etc., for which this predicate does not succeed.
:- pred code_util__compiler_generated(pred_info).
:- mode code_util__compiler_generated(in) is semidet.
:- pred code_util__predinfo_is_builtin(pred_info).
:- mode code_util__predinfo_is_builtin(in) is semidet.
:- pred code_util__builtin_state(module_info, pred_id, proc_id, builtin_state).
:- mode code_util__builtin_state(in, in, in, out) is det.
% Find out how a function symbol (constructor) is represented
% in the given type.
:- pred code_util__cons_id_to_tag(cons_id, type, module_info, cons_tag).
:- mode code_util__cons_id_to_tag(in, in, in, out) is det.
% Succeed if the given goal cannot encounter a context
% that causes any variable to be flushed to its stack slot.
% If such a goal needs a resume point, and that resume point cannot
% be backtracked to once control leaves the goal, then the only entry
% point we need for the resume point is the one with the resume
% variables in their original locations.
:- pred code_util__cannot_stack_flush(hlds_goal).
:- mode code_util__cannot_stack_flush(in) is semidet.
% Succeed if the given goal cannot fail before encountering a context
% that forces all variables to be flushed to their stack slots.
% If such a goal needs a resume point, the only entry point we need
% is the stack entry point.
:- pred code_util__cannot_fail_before_stack_flush(hlds_goal).
:- mode code_util__cannot_fail_before_stack_flush(in) is semidet.
% code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max)
% Given that we are in predicate PredId and procedure ProcId,
% return the minimum and maximum number of recursive calls that
% an execution of Goal may encounter.
:- pred code_util__count_recursive_calls(hlds_goal, pred_id, proc_id,
int, int).
:- mode code_util__count_recursive_calls(in, in, in, out, out) is det.
% These predicates return the set of lvals referenced in an rval
% and an lval respectively. Lvals referenced indirectly through
% lvals of the form var(_) are not counted.
:- pred code_util__lvals_in_rval(rval, list(lval)).
:- mode code_util__lvals_in_rval(in, out) is det.
:- pred code_util__lvals_in_lval(lval, list(lval)).
:- mode code_util__lvals_in_lval(in, out) is det.
:- pred code_util__lvals_in_lvals(list(lval), list(lval)).
:- mode code_util__lvals_in_lvals(in, out) is det.
%---------------------------------------------------------------------------%
:- implementation.
:- import_module builtin_ops, prog_util, type_util, special_pred.
:- import_module char, int, string, set, map, term, varset.
:- import_module require, std_util, assoc_list.
%---------------------------------------------------------------------------%
code_util__make_entry_label(ModuleInfo, PredId, ProcId, Immed, ProcAddr) :-
RttiProcLabel = rtti__make_proc_label(ModuleInfo, PredId, ProcId),
code_util__make_entry_label_from_rtti(RttiProcLabel, Immed, ProcAddr).
code_util__make_entry_label_from_rtti(RttiProcLabel, Immed, ProcAddr) :-
(
(
RttiProcLabel^is_imported = yes
;
RttiProcLabel^is_pseudo_imported = yes,
% only the (in, in) mode of unification is imported
hlds_pred__in_in_unification_proc_id(
RttiProcLabel^proc_id)
)
->
code_util__make_proc_label_from_rtti(RttiProcLabel, ProcLabel),
ProcAddr = imported(ProcLabel)
;
code_util__make_local_entry_label_from_rtti(RttiProcLabel,
Immed, Label),
ProcAddr = label(Label)
).
code_util__make_local_entry_label(ModuleInfo, PredId, ProcId, Immed, Label) :-
RttiProcLabel = rtti__make_proc_label(ModuleInfo, PredId, ProcId),
code_util__make_local_entry_label_from_rtti(RttiProcLabel,
Immed, Label).
:- pred code_util__make_local_entry_label_from_rtti(rtti_proc_label, immed,
label).
:- mode code_util__make_local_entry_label_from_rtti(in, in, out) is det.
code_util__make_local_entry_label_from_rtti(RttiProcLabel, Immed, Label) :-
code_util__make_proc_label_from_rtti(RttiProcLabel, ProcLabel),
(
Immed = no,
% If we want to define the label or use it to put it
% into a data structure, a label that is usable only
% within the current C module won't do.
( RttiProcLabel^is_exported = yes ->
Label = exported(ProcLabel)
;
Label = local(ProcLabel)
)
;
Immed = yes(ProcsPerFunc - proc(CurPredId, CurProcId)),
choose_local_label_type(ProcsPerFunc, CurPredId, CurProcId,
RttiProcLabel^pred_id, RttiProcLabel^proc_id,
ProcLabel, Label)
).
:- pred choose_local_label_type(int, pred_id, proc_id,
pred_id, proc_id, proc_label, label).
:- mode choose_local_label_type(in, in, in, in, in, in, out) is det.
choose_local_label_type(ProcsPerFunc, CurPredId, CurProcId,
PredId, ProcId, ProcLabel, Label) :-
(
% If we want to branch to the label now,
% we prefer a form that are usable only within
% the current C module, since it is likely
% to be faster.
(
ProcsPerFunc = 0
;
PredId = CurPredId,
ProcId = CurProcId
)
->
Label = c_local(ProcLabel)
;
Label = local(ProcLabel)
).
%-----------------------------------------------------------------------------%
code_util__make_internal_label(ModuleInfo, PredId, ProcId, LabelNum, Label) :-
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel),
Label = local(ProcLabel, LabelNum).
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel) :-
RttiProcLabel = rtti__make_proc_label(ModuleInfo, PredId, ProcId),
code_util__make_proc_label_from_rtti(RttiProcLabel, ProcLabel).
:- pred code_util__make_proc_label_from_rtti(rtti_proc_label, proc_label).
:- mode code_util__make_proc_label_from_rtti(in, out) is det.
code_util__make_proc_label_from_rtti(RttiProcLabel, ProcLabel) :-
RttiProcLabel = rtti_proc_label(PredOrFunc, ThisModule,
PredModule, PredName, PredArity, ArgTypes, _PredId, ProcId,
_VarSet, _HeadVars, _ArgModes, _CodeModel,
IsImported, _IsPseudoImported, _IsExported,
IsSpecialPredInstance),
(
IsSpecialPredInstance = yes
->
(
special_pred_get_type(PredName, ArgTypes, Type),
type_to_type_id(Type, TypeId, _),
% All type_ids other than tuples here should be
% module qualified, since builtin types are
% handled separately in polymorphism.m.
(
TypeId = unqualified(TypeName) - _,
type_id_is_tuple(TypeId),
mercury_public_builtin_module(TypeModule)
;
TypeId = qualified(TypeModule, TypeName) - _
)
->
TypeId = _ - TypeArity,
(
ThisModule \= TypeModule,
PredName = "__Unify__",
\+ hlds_pred__in_in_unification_proc_id(ProcId)
->
DefiningModule = ThisModule
;
DefiningModule = TypeModule
),
ProcLabel = special_proc(DefiningModule, PredName,
TypeModule, TypeName, TypeArity, ProcId)
;
string__append_list(["code_util__make_proc_label:\n",
"cannot make label for special pred `",
PredName, "'"], ErrorMessage),
error(ErrorMessage)
)
;
code_util__make_user_proc_label(ThisModule, IsImported,
PredOrFunc, PredModule, PredName, PredArity,
ProcId, ProcLabel)
).
code_util__make_user_proc_label(ThisModule, PredIsImported,
PredOrFunc, PredModule, PredName, PredArity,
ProcId, ProcLabel) :-
(
% Work out which module supplies the code for
% the predicate.
ThisModule \= PredModule,
PredIsImported = no
->
% This predicate is a specialized version of
% a pred from a `.opt' file.
DefiningModule = ThisModule
;
DefiningModule = PredModule
),
ProcLabel = proc(DefiningModule, PredOrFunc,
PredModule, PredName, PredArity, ProcId).
code_util__make_uni_label(ModuleInfo, TypeId, UniModeNum, ProcLabel) :-
module_info_name(ModuleInfo, ModuleName),
( TypeId = qualified(TypeModule, TypeName) - Arity ->
( hlds_pred__in_in_unification_proc_id(UniModeNum) ->
Module = TypeModule
;
Module = ModuleName
),
ProcLabel = special_proc(Module, "__Unify__", TypeModule,
TypeName, Arity, UniModeNum)
;
error("code_util__make_uni_label: unqualified type_id")
).
code_util__extract_proc_label_from_code_addr(CodeAddr, ProcLabel) :-
( code_util__proc_label_from_code_addr(CodeAddr, ProcLabelPrime) ->
ProcLabel = ProcLabelPrime
;
error("code_util__extract_label_from_code_addr failed")
).
:- pred code_util__proc_label_from_code_addr(code_addr::in,
proc_label::out) is semidet.
code_util__proc_label_from_code_addr(CodeAddr, ProcLabel) :-
(
CodeAddr = label(Label),
code_util__extract_proc_label_from_label(Label, ProcLabel)
;
CodeAddr = imported(ProcLabel)
).
code_util__extract_proc_label_from_label(local(ProcLabel, _), ProcLabel).
code_util__extract_proc_label_from_label(c_local(ProcLabel), ProcLabel).
code_util__extract_proc_label_from_label(local(ProcLabel), ProcLabel).
code_util__extract_proc_label_from_label(exported(ProcLabel), ProcLabel).
%-----------------------------------------------------------------------------%
code_util__arg_loc_to_register(ArgLoc, reg(r, ArgLoc)).
%-----------------------------------------------------------------------------%
code_util__max_mentioned_reg(Lvals, MaxRegNum) :-
code_util__max_mentioned_reg_2(Lvals, 0, MaxRegNum).
:- pred code_util__max_mentioned_reg_2(list(lval)::in, int::in, int::out)
is det.
code_util__max_mentioned_reg_2([], MaxRegNum, MaxRegNum).
code_util__max_mentioned_reg_2([Lval | Lvals], MaxRegNum0, MaxRegNum) :-
( Lval = reg(r, N) ->
int__max(MaxRegNum0, N, MaxRegNum1)
;
MaxRegNum1 = MaxRegNum0
),
code_util__max_mentioned_reg_2(Lvals, MaxRegNum1, MaxRegNum).
%-----------------------------------------------------------------------------%
code_util__predinfo_is_builtin(PredInfo) :-
pred_info_module(PredInfo, ModuleName),
pred_info_name(PredInfo, PredName),
pred_info_arity(PredInfo, Arity),
hlds_pred__initial_proc_id(ProcId),
code_util__is_inline_builtin(ModuleName, PredName, ProcId, Arity).
code_util__builtin_state(ModuleInfo, PredId, ProcId, BuiltinState) :-
module_info_pred_info(ModuleInfo, PredId, PredInfo),
pred_info_module(PredInfo, ModuleName),
pred_info_name(PredInfo, PredName),
pred_info_arity(PredInfo, Arity),
( code_util__is_inline_builtin(ModuleName, PredName, ProcId, Arity) ->
BuiltinState = inline_builtin
;
BuiltinState = not_builtin
).
:- pred code_util__is_inline_builtin(module_name, string, proc_id, arity).
:- mode code_util__is_inline_builtin(in, in, in, in) is semidet.
code_util__is_inline_builtin(ModuleName, PredName, ProcId, Arity) :-
Arity =< 3,
prog_varset_init(VarSet),
varset__new_vars(VarSet, Arity, Args, _),
builtin_ops__translate_builtin(ModuleName, PredName, ProcId, Args, _).
:- pred prog_varset_init(prog_varset::out) is det.
prog_varset_init(VarSet) :- varset__init(VarSet).
%-----------------------------------------------------------------------------%
% XXX The name of this predicate is misleading -- see the comment
% in the declaration.
code_util__compiler_generated(PredInfo) :-
pred_info_name(PredInfo, PredName),
pred_info_arity(PredInfo, PredArity),
special_pred_name_arity(_, _, PredName, PredArity).
%-----------------------------------------------------------------------------%
code_util__goal_may_allocate_heap(Goal) :-
code_util__goal_may_allocate_heap(Goal, yes).
code_util__goal_list_may_allocate_heap(Goals) :-
code_util__goal_list_may_allocate_heap(Goals, yes).
:- pred code_util__goal_may_allocate_heap(hlds_goal::in, bool::out) is det.
code_util__goal_may_allocate_heap(Goal - _GoalInfo, May) :-
code_util__goal_may_allocate_heap_2(Goal, May).
:- pred code_util__goal_may_allocate_heap_2(hlds_goal_expr::in, bool::out)
is det.
code_util__goal_may_allocate_heap_2(generic_call(_, _, _, _), yes).
code_util__goal_may_allocate_heap_2(call(_, _, _, Builtin, _, _), May) :-
( Builtin = inline_builtin ->
May = no
;
May = yes
).
code_util__goal_may_allocate_heap_2(unify(_, _, _, Unification, _), May) :-
( Unification = construct(_,_,Args,_,_,_,_), Args = [_|_] ->
May = yes
;
May = no
).
% We cannot safely say that a C code fragment does not allocate memory
% without knowing all the #defined macros that expand to incr_hp and
% variants thereof.
code_util__goal_may_allocate_heap_2(pragma_foreign_code(_,_,_,_,_,_,_,_), yes).
code_util__goal_may_allocate_heap_2(some(_Vars, _, Goal), May) :-
code_util__goal_may_allocate_heap(Goal, May).
code_util__goal_may_allocate_heap_2(not(Goal), May) :-
code_util__goal_may_allocate_heap(Goal, May).
code_util__goal_may_allocate_heap_2(conj(Goals), May) :-
code_util__goal_list_may_allocate_heap(Goals, May).
code_util__goal_may_allocate_heap_2(par_conj(_, _), yes).
code_util__goal_may_allocate_heap_2(disj(Goals, _), May) :-
code_util__goal_list_may_allocate_heap(Goals, May).
code_util__goal_may_allocate_heap_2(switch(_Var, _Det, Cases, _), May) :-
code_util__cases_may_allocate_heap(Cases, May).
code_util__goal_may_allocate_heap_2(if_then_else(_Vars, C, T, E, _), May) :-
( code_util__goal_may_allocate_heap(C, yes) ->
May = yes
; code_util__goal_may_allocate_heap(T, yes) ->
May = yes
;
code_util__goal_may_allocate_heap(E, May)
).
code_util__goal_may_allocate_heap_2(bi_implication(G1, G2), May) :-
( code_util__goal_may_allocate_heap(G1, yes) ->
May = yes
;
code_util__goal_may_allocate_heap(G2, May)
).
:- pred code_util__goal_list_may_allocate_heap(list(hlds_goal)::in, bool::out)
is det.
code_util__goal_list_may_allocate_heap([], no).
code_util__goal_list_may_allocate_heap([Goal | Goals], May) :-
( code_util__goal_may_allocate_heap(Goal, yes) ->
May = yes
;
code_util__goal_list_may_allocate_heap(Goals, May)
).
:- pred code_util__cases_may_allocate_heap(list(case)::in, bool::out) is det.
code_util__cases_may_allocate_heap([], no).
code_util__cases_may_allocate_heap([case(_, Goal) | Cases], May) :-
( code_util__goal_may_allocate_heap(Goal, yes) ->
May = yes
;
code_util__cases_may_allocate_heap(Cases, May)
).
%-----------------------------------------------------------------------------%
code_util__goal_may_alloc_temp_frame(Goal) :-
code_util__goal_may_alloc_temp_frame(Goal, yes).
:- pred code_util__goal_may_alloc_temp_frame(hlds_goal::in, bool::out) is det.
code_util__goal_may_alloc_temp_frame(Goal - _GoalInfo, May) :-
code_util__goal_may_alloc_temp_frame_2(Goal, May).
:- pred code_util__goal_may_alloc_temp_frame_2(hlds_goal_expr::in, bool::out)
is det.
code_util__goal_may_alloc_temp_frame_2(generic_call(_, _, _, _), no).
code_util__goal_may_alloc_temp_frame_2(call(_, _, _, _, _, _), no).
code_util__goal_may_alloc_temp_frame_2(unify(_, _, _, _, _), no).
% We cannot safely say that a C code fragment does not allocate
% temporary nondet frames without knowing all the #defined macros
% that expand to mktempframe and variants thereof. The performance
% impact of being too conservative is probably not too bad.
code_util__goal_may_alloc_temp_frame_2(pragma_foreign_code(_,_,_,_,_,_,_,_),
yes).
code_util__goal_may_alloc_temp_frame_2(some(_Vars, _, Goal), May) :-
Goal = _ - GoalInfo,
goal_info_get_code_model(GoalInfo, CodeModel),
( CodeModel = model_non ->
May = yes
;
code_util__goal_may_alloc_temp_frame(Goal, May)
).
code_util__goal_may_alloc_temp_frame_2(not(Goal), May) :-
code_util__goal_may_alloc_temp_frame(Goal, May).
code_util__goal_may_alloc_temp_frame_2(conj(Goals), May) :-
code_util__goal_list_may_alloc_temp_frame(Goals, May).
code_util__goal_may_alloc_temp_frame_2(par_conj(Goals, _), May) :-
code_util__goal_list_may_alloc_temp_frame(Goals, May).
code_util__goal_may_alloc_temp_frame_2(disj(Goals, _), May) :-
code_util__goal_list_may_alloc_temp_frame(Goals, May).
code_util__goal_may_alloc_temp_frame_2(switch(_Var, _Det, Cases, _), May) :-
code_util__cases_may_alloc_temp_frame(Cases, May).
code_util__goal_may_alloc_temp_frame_2(if_then_else(_Vars, C, T, E, _), May) :-
( code_util__goal_may_alloc_temp_frame(C, yes) ->
May = yes
; code_util__goal_may_alloc_temp_frame(T, yes) ->
May = yes
;
code_util__goal_may_alloc_temp_frame(E, May)
).
code_util__goal_may_alloc_temp_frame_2(bi_implication(G1, G2), May) :-
( code_util__goal_may_alloc_temp_frame(G1, yes) ->
May = yes
;
code_util__goal_may_alloc_temp_frame(G2, May)
).
:- pred code_util__goal_list_may_alloc_temp_frame(list(hlds_goal)::in,
bool::out) is det.
code_util__goal_list_may_alloc_temp_frame([], no).
code_util__goal_list_may_alloc_temp_frame([Goal | Goals], May) :-
( code_util__goal_may_alloc_temp_frame(Goal, yes) ->
May = yes
;
code_util__goal_list_may_alloc_temp_frame(Goals, May)
).
:- pred code_util__cases_may_alloc_temp_frame(list(case)::in, bool::out)
is det.
code_util__cases_may_alloc_temp_frame([], no).
code_util__cases_may_alloc_temp_frame([case(_, Goal) | Cases], May) :-
( code_util__goal_may_alloc_temp_frame(Goal, yes) ->
May = yes
;
code_util__cases_may_alloc_temp_frame(Cases, May)
).
%-----------------------------------------------------------------------------%
% Negate a condition.
% This is used mostly just to make the generated code more readable.
code_util__neg_rval(Rval, NegRval) :-
( code_util__neg_rval_2(Rval, NegRval0) ->
NegRval = NegRval0
;
NegRval = unop(not, Rval)
).
:- pred code_util__neg_rval_2(rval, rval).
:- mode code_util__neg_rval_2(in, out) is semidet.
code_util__neg_rval_2(const(Const), const(NegConst)) :-
(
Const = true, NegConst = false
;
Const = false, NegConst = true
).
code_util__neg_rval_2(unop(not, Rval), Rval).
code_util__neg_rval_2(binop(Op, X, Y), binop(NegOp, X, Y)) :-
code_util__neg_op(Op, NegOp).
:- pred code_util__neg_op(binary_op, binary_op).
:- mode code_util__neg_op(in, out) is semidet.
code_util__neg_op(eq, ne).
code_util__neg_op(ne, eq).
code_util__neg_op(<, >=).
code_util__neg_op(<=, >).
code_util__neg_op(>, <=).
code_util__neg_op(>=, <).
code_util__neg_op(str_eq, str_ne).
code_util__neg_op(str_ne, str_eq).
code_util__neg_op(str_lt, str_ge).
code_util__neg_op(str_le, str_gt).
code_util__neg_op(str_gt, str_le).
code_util__neg_op(str_ge, str_lt).
code_util__neg_op(float_eq, float_ne).
code_util__neg_op(float_ne, float_eq).
code_util__neg_op(float_lt, float_ge).
code_util__neg_op(float_le, float_gt).
code_util__neg_op(float_gt, float_le).
code_util__neg_op(float_ge, float_lt).
code_util__negate_the_test([], _) :-
error("code_util__negate_the_test on empty list").
code_util__negate_the_test([Instr0 | Instrs0], Instrs) :-
( Instr0 = if_val(Test, Target) - Comment ->
code_util__neg_rval(Test, NewTest),
Instrs = [if_val(NewTest, Target) - Comment]
;
code_util__negate_the_test(Instrs0, Instrs1),
Instrs = [Instr0 | Instrs1]
).
%-----------------------------------------------------------------------------%
code_util__cons_id_to_tag(int_const(X), _, _, int_constant(X)).
code_util__cons_id_to_tag(float_const(X), _, _, float_constant(X)).
code_util__cons_id_to_tag(string_const(X), _, _, string_constant(X)).
code_util__cons_id_to_tag(code_addr_const(P,M), _, _, code_addr_constant(P,M)).
code_util__cons_id_to_tag(pred_const(P,M,E), _, _, pred_closure_tag(P,M,E)).
code_util__cons_id_to_tag(type_ctor_info_const(M,T,A), _, _,
type_ctor_info_constant(M,T,A)).
code_util__cons_id_to_tag(base_typeclass_info_const(M,C,_,N), _, _,
base_typeclass_info_constant(M,C,N)).
code_util__cons_id_to_tag(tabling_pointer_const(PredId,ProcId), _, _,
tabling_pointer_constant(PredId,ProcId)).
code_util__cons_id_to_tag(cons(Name, Arity), Type, ModuleInfo, Tag) :-
(
% handle the `character' type specially
Type = term__functor(term__atom("character"), [], _),
Name = unqualified(ConsName),
string__char_to_string(Char, ConsName)
->
char__to_int(Char, CharCode),
Tag = int_constant(CharCode)
;
% Tuples do not need a tag. Note that unary tuples are not
% treated as no_tag types. There's no reason why they
% couldn't be, it's just not worth the effort.
type_is_tuple(Type, _)
->
Tag = unshared_tag(0)
;
% Use the type to determine the type_id
( type_to_type_id(Type, TypeId0, _) ->
TypeId = TypeId0
;
% the type-checker should ensure that this never happens
error("code_util__cons_id_to_tag: invalid type")
),
% Given the type_id, lookup up the constructor tag
% table for that type
module_info_types(ModuleInfo, TypeTable),
map__lookup(TypeTable, TypeId, TypeDefn),
hlds_data__get_type_defn_body(TypeDefn, TypeBody),
(
TypeBody = du_type(_, ConsTable0, _, _)
->
ConsTable = ConsTable0
;
% this should never happen
error(
"code_util__cons_id_to_tag: type is not d.u. type?"
)
),
% Finally look up the cons_id in the table
map__lookup(ConsTable, cons(Name, Arity), Tag)
).
%-----------------------------------------------------------------------------%
code_util__cannot_stack_flush(GoalExpr - _) :-
code_util__cannot_stack_flush_2(GoalExpr).
:- pred code_util__cannot_stack_flush_2(hlds_goal_expr).
:- mode code_util__cannot_stack_flush_2(in) is semidet.
code_util__cannot_stack_flush_2(unify(_, _, _, Unify, _)) :-
Unify \= complicated_unify(_, _, _).
code_util__cannot_stack_flush_2(call(_, _, _, BuiltinState, _, _)) :-
BuiltinState = inline_builtin.
code_util__cannot_stack_flush_2(conj(Goals)) :-
code_util__cannot_stack_flush_goals(Goals).
code_util__cannot_stack_flush_2(switch(_, _, Cases, _)) :-
code_util__cannot_stack_flush_cases(Cases).
:- pred code_util__cannot_stack_flush_goals(list(hlds_goal)).
:- mode code_util__cannot_stack_flush_goals(in) is semidet.
code_util__cannot_stack_flush_goals([]).
code_util__cannot_stack_flush_goals([Goal | Goals]) :-
code_util__cannot_stack_flush(Goal),
code_util__cannot_stack_flush_goals(Goals).
:- pred code_util__cannot_stack_flush_cases(list(case)).
:- mode code_util__cannot_stack_flush_cases(in) is semidet.
code_util__cannot_stack_flush_cases([]).
code_util__cannot_stack_flush_cases([case(_, Goal) | Cases]) :-
code_util__cannot_stack_flush(Goal),
code_util__cannot_stack_flush_cases(Cases).
%-----------------------------------------------------------------------------%
code_util__cannot_fail_before_stack_flush(GoalExpr - GoalInfo) :-
goal_info_get_determinism(GoalInfo, Detism),
determinism_components(Detism, CanFail, _),
( CanFail = cannot_fail ->
true
;
code_util__cannot_fail_before_stack_flush_2(GoalExpr)
).
:- pred code_util__cannot_fail_before_stack_flush_2(hlds_goal_expr).
:- mode code_util__cannot_fail_before_stack_flush_2(in) is semidet.
code_util__cannot_fail_before_stack_flush_2(conj(Goals)) :-
code_util__cannot_fail_before_stack_flush_conj(Goals).
:- pred code_util__cannot_fail_before_stack_flush_conj(list(hlds_goal)).
:- mode code_util__cannot_fail_before_stack_flush_conj(in) is semidet.
code_util__cannot_fail_before_stack_flush_conj([]).
code_util__cannot_fail_before_stack_flush_conj([Goal | Goals]) :-
Goal = GoalExpr - GoalInfo,
(
(
GoalExpr = call(_, _, _, BuiltinState, _, _),
BuiltinState \= inline_builtin
;
GoalExpr = generic_call(_, _, _, _)
)
->
true
;
goal_info_get_determinism(GoalInfo, Detism),
determinism_components(Detism, cannot_fail, _)
->
code_util__cannot_fail_before_stack_flush_conj(Goals)
;
fail
).
%-----------------------------------------------------------------------------%
code_util__count_recursive_calls(Goal - _, PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_2(Goal, PredId, ProcId, Min, Max).
:- pred code_util__count_recursive_calls_2(hlds_goal_expr, pred_id, proc_id,
int, int).
:- mode code_util__count_recursive_calls_2(in, in, in, out, out) is det.
code_util__count_recursive_calls_2(not(Goal), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(some(_, _, Goal),
PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(unify(_, _, _, _, _), _, _, 0, 0).
code_util__count_recursive_calls_2(generic_call(_, _, _, _), _, _,
0, 0).
code_util__count_recursive_calls_2(pragma_foreign_code(_, _, _, _, _, _, _, _),
_, _, 0, 0).
code_util__count_recursive_calls_2(call(CallPredId, CallProcId, _, _, _, _),
PredId, ProcId, Count, Count) :-
(
PredId = CallPredId,
ProcId = CallProcId
->
Count = 1
;
Count = 0
).
code_util__count_recursive_calls_2(conj(Goals), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_conj(Goals, PredId, ProcId, 0, 0,
Min, Max).
code_util__count_recursive_calls_2(par_conj(Goals, _), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_conj(Goals, PredId, ProcId, 0, 0, Min, Max).
code_util__count_recursive_calls_2(disj(Goals, _), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_disj(Goals, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(switch(_, _, Cases, _), PredId, ProcId,
Min, Max) :-
code_util__count_recursive_calls_cases(Cases, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(if_then_else(_, Cond, Then, Else, _),
PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls(Cond, PredId, ProcId, CMin, CMax),
code_util__count_recursive_calls(Then, PredId, ProcId, TMin, TMax),
code_util__count_recursive_calls(Else, PredId, ProcId, EMin, EMax),
CTMin is CMin + TMin,
CTMax is CMax + TMax,
int__min(CTMin, EMin, Min),
int__max(CTMax, EMax, Max).
code_util__count_recursive_calls_2(bi_implication(_, _),
_, _, _, _) :-
% these should have been expanded out by now
error("code_util__count_recursive_calls_2: unexpected bi_implication").
:- pred code_util__count_recursive_calls_conj(list(hlds_goal),
pred_id, proc_id, int, int, int, int).
:- mode code_util__count_recursive_calls_conj(in, in, in, in, in, out, out)
is det.
code_util__count_recursive_calls_conj([], _, _, Min, Max, Min, Max).
code_util__count_recursive_calls_conj([Goal | Goals], PredId, ProcId,
Min0, Max0, Min, Max) :-
code_util__count_recursive_calls(Goal, PredId, ProcId, Min1, Max1),
Min2 is Min0 + Min1,
Max2 is Max0 + Max1,
code_util__count_recursive_calls_conj(Goals, PredId, ProcId,
Min2, Max2, Min, Max).
:- pred code_util__count_recursive_calls_disj(list(hlds_goal),
pred_id, proc_id, int, int).
:- mode code_util__count_recursive_calls_disj(in, in, in, out, out) is det.
code_util__count_recursive_calls_disj([], _, _, 0, 0).
code_util__count_recursive_calls_disj([Goal | Goals], PredId, ProcId,
Min, Max) :-
( Goals = [] ->
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min, Max)
;
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min0, Max0),
code_util__count_recursive_calls_disj(Goals, PredId, ProcId,
Min1, Max1),
int__min(Min0, Min1, Min),
int__max(Max0, Max1, Max)
).
:- pred code_util__count_recursive_calls_cases(list(case),
pred_id, proc_id, int, int).
:- mode code_util__count_recursive_calls_cases(in, in, in, out, out) is det.
code_util__count_recursive_calls_cases([], _, _, _, _) :-
error("empty cases in code_util__count_recursive_calls_cases").
code_util__count_recursive_calls_cases([case(_, Goal) | Cases], PredId, ProcId,
Min, Max) :-
( Cases = [] ->
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min, Max)
;
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min0, Max0),
code_util__count_recursive_calls_cases(Cases, PredId, ProcId,
Min1, Max1),
int__min(Min0, Min1, Min),
int__max(Max0, Max1, Max)
).
%-----------------------------------------------------------------------------%
code_util__lvals_in_lvals([], []).
code_util__lvals_in_lvals([First | Rest], Lvals) :-
code_util__lvals_in_lval(First, FirstLvals),
code_util__lvals_in_lvals(Rest, RestLvals),
list__append(FirstLvals, RestLvals, Lvals).
code_util__lvals_in_rval(lval(Lval), [Lval | Lvals]) :-
code_util__lvals_in_lval(Lval, Lvals).
code_util__lvals_in_rval(var(_), []).
code_util__lvals_in_rval(create(_, _, _, _, _, _, _), []).
code_util__lvals_in_rval(mkword(_, Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_rval(const(_), []).
code_util__lvals_in_rval(unop(_, Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_rval(binop(_, Rval1, Rval2), Lvals) :-
code_util__lvals_in_rval(Rval1, Lvals1),
code_util__lvals_in_rval(Rval2, Lvals2),
list__append(Lvals1, Lvals2, Lvals).
code_util__lvals_in_rval(mem_addr(MemRef), Lvals) :-
code_util__lvals_in_mem_ref(MemRef, Lvals).
code_util__lvals_in_lval(reg(_, _), []).
code_util__lvals_in_lval(stackvar(_), []).
code_util__lvals_in_lval(framevar(_), []).
code_util__lvals_in_lval(succip, []).
code_util__lvals_in_lval(maxfr, []).
code_util__lvals_in_lval(curfr, []).
code_util__lvals_in_lval(succip(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(redofr(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(redoip(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(succfr(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(prevfr(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(hp, []).
code_util__lvals_in_lval(sp, []).
code_util__lvals_in_lval(field(_, Rval1, Rval2), Lvals) :-
code_util__lvals_in_rval(Rval1, Lvals1),
code_util__lvals_in_rval(Rval2, Lvals2),
list__append(Lvals1, Lvals2, Lvals).
code_util__lvals_in_lval(lvar(_), []).
code_util__lvals_in_lval(temp(_, _), []).
code_util__lvals_in_lval(mem_ref(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
:- pred code_util__lvals_in_mem_ref(mem_ref, list(lval)).
:- mode code_util__lvals_in_mem_ref(in, out) is det.
code_util__lvals_in_mem_ref(stackvar_ref(_), []).
code_util__lvals_in_mem_ref(framevar_ref(_), []).
code_util__lvals_in_mem_ref(heap_ref(Rval, _, _), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
%-----------------------------------------------------------------------------%