Files
mercury/library/std_util.m
Zoltan Somogyi fcccbd166f Reorganize deconstruct.m so that each predicate that deconstructs terms has
Estimated hours taken: 12
Branches: main

Reorganize deconstruct.m so that each predicate that deconstructs terms has
three variants:

- One that aborts when attempting to deconstruct non-canonical terms.

- One that succeeds when attempting to deconstruct a term of a non-canonical
  type, but returns a constant such as "<<noncanonical>>" for such
  deconstructions. It still aborts when deconstructing a noncanonical term
  of an ordinarily canonical type, which can happen with HAL if the term
  is currently a variable.

- One that succeeds when attempting to deconstruct non-canonical terms of both
  kinds, but whose determinism requires its caller to be in a committed choice
  context.

Each of the predicates function, arg, named_arg, deconstruct and
limited_deconstruct now has an extra argument that selects one of the three
variants above. Each of these predicates now has three modes, one for each
value of this argument. The separate predicates with _cc at the ends of their
names are now superseded by one of these modes.

At the same time, I also eliminated the distinction between arg and argument.
Arg used to check if the returned argument was of the expected type, and fail
if it wasn't, while argument used to return a univ. The new arg now returns
a value of an existential type, which the caller can now typecheck or put
into a univ as it pleases.

The descriptions of the changes:

library/deconstruct.m:
	Implement the changes discussed above. Work around a bug by making
	the foreign_procs return a univ from which we later extract the value;
	this inefficiency should be fixed later, when the typechecker has been
	fixed to allow different clauses to return existentially typed values.

library/std_util.m:
	Reimplement the forwarding predicates that call deconstruct.m in terms
	of its new interface.

library/io.m:
	Make use of the new functionality in deconstruct.m to offer versions
	of io__print and io__write that allow the user to choose how to print
	noncanonical terms.

library/private_builtin.m:
	Export the `sorry' predicate for use in deconstruct.m and elsewhere.

runtime/mercury_deconstruct.[ch]:
runtime/mercury_ml_expand_body.h:
runtime/mercury_ml_arg_body.h:
runtime/mercury_ml_deconstruct_body.h:
runtime/mercury_ml_functor_body.h:
	Implement the new functionality.

library/store.m:
extras/trailed_update/tr_store.m:
	Conform to the new interfaces of some functions in the updated files
	in the runtime.

tests/debugger/polymorphic_output.exp*:
	Update for an updated error message.

tests/hard_coded/deconstruct_arg.{m,exp*}:
	Update the test case to test the committed choice versions of the
	deconstruction predicates as well as the usual versions. (The aborting
	versions cannot all be tested in a single test case.)
2002-02-04 05:23:10 +00:00

1567 lines
52 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1994-2002 The University of Melbourne.
% This file may only be copied under the terms of the GNU Library General
% Public License - see the file COPYING.LIB in the Mercury distribution.
%-----------------------------------------------------------------------------%
% File: std_util.m.
% Main author: fjh.
% Stability: medium.
% This file is intended for all the useful standard utilities
% that don't belong elsewhere, like <stdlib.h> in C.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- module std_util.
:- interface.
:- import_module list, set, bool.
:- import_module type_desc.
%-----------------------------------------------------------------------------%
% The universal type `univ'.
% An object of type `univ' can hold the type and value of an object of any
% other type.
:- type univ.
% type_to_univ(Object, Univ):
% true iff the type stored in `Univ' is the same as the type
% of `Object', and the value stored in `Univ' is equal to the
% value of `Object'.
%
% Operational, the forwards mode converts an object to type `univ',
% while the reverse mode converts the value stored in `Univ'
% to the type of `Object', but fails if the type stored in `Univ'
% does not match the type of `Object'.
%
:- pred type_to_univ(T, univ).
:- mode type_to_univ(di, uo) is det.
:- mode type_to_univ(in, out) is det.
:- mode type_to_univ(out, in) is semidet.
% univ_to_type(Univ, Object) :- type_to_univ(Object, Univ).
%
:- pred univ_to_type(univ, T).
:- mode univ_to_type(in, out) is semidet.
:- mode univ_to_type(out, in) is det.
:- mode univ_to_type(uo, di) is det.
% The function univ/1 provides the same
% functionality as type_to_univ/2.
% univ(Object) = Univ :- type_to_univ(Object, Univ).
%
:- func univ(T) = univ.
:- mode univ(in) = out is det.
:- mode univ(di) = uo is det.
:- mode univ(out) = in is semidet.
% det_univ_to_type(Univ, Object):
% the same as the forwards mode of univ_to_type, but
% abort if univ_to_type fails.
%
:- pred det_univ_to_type(univ, T).
:- mode det_univ_to_type(in, out) is det.
% univ_type(Univ):
% returns the type_desc for the type stored in `Univ'.
%
:- func univ_type(univ) = type_desc__type_desc.
% univ_value(Univ):
% returns the value of the object stored in Univ.
:- some [T] func univ_value(univ) = T.
%-----------------------------------------------------------------------------%
% The "maybe" type.
:- type maybe(T) ---> no ; yes(T).
:- inst maybe(I) ---> no ; yes(I).
:- type maybe_error ---> ok ; error(string).
:- type maybe_error(T) ---> ok(T) ; error(string).
:- inst maybe_error(I) ---> ok(I) ; error(ground).
% map_maybe(P, yes(Value0), yes(Value)) :- P(Value, Value).
% map_maybe(_, no, no).
%
:- pred map_maybe(pred(T, U), maybe(T), maybe(U)).
:- mode map_maybe(pred(in, out) is det, in, out) is det.
:- mode map_maybe(pred(in, out) is semidet, in, out) is semidet.
:- mode map_maybe(pred(in, out) is multi, in, out) is multi.
:- mode map_maybe(pred(in, out) is nondet, in, out) is nondet.
% map_maybe(F, yes(Value)) = yes(F(Value)).
% map_maybe(_, no) = no.
%
:- func map_maybe(func(T) = U, maybe(T)) = maybe(U).
%-----------------------------------------------------------------------------%
% The "unit" type - stores no information at all.
:- type unit ---> unit.
%-----------------------------------------------------------------------------%
% The "pair" type. Useful for many purposes.
:- type pair(T1, T2) ---> (T1 - T2).
:- type pair(T) == pair(T,T).
:- inst pair(I1, I2) ---> (I1 - I2).
:- inst pair(I) == pair(I,I).
% Return the first element of the pair.
:- pred fst(pair(X,Y)::in, X::out) is det.
:- func fst(pair(X,Y)) = X.
% Return the second element of the pair.
:- pred snd(pair(X,Y)::in, Y::out) is det.
:- func snd(pair(X,Y)) = Y.
:- func pair(T1, T2) = pair(T1, T2).
%-----------------------------------------------------------------------------%
% solutions/2 collects all the solutions to a predicate and
% returns them as a list in sorted order, with duplicates removed.
% solutions_set/2 returns them as a set.
% unsorted_solutions/2 returns them as an unsorted list with possible
% duplicates; since there are an infinite number of such lists,
% this must be called from a context in which only a single solution
% is required.
:- pred solutions(pred(T), list(T)).
:- mode solutions(pred(out) is multi, out(non_empty_list)) is det.
:- mode solutions(pred(out) is nondet, out) is det.
:- func solutions(pred(T)) = list(T).
:- mode solutions(pred(out) is multi) = out(non_empty_list) is det.
:- mode solutions(pred(out) is nondet) = out is det.
:- pred solutions_set(pred(T), set(T)).
:- mode solutions_set(pred(out) is multi, out) is det.
:- mode solutions_set(pred(out) is nondet, out) is det.
:- func solutions_set(pred(T)) = set(T).
:- mode solutions_set(pred(out) is multi) = out is det.
:- mode solutions_set(pred(out) is nondet) = out is det.
:- pred unsorted_solutions(pred(T), list(T)).
:- mode unsorted_solutions(pred(out) is multi, out(non_empty_list))
is cc_multi.
:- mode unsorted_solutions(pred(out) is nondet, out) is cc_multi.
:- func aggregate(pred(T), func(T, U) = U, U) = U.
:- mode aggregate(pred(out) is multi, func(in, in) = out is det,
in) = out is det.
:- mode aggregate(pred(out) is nondet, func(in, in) = out is det,
in) = out is det.
%-----------------------------------------------------------------------------%
% aggregate/4 generates all the solutions to a predicate,
% sorts them and removes duplicates, then applies an accumulator
% predicate to each solution in turn:
%
% aggregate(Generator, Accumulator, Acc0, Acc) <=>
% solutions(Generator, Solutions),
% list__foldl(Accumulator, Solutions, Acc0, Acc).
%
:- pred aggregate(pred(T), pred(T, U, U), U, U).
:- mode aggregate(pred(out) is multi, pred(in, in, out) is det,
in, out) is det.
:- mode aggregate(pred(out) is multi, pred(in, di, uo) is det,
di, uo) is det.
:- mode aggregate(pred(out) is nondet, pred(in, di, uo) is det,
di, uo) is det.
:- mode aggregate(pred(out) is nondet, pred(in, in, out) is det,
in, out) is det.
% aggregate2/6 generates all the solutions to a predicate,
% sorts them and removes duplicates, then applies an accumulator
% predicate to each solution in turn:
%
% aggregate2(Generator, Accumulator, AccA0, AccA, AccB0, AccB) <=>
% solutions(Generator, Solutions),
% list__foldl2(Accumulator, Solutions, AccA0, AccA, AccB0, AccB).
%
:- pred aggregate2(pred(T), pred(T, U, U, V, V), U, U, V, V).
:- mode aggregate2(pred(out) is multi, pred(in, in, out, in, out) is det,
in, out, in, out) is det.
:- mode aggregate2(pred(out) is multi, pred(in, in, out, di, uo) is det,
in, out, di, uo) is det.
:- mode aggregate2(pred(out) is nondet, pred(in, in, out, di, uo) is det,
in, out, di, uo) is det.
:- mode aggregate2(pred(out) is nondet, pred(in, in, out, in, out) is det,
in, out, in, out) is det.
% unsorted_aggregate/4 generates all the solutions to a predicate
% and applies an accumulator predicate to each solution in turn.
% Declaratively, the specification is as follows:
%
% unsorted_aggregate(Generator, Accumulator, Acc0, Acc) <=>
% unsorted_solutions(Generator, Solutions),
% list__foldl(Accumulator, Solutions, Acc0, Acc).
%
% Operationally, however, unsorted_aggregate/4 will call the
% Accumulator for each solution as it is obtained, rather than
% first building a list of all the solutions.
:- pred unsorted_aggregate(pred(T), pred(T, U, U), U, U).
:- mode unsorted_aggregate(pred(out) is multi, pred(in, in, out) is det,
in, out) is cc_multi.
:- mode unsorted_aggregate(pred(out) is multi, pred(in, di, uo) is det,
di, uo) is cc_multi.
:- mode unsorted_aggregate(pred(muo) is multi, pred(mdi, di, uo) is det,
di, uo) is cc_multi.
:- mode unsorted_aggregate(pred(out) is nondet, pred(in, di, uo) is det,
di, uo) is cc_multi.
:- mode unsorted_aggregate(pred(out) is nondet, pred(in, in, out) is det,
in, out) is cc_multi.
:- mode unsorted_aggregate(pred(muo) is nondet, pred(mdi, di, uo) is det,
di, uo) is cc_multi.
% This is a generalization of unsorted_aggregate which allows the
% iteration to stop before all solutions have been found.
% Declaratively, the specification is as follows:
%
% do_while(Generator, Filter) -->
% { unsorted_solutions(Generator, Solutions) },
% do_while_2(Solutions, Filter).
%
% do_while_2([], _) --> [].
% do_while_2([X|Xs], Filter) -->
% Filter(X, More),
% (if { More = yes } then
% do_while_2(Xs, Filter)
% else
% { true }
% ).
%
% Operationally, however, do_while/4 will call the Filter
% predicate for each solution as it is obtained, rather than
% first building a list of all the solutions.
%
:- pred do_while(pred(T), pred(T, bool, T2, T2), T2, T2).
:- mode do_while(pred(out) is multi, pred(in, out, in, out) is det, in, out)
is cc_multi.
:- mode do_while(pred(out) is nondet, pred(in, out, in, out) is det, in, out)
is cc_multi.
:- mode do_while(pred(out) is multi, pred(in, out, di, uo) is det, di, uo)
is cc_multi.
:- mode do_while(pred(out) is nondet, pred(in, out, di, uo) is det, di, uo)
is cc_multi.
%-----------------------------------------------------------------------------%
% General purpose higher-order programming constructs.
% compose(F, G, X) = F(G(X))
%
% Function composition.
% XXX It would be nice to have infix `o' or somesuch for this.
:- func compose(func(T2) = T3, func(T1) = T2, T1) = T3.
% converse(F, X, Y) = F(Y, X)
:- func converse(func(T1, T2) = T3, T2, T1) = T3.
% pow(F, N, X) = F^N(X)
%
% Function exponentiation.
:- func pow(func(T) = T, int, T) = T.
% The identity function.
%
:- func id(T) = T.
%-----------------------------------------------------------------------------%
% maybe_pred(Pred, X, Y) takes a closure Pred which transforms an
% input semideterministically. If calling the closure with the input
% X succeeds, Y is bound to `yes(Z)' where Z is the output of the
% call, or to `no' if the call fails.
%
:- pred maybe_pred(pred(T1, T2), T1, maybe(T2)).
:- mode maybe_pred(pred(in, out) is semidet, in, out) is det.
:- func maybe_func(func(T1) = T2, T1) = maybe(T2).
:- mode maybe_func(func(in) = out is semidet, in) = out is det.
%-----------------------------------------------------------------------------%
% isnt(Pred, X) <=> not Pred(X)
%
% This is useful in higher order programming, e.g.
% Odds = list__filter(odd, Xs)
% Evens = list__filter(isnt(odd), Xs)
%
:- pred isnt(pred(T), T).
:- mode isnt(pred(in) is semidet, in) is semidet.
%-----------------------------------------------------------------------------%
% `semidet_succeed' is exactly the same as `true', except that
% the compiler thinks that it is semi-deterministic. You can
% use calls to `semidet_succeed' to suppress warnings about
% determinism declarations which could be stricter.
% Similarly, `semidet_fail' is like `fail' except that its
% determinism is semidet rather than failure, and
% `cc_multi_equal(X,Y)' is the same as `X=Y' except that it
% is cc_multi rather than det.
:- pred semidet_succeed is semidet.
:- pred semidet_fail is semidet.
:- pred cc_multi_equal(T, T).
:- mode cc_multi_equal(di, uo) is cc_multi.
:- mode cc_multi_equal(in, out) is cc_multi.
%-----------------------------------------------------------------------------%
% The `type_desc' and `type_ctor_desc' types: these
% provide access to type information.
% A type_desc represents a type, e.g. `list(int)'.
% A type_ctor_desc represents a type constructor, e.g. `list/1'.
:- type type_desc == type_desc__type_desc.
:- type type_ctor_desc == type_desc__type_ctor_desc.
% Type_info and type_ctor_info are the old names for type_desc and
% type_ctor_desc. They should not be used by new software.
:- type type_info == type_desc__type_desc.
:- type type_ctor_info == type_desc__type_ctor_desc.
% (Note: it is not possible for the type of a variable to be an
% unbound type variable; if there are no constraints on a type
% variable, then the typechecker will use the type `void'.
% `void' is a special (builtin) type that has no constructors.
% There is no way of creating an object of type `void'.
% `void' is not considered to be a discriminated union, so
% get_functor/5 and construct/3 will fail if used upon a value
% of this type.)
% The function type_of/1 returns a representation of the type
% of its argument.
%
:- func type_of(T) = type_desc__type_desc.
:- mode type_of(unused) = out is det.
% The predicate has_type/2 is basically an existentially typed
% inverse to the function type_of/1. It constrains the type
% of the first argument to be the type represented by the
% second argument.
:- some [T] pred has_type(T::unused, type_desc__type_desc::in) is det.
% type_name(Type) returns the name of the specified type
% (e.g. type_name(type_of([2,3])) = "list:list(int)").
% Any equivalence types will be fully expanded.
% Builtin types (those defined in builtin.m) will
% not have a module qualifier.
%
:- func type_name(type_desc__type_desc) = string.
% type_ctor_and_args(Type, TypeCtor, TypeArgs):
% True iff `TypeCtor' is a representation of the top-level
% type constructor for `Type', and `TypeArgs' is a list
% of the corresponding type arguments to `TypeCtor',
% and `TypeCtor' is not an equivalence type.
%
% For example, type_ctor_and_args(type_of([2,3]), TypeCtor,
% TypeArgs) will bind `TypeCtor' to a representation of the
% type constructor list/1, and will bind `TypeArgs' to the list
% `[Int]', where `Int' is a representation of the type `int'.
%
% Note that the requirement that `TypeCtor' not be an
% equivalence type is fulfilled by fully expanding any
% equivalence types. For example, if you have a declaration
% `:- type foo == bar.', then type_ctor_and_args/3 will always
% return a representation of type constructor `bar/0', not `foo/0'.
% (If you don't want them expanded, you can use the reverse mode
% of make_type/2 instead.)
%
:- pred type_ctor_and_args(type_desc__type_desc, type_desc__type_ctor_desc,
list(type_desc__type_desc)).
:- mode type_ctor_and_args(in, out, out) is det.
% type_ctor(Type) = TypeCtor :-
% type_ctor_and_args(Type, TypeCtor, _).
%
:- func type_ctor(type_desc__type_desc) = type_desc__type_ctor_desc.
% type_args(Type) = TypeArgs :-
% type_ctor_and_args(Type, _, TypeArgs).
%
:- func type_args(type_desc__type_desc) = list(type_desc__type_desc).
% type_ctor_name(TypeCtor) returns the name of specified
% type constructor.
% (e.g. type_ctor_name(type_ctor(type_of([2,3]))) = "list").
%
:- func type_ctor_name(type_desc__type_ctor_desc) = string.
% type_ctor_module_name(TypeCtor) returns the module name of specified
% type constructor.
% (e.g. type_ctor_module_name(type_ctor(type_of(2))) = "builtin").
%
:- func type_ctor_module_name(type_desc__type_ctor_desc) = string.
% type_ctor_arity(TypeCtor) returns the arity of specified
% type constructor.
% (e.g. type_ctor_arity(type_ctor(type_of([2,3]))) = 1).
%
:- func type_ctor_arity(type_desc__type_ctor_desc) = int.
% type_ctor_name_and_arity(TypeCtor, ModuleName, TypeName, Arity) :-
% Name = type_ctor_name(TypeCtor),
% ModuleName = type_ctor_module_name(TypeCtor),
% Arity = type_ctor_arity(TypeCtor).
%
:- pred type_ctor_name_and_arity(type_desc__type_ctor_desc::in, string::out,
string::out, int::out) is det.
% make_type(TypeCtor, TypeArgs) = Type:
% True iff `Type' is a type constructed by applying
% the type constructor `TypeCtor' to the type arguments
% `TypeArgs'.
%
% Operationally, the forwards mode returns the type formed by
% applying the specified type constructor to the specified
% argument types, or fails if the length of TypeArgs is not the
% same as the arity of TypeCtor. The reverse mode returns a
% type constructor and its argument types, given a type_desc;
% the type constructor returned may be an equivalence type
% (and hence this reverse mode of make_type/2 may be more useful
% for some purposes than the type_ctor/1 function).
%
:- func make_type(type_desc__type_ctor_desc, list(type_desc__type_desc)) =
type_desc__type_desc.
:- mode make_type(in, in) = out is semidet.
:- mode make_type(out, out) = in is cc_multi.
% det_make_type(TypeCtor, TypeArgs):
%
% Returns the type formed by applying the specified type
% constructor to the specified argument types. Aborts if the
% length of `TypeArgs' is not the same as the arity of `TypeCtor'.
%
:- func det_make_type(type_desc__type_ctor_desc, list(type_desc__type_desc)) =
type_desc__type_desc.
:- mode det_make_type(in, in) = out is det.
%-----------------------------------------------------------------------------%
% num_functors(TypeInfo)
%
% Returns the number of different functors for the top-level
% type constructor of the type specified by TypeInfo, or -1
% if the type is not a discriminated union type.
%
% The functors of a discriminated union type are numbered from
% zero to N-1, where N is the value returned by num_functors.
% The functors are numbered in lexicographic order. If two
% functors have the same name, the one with the lower arity
% will have the lower number.
%
:- func num_functors(type_desc__type_desc) = int.
% get_functor(Type, FunctorNumber, FunctorName, Arity, ArgTypes)
%
% Binds FunctorName and Arity to the name and arity of functor number
% FunctorNumber for the specified type, and binds ArgTypes to the
% type_descs for the types of the arguments of that functor.
% Fails if the type is not a discriminated union type, or if
% FunctorNumber is out of range.
%
:- pred get_functor(type_desc__type_desc::in, int::in, string::out, int::out,
list(type_desc__type_desc)::out) is semidet.
% get_functor(Type, FunctorNumber, FunctorName, Arity, ArgTypes,
% ArgNames)
%
% Binds FunctorName and Arity to the name and arity of functor number
% FunctorNumber for the specified type, ArgTypes to the type_descs
% for the types of the arguments of that functor, and ArgNames to the
% field name of each functor argument, if any. Fails if the type is
% not a discriminated union type, or if FunctorNumber is out of range.
%
:- pred get_functor(type_desc__type_desc::in, int::in, string::out, int::out,
list(type_desc__type_desc)::out, list(maybe(string))::out)
is semidet.
% get_functor_ordinal(Type, I, Ordinal)
%
% Returns Ordinal, where Ordinal is the position in declaration order
% for the specified type of the function symbol that is in position I
% in lexicographic order. Fails if the type is not a discriminated
% union type, or if I is out of range.
:- pred get_functor_ordinal(type_desc__type_desc::in, int::in, int::out)
is semidet.
% construct(TypeInfo, I, Args) = Term
%
% Returns a term of the type specified by TypeInfo whose functor
% is functor number I of the type given by TypeInfo, and whose
% arguments are given by Args. Fails if the type is not a
% discriminated union type, or if I is out of range, or if the
% number of arguments supplied doesn't match the arity of the selected
% functor, or if the types of the arguments do not match
% the expected argument types of that functor.
%
:- func construct(type_desc__type_desc, int, list(univ)) = univ.
:- mode construct(in, in, in) = out is semidet.
% construct_tuple(Args) = Term
%
% Returns a tuple whose arguments are given by Args.
:- func construct_tuple(list(univ)) = univ.
%-----------------------------------------------------------------------------%
% functor, argument and deconstruct and their variants take any type
% (including univ), and return representation information for that type.
%
% The string representation of the functor that these predicates
% return is:
%
% - for user defined types, the functor that is given
% in the type definition. For lists, this
% means the functors [|]/2 and []/0 are used, even if
% the list uses the [....] shorthand.
% - for integers, the string is a base 10 number,
% positive integers have no sign.
% - for floats, the string is a floating point,
% base 10 number, positive floating point numbers have
% no sign.
% - for strings, the string, inside double quotation marks
% - for characters, the character inside single quotation marks
% - for predicates, the string <<predicate>>
% - for functions, the string <<function>>
% - for tuples, the string {}
% - for arrays, the string <<array>>
%
% The arity that these predicates return is:
%
% - for user defined types, the arity of the functor.
% - for integers, zero.
% - for floats, zero.
% - for strings, zero.
% - for characters, zero.
% - for predicates and functions, zero; we do not return the
% number of arguments expected by the predicate or function.
% - for tuples, the number of elements in the tuple.
% - for arrays, the number of elements in the array.
% functor(Data, Functor, Arity)
%
% Given a data item (Data), binds Functor to a string
% representation of the functor and Arity to the arity of this
% data item. (Aborts if the type of Data is a type with a
% non-canonical representation, i.e. one for which there is a
% user-defined equality predicate.)
%
% Functor_cc succeeds even if the first argument is of a
% non-canonical type.
%
:- pred functor(T::in, string::out, int::out) is det.
:- pred functor_cc(T::in, string::out, int::out) is cc_multi.
% arg(Data, ArgumentIndex) = Argument
% argument(Data, ArgumentIndex) = ArgumentUniv
%
% Given a data item (Data) and an argument index
% (ArgumentIndex), starting at 0 for the first argument, binds
% Argument to that argument of the functor of the data item. If
% the argument index is out of range -- that is, greater than or
% equal to the arity of the functor or lower than 0 -- then
% the call fails. For argument/2 the argument returned has the
% type univ, which can store any type. For arg/2, if the
% argument has the wrong type, then the call fails.
% (Both abort if the type of Data is a type with a non-canonical
% representation, i.e. one for which there is a user-defined
% equality predicate.)
%
% arg_cc and argument_cc succeed even if the first argument is
% of a non-canonical type.
%
:- func arg(T::in, int::in) = (ArgT::out) is semidet.
:- pred arg_cc(T::in, int::in, ArgT::out) is cc_nondet.
:- func argument(T::in, int::in) = (univ::out) is semidet.
:- pred argument_cc(T::in, int::in, univ::out) is cc_nondet.
% named_argument(Data, ArgumentName) = ArgumentUniv
%
% Same as argument/2, except the chosen argument is specified by giving
% its name rather than its position. If Data has no argument with that
% name, named_argument fails.
%
% named_argument_cc succeeds even if the first argument is
% of a non-canonical type.
%
:- func named_argument(T::in, string::in) = (univ::out) is semidet.
:- pred named_argument_cc(T::in, string::in, univ::out) is cc_nondet.
% det_arg(Data, ArgumentIndex) = Argument
% det_argument(Data, ArgumentIndex) = ArgumentUniv
%
% Same as arg/2 and argument/2 respectively, except that
% for cases where arg/2 or argument/2 would fail,
% det_arg/2 or det_argument/2 will abort.
%
% det_arg_cc and det_argument_cc succeed even if the first argument is
% of a non-canonical type.
%
:- func det_arg(T::in, int::in) = (ArgT::out) is det.
:- pred det_arg_cc(T::in, int::in, ArgT::out) is cc_multi.
:- func det_argument(T::in, int::in) = (univ::out) is det.
:- pred det_argument_cc(T::in, int::in, univ::out) is cc_multi.
% det_named_argument(Data, ArgumentName) = ArgumentUniv
%
% Same as named_argument/2, except that for cases where
% named_argument/2 would fail, det_named_argument/2 will abort.
%
:- func det_named_argument(T::in, string::in) = (univ::out) is det.
:- pred det_named_argument_cc(T::in, string::in, univ::out) is cc_multi.
% deconstruct(Data, Functor, Arity, Arguments)
%
% Given a data item (Data), binds Functor to a string
% representation of the functor, Arity to the arity of this data
% item, and Arguments to a list of arguments of the functor.
% The arguments in the list are each of type univ.
% (Aborts if the type of Data is a type with a non-canonical
% representation, i.e. one for which there is a user-defined
% equality predicate.)
%
% The cost of calling deconstruct depends greatly on how many arguments
% Data has. If Data is an array, then each element of the array is
% considered one of its arguments. Therefore calling deconstruct
% on large arrays can take a very large amount of memory and a very
% long time. If you call deconstruct in a situation in which you may
% pass it a large array, you should probably use limited_deconstruct
% instead.
%
% deconstruct_cc succeeds even if the first argument is
% of a non-canonical type.
%
:- pred deconstruct(T::in, string::out, int::out, list(univ)::out) is det.
:- pred deconstruct_cc(T::in, string::out, int::out, list(univ)::out)
is cc_multi.
% limited_deconstruct(Data, MaxArity, Functor, Arity, Arguments)
%
% limited_deconstruct works like deconstruct, but if the arity of T is
% greater than MaxArity, limited_deconstruct fails. This is useful in
% avoiding bad performance in cases where Data may be a large array.
%
% limited_deconstruct_cc succeeds even if the first argument is
% of a non-canonical type.
%
:- pred limited_deconstruct(T::in, int::in, string::out,
int::out, list(univ)::out) is semidet.
:- pred limited_deconstruct_cc(T::in, int::in, string::out,
int::out, list(univ)::out) is cc_nondet.
%-----------------------------------------------------------------------------%
:- implementation.
:- interface.
% The rest of the interface is for use by implementors only.
% dynamic_cast(X, Y) succeeds with Y = X iff X has the same
% ground type as Y (so this may succeed if Y is of type
% list(int), say, but not if Y is of type list(T)).
%
:- pred dynamic_cast(T1::in, T2::out) is semidet.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module require, set, int, string, bool.
:- import_module construct, deconstruct.
% XXX This should not be necessary, but the current compiler is broken in that
% it puts foreign_proc clauses into deconstruct.opt without also putting the
% foreign_decl they require into deconstruct.opt as well.
:- pragma foreign_decl("C", "
#include ""mercury_deconstruct.h""
#include ""mercury_deconstruct_macros.h""
").
%-----------------------------------------------------------------------------%
map_maybe(_, no, no).
map_maybe(P, yes(T0), yes(T)) :- P(T0, T).
map_maybe(_, no) = no.
map_maybe(F, yes(T)) = yes(F(T)).
/****
Is this really useful?
% for use in lambda expressions where the type of functor '-' is ambiguous
:- pred pair(X, Y, pair(X, Y)).
:- mode pair(in, in, out) is det.
:- mode pair(out, out, in) is det.
pair(X, Y, X-Y).
****/
fst(X-_Y) = X.
fst(P,X) :-
X = fst(P).
snd(_X-Y) = Y.
snd(P,X) :-
X = snd(P).
maybe_pred(Pred, X, Y) :-
(
call(Pred, X, Z)
->
Y = yes(Z)
;
Y = no
).
%-----------------------------------------------------------------------------%
/*
** This section defines builtin_aggregate/4 which takes a closure of type
** pred(T) in which the remaining argument is output, and backtracks over
** solutions for this, using the second argument to aggregate them however the
** user wishes. This is basically a generalization of solutions/2.
*/
:- pred builtin_aggregate(pred(T), pred(T, U, U), U, U).
:- mode builtin_aggregate(pred(out) is multi, pred(in, in, out) is det,
in, out) is det. /* really cc_multi */
:- mode builtin_aggregate(pred(out) is multi, pred(in, di, uo) is det,
di, uo) is det. /* really cc_multi */
:- mode builtin_aggregate(pred(muo) is multi, pred(mdi, di, uo) is det,
di, uo) is det. /* really cc_multi */
:- mode builtin_aggregate(pred(out) is nondet, pred(in, di, uo) is det,
di, uo) is det. /* really cc_multi */
:- mode builtin_aggregate(pred(out) is nondet, pred(in, in, out) is det,
in, out) is det. /* really cc_multi */
:- mode builtin_aggregate(pred(muo) is nondet, pred(mdi, di, uo) is det,
di, uo) is det. /* really cc_multi */
/*
** In order to implement any sort of code that requires terms to survive
** backtracking, we need to (deeply) copy them out of the heap and into some
** other area before backtracking. The obvious thing to do then is just call
** the generator predicate, let it run to completion, and copy its result into
** another memory area (call it the solutions heap) before forcing
** backtracking. When we get the next solution, we do the same, this time
** passing the previous collection (which is still on the solutions heap) to
** the collector predicate. If the result of this operation contains the old
** collection as a part, then the deep copy operation is smart enough
** not to copy again. So this could be pretty efficient.
**
** But what if the collector predicate does something that copies the previous
** collection? Then on each solution, we'll copy the previous collection to
** the heap, and then deep copy it back to the solution heap. This means
** copying solutions order N**2 times, where N is the number of solutions. So
** this isn't as efficient as we hoped.
**
** So we use a slightly different approach. When we find a solution, we deep
** copy it to the solution heap. Then, before calling the collector code, we
** sneakily swap the runtime system's notion of which is the heap and which is
** the solutions heap. This ensures that any terms are constructed on the
** solutions heap. When this is complete, we swap them back, and force the
** engine to backtrack to get the next solution. And so on. After we've
** gotten the last solution, we do another deep copy to move the solution back
** to the 'real' heap, and reset the solutions heap pointer (which of course
** reclaims all the garbage of the collection process).
**
** Note that this will work with recursive calls to builtin_aggregate as
** well. If the recursive invocation occurs in the generator pred, there can
** be no problem because by the time the generator succeeds, the inner
** do_ call will have completed, copied its result from the solutions heap,
** and reset the solutions heap pointer. If the recursive invocation happens
** in the collector pred, then it will happen when the heap and solutions heap
** are 'swapped.' This will work out fine, because the real heap isn't needed
** while the collector pred is executing, and by the time the nested do_ is
** completed, the 'real' heap pointer will have been reset.
**
** If the collector predicate throws an exception while they are swapped,
** then the code for builtin_throw/1 will unswap the heaps.
** So we don't need to create our own exception handlers to here to
** cover that case.
**
** If we're using conservative GC, then all of the heap-swapping
** and copying operations are no-ops, so we get a "zero-copy" solution.
*/
% Note that the code for builtin_aggregate is very similar to the code
% for do_while (below).
:- pragma promise_pure(builtin_aggregate/4).
builtin_aggregate(GeneratorPred, CollectorPred, Accumulator0, Accumulator) :-
% Save some of the Mercury virtual machine registers
impure get_registers(HeapPtr, SolutionsHeapPtr, TrailPtr),
% Initialize the accumulator
% /* Mutvar := Accumulator0 */
impure new_mutvar(Accumulator0, Mutvar),
(
% Get a solution
GeneratorPred(Answer0),
% Check that the generator didn't leave any
% delayed goals outstanding
impure check_for_floundering(TrailPtr),
% Update the accumulator
% /* MutVar := CollectorPred(MutVar) */
impure swap_heap_and_solutions_heap,
impure partial_deep_copy(HeapPtr, Answer0, Answer),
impure get_mutvar(Mutvar, Acc0),
CollectorPred(Answer, Acc0, Acc1),
impure set_mutvar(Mutvar, Acc1),
impure swap_heap_and_solutions_heap,
% Force backtracking, so that we get the next solution.
% This will automatically reset the heap and trail.
fail
;
% There are no more solutions.
% So now we just need to copy the final value
% of the accumulator from the solutions heap
% back onto the ordinary heap, and then we can
% reset the solutions heap pointer.
% We also need to discard the trail ticket
% created by get_registers/3.
% /* Accumulator := MutVar */
impure get_mutvar(Mutvar, Accumulator1),
impure partial_deep_copy(SolutionsHeapPtr, Accumulator1,
Accumulator),
impure reset_solutions_heap(SolutionsHeapPtr),
impure discard_trail_ticket
).
% The code for do_while/4 is essentially the same as the code for
% builtin_aggregate (above). See the detailed comments above.
%
% XXX It would be nice to avoid the code duplication here,
% but it is a bit tricky -- we can't just use a lambda expression,
% because we'd need to specify the mode, but we want it to work
% for multiple modes. An alternative would be to use a typeclass,
% but typeclasses still don't work in `jump' or `fast' grades.
:- pragma promise_pure(do_while/4).
do_while(GeneratorPred, CollectorPred, Accumulator0, Accumulator) :-
impure get_registers(HeapPtr, SolutionsHeapPtr, TrailPtr),
impure new_mutvar(Accumulator0, Mutvar),
(
GeneratorPred(Answer0),
impure check_for_floundering(TrailPtr),
impure swap_heap_and_solutions_heap,
impure partial_deep_copy(HeapPtr, Answer0, Answer),
impure get_mutvar(Mutvar, Acc0),
CollectorPred(Answer, More, Acc0, Acc1),
impure set_mutvar(Mutvar, Acc1),
impure swap_heap_and_solutions_heap,
% if More = yes, then backtrack for the next solution.
% if More = no, then we're done.
More = no
;
true
),
impure get_mutvar(Mutvar, Accumulator1),
impure partial_deep_copy(SolutionsHeapPtr, Accumulator1, Accumulator),
impure reset_solutions_heap(SolutionsHeapPtr),
impure discard_trail_ticket.
:- type heap_ptr ---> heap_ptr(c_pointer).
:- type trail_ptr ---> trail_ptr(c_pointer).
%
% Save the state of the Mercury heap and trail registers,
% for later use in partial_deep_copy/3 and reset_solutions_heap/1.
% Note that this allocates a trail ticket;
% you need to dispose of it properly when you're finished with it,
% e.g. by calling discard_trail_ticket/0.
%
:- impure pred get_registers(heap_ptr::out, heap_ptr::out, trail_ptr::out)
is det.
:- pragma foreign_proc("C",
get_registers(HeapPtr::out, SolutionsHeapPtr::out, TrailPtr::out),
[will_not_call_mercury, thread_safe],
"
/* save heap states */
#ifndef CONSERVATIVE_GC
HeapPtr = (MR_Word) MR_hp;
SolutionsHeapPtr = (MR_Word) MR_sol_hp;
#else
HeapPtr = SolutionsHeapPtr = 0;
#endif
/* save trail state */
#ifdef MR_USE_TRAIL
MR_store_ticket(TrailPtr);
#else
TrailPtr = 0;
#endif
").
:- pragma foreign_proc("MC++",
get_registers(HeapPtr::out, SolutionsHeapPtr::out, TrailPtr::out),
[will_not_call_mercury, thread_safe],
"
/*
** For MC++, we always use the MS garbage collector,
** so we don't have to worry here about heap reclamation on failure.
*/
HeapPtr = SolutionsHeapPtr = 0;
#ifdef MR_USE_TRAIL
/* XXX trailing not yet implemented for the MLDS back-end */
mercury::runtime::Errors::SORRY(""foreign code for get_registers"");
#else
TrailPtr = 0
#endif
").
:- impure pred check_for_floundering(trail_ptr::in) is det.
:- pragma foreign_proc("C",
check_for_floundering(TrailPtr::in),
[will_not_call_mercury, thread_safe],
"
#ifdef MR_USE_TRAIL
/* check for outstanding delayed goals (``floundering'') */
MR_reset_ticket(TrailPtr, MR_solve);
#endif
").
:- pragma foreign_proc("MC++",
check_for_floundering(_TrailPtr::in),
[will_not_call_mercury, thread_safe],
"
#ifdef MR_USE_TRAIL
mercury::runtime::Errors::SORRY(""foreign code for check_for_floundering"");
#endif
").
%
% Discard the topmost trail ticket.
%
:- impure pred discard_trail_ticket is det.
:- pragma foreign_proc("C",
discard_trail_ticket,
[will_not_call_mercury, thread_safe],
"
#ifdef MR_USE_TRAIL
MR_discard_ticket();
#endif
").
:- pragma foreign_proc("MC++",
discard_trail_ticket,
[will_not_call_mercury, thread_safe],
"
#ifdef MR_USE_TRAIL
mercury::runtime::Errors::SORRY(""foreign code for discard_trail_ticket"");
#endif
").
%
% Swap the heap with the solutions heap
%
:- impure pred swap_heap_and_solutions_heap is det.
:- pragma foreign_proc("C",
swap_heap_and_solutions_heap,
[will_not_call_mercury, thread_safe],
"{
#ifndef CONSERVATIVE_GC
MR_MemoryZone *temp_zone;
MR_Word *temp_hp;
temp_zone = MR_ENGINE(MR_eng_heap_zone);
MR_ENGINE(MR_eng_heap_zone) = MR_ENGINE(MR_eng_solutions_heap_zone);
MR_ENGINE(MR_eng_solutions_heap_zone) = temp_zone;
temp_hp = MR_hp;
MR_hp = MR_sol_hp;
MR_sol_hp = temp_hp;
#endif
}").
:- pragma foreign_proc("MC++",
swap_heap_and_solutions_heap,
[will_not_call_mercury, thread_safe],
"
/*
** For the .NET back-end, we use the system heap, rather
** than defining our own heaps. So we don't need to
** worry about swapping them. Hence do nothing here.
*/
").
%
% partial_deep_copy(SolutionsHeapPtr, OldVal, NewVal):
% Make a copy of all of the parts of OldVar that occur between
% SolutionsHeapPtr and the top of the current solutions heap.
%
:- impure pred partial_deep_copy(heap_ptr, T, T) is det.
:- mode partial_deep_copy(in, di, uo) is det.
:- mode partial_deep_copy(in, mdi, muo) is det.
:- mode partial_deep_copy(in, in, out) is det.
:- pragma foreign_decl("C", "
#include ""mercury_deep_copy.h""
#ifdef CONSERVATIVE_GC
/* for conservative GC, shallow copies suffice */
#define MR_PARTIAL_DEEP_COPY(SolutionsHeapPtr, \\
OldVar, NewVal, TypeInfo_for_T) \\
do { \\
NewVal = OldVal; \\
} while (0)
#else
/*
** Note that we need to save/restore the MR_hp register, if it
** is transient, before/after calling MR_deep_copy().
*/
#define MR_PARTIAL_DEEP_COPY(SolutionsHeapPtr, \\
OldVar, NewVal, TypeInfo_for_T) \\
do { \\
MR_save_transient_hp(); \\
NewVal = MR_deep_copy(&OldVal, (MR_TypeInfo) TypeInfo_for_T,\\
(const MR_Word *) SolutionsHeapPtr, \\
MR_ENGINE(MR_eng_solutions_heap_zone)->top); \\
MR_restore_transient_hp(); \\
} while (0)
#endif
").
:- pragma foreign_proc("C",
partial_deep_copy(SolutionsHeapPtr::in, OldVal::in, NewVal::out),
[will_not_call_mercury, thread_safe, promise_pure],
"
MR_PARTIAL_DEEP_COPY(SolutionsHeapPtr, OldVal, NewVal, TypeInfo_for_T);
").
:- pragma foreign_proc("C",
partial_deep_copy(SolutionsHeapPtr::in, OldVal::mdi, NewVal::muo),
[will_not_call_mercury, thread_safe, promise_pure],
"
MR_PARTIAL_DEEP_COPY(SolutionsHeapPtr, OldVal, NewVal, TypeInfo_for_T);
").
:- pragma foreign_proc("C",
partial_deep_copy(SolutionsHeapPtr::in, OldVal::di, NewVal::uo),
[will_not_call_mercury, thread_safe, promise_pure],
"
MR_PARTIAL_DEEP_COPY(SolutionsHeapPtr, OldVal, NewVal, TypeInfo_for_T);
").
:- pragma foreign_proc("MC++",
partial_deep_copy(_SolutionsHeapPtr::in, OldVal::in, NewVal::out),
[will_not_call_mercury, thread_safe, promise_pure],
"
/*
** For the IL back-end, we don't do heap reclamation on failure,
** so we don't need to worry about making deep copies here.
** Shallow copies will suffice.
*/
NewVal = OldVal;
").
:- pragma foreign_proc("MC++",
partial_deep_copy(_SolutionsHeapPtr::in, OldVal::mdi, NewVal::muo),
[will_not_call_mercury, thread_safe, promise_pure],
"
NewVal = OldVal;
").
:- pragma foreign_proc("MC++",
partial_deep_copy(_SolutionsHeapPtr::in, OldVal::di, NewVal::uo),
[will_not_call_mercury, thread_safe, promise_pure],
"
NewVal = OldVal;
").
%
% reset_solutions_heap(SolutionsHeapPtr):
% Reset the solutions heap pointer to the specified value,
% thus deallocating everything allocated on the solutions
% heap since that value was obtained via get_registers/3.
%
:- impure pred reset_solutions_heap(heap_ptr::in) is det.
:- pragma foreign_proc("C",
reset_solutions_heap(SolutionsHeapPtr::in),
[will_not_call_mercury, thread_safe, promise_pure],
"
#ifndef CONSERVATIVE_GC
MR_sol_hp = (MR_Word *) SolutionsHeapPtr;
#endif
").
:- pragma foreign_proc("MC++",
reset_solutions_heap(_SolutionsHeapPtr::in),
[will_not_call_mercury, thread_safe, promise_pure],
"
/*
** For the IL back-end, we don't have a separate `solutions heap'.
** Hence this operation is a NOP.
*/
").
%-----------------------------------------------------------------------------%
%%% :- module mutvar.
%%% :- interface.
% A non-backtrackably destructively modifiable reference type
:- type mutvar(T).
% Create a new mutvar given a term for it to reference.
:- impure pred new_mutvar(T, mutvar(T)).
:- mode new_mutvar(in, out) is det.
:- mode new_mutvar(di, uo) is det.
% Get the value currently referred to by a reference.
:- impure pred get_mutvar(mutvar(T), T) is det.
:- mode get_mutvar(in, uo) is det. % XXX this is a work-around
/*
XXX `ui' modes don't work yet
:- mode get_mutvar(in, uo) is det.
:- mode get_mutvar(ui, uo) is det. % unsafe, but we use it safely
*/
% destructively modify a reference to refer to a new object.
:- impure pred set_mutvar(mutvar(T), T) is det.
:- mode set_mutvar(in, in) is det.
/*
XXX `ui' modes don't work yet
:- pred set_mutvar(ui, di) is det.
*/
%%% :- implementation.
% This type is implemented in C.
:- type mutvar(T) ---> mutvar(c_pointer).
:- pragma inline(new_mutvar/2).
:- pragma foreign_proc("C",
new_mutvar(X::in, Ref::out),
[will_not_call_mercury, thread_safe],
"
MR_incr_hp_msg(Ref, 1, MR_PROC_LABEL, ""std_util:mutvar/1"");
*(MR_Word *) Ref = X;
").
:- pragma foreign_proc("C",
new_mutvar(X::di, Ref::uo),
[will_not_call_mercury, thread_safe],
"
MR_incr_hp_msg(Ref, 1, MR_PROC_LABEL, ""std_util:mutvar/1"");
*(MR_Word *) Ref = X;
").
:- pragma inline(get_mutvar/2).
:- pragma foreign_proc("C",
get_mutvar(Ref::in, X::uo),
[will_not_call_mercury, thread_safe],
"
X = *(MR_Word *) Ref;
").
:- pragma inline(set_mutvar/2).
:- pragma foreign_proc("C",
set_mutvar(Ref::in, X::in),
[will_not_call_mercury, thread_safe],
"
*(MR_Word *) Ref = X;
").
:- pragma foreign_proc("MC++",
new_mutvar(X::in, Ref::out),
[will_not_call_mercury, thread_safe],
"
MR_untagged_newobj(Ref, 1);
Ref[0] = X;
").
:- pragma foreign_proc("MC++",
new_mutvar(X::di, Ref::uo),
[will_not_call_mercury, thread_safe],
"
MR_untagged_newobj(Ref, 1);
Ref[0] = X;
").
:- pragma inline(get_mutvar/2).
:- pragma foreign_proc("MC++",
get_mutvar(Ref::in, X::uo),
[will_not_call_mercury, thread_safe],
"
X = Ref[0];
").
:- pragma inline(set_mutvar/2).
:- pragma foreign_proc("MC++",
set_mutvar(Ref::in, X::in),
[will_not_call_mercury, thread_safe],
"
Ref[0] = X;
").
%%% end_module mutvar.
%-----------------------------------------------------------------------------%
solutions(Pred, List) :-
builtin_solutions(Pred, UnsortedList),
list__sort_and_remove_dups(UnsortedList, List).
solutions_set(Pred, Set) :-
builtin_solutions(Pred, List),
set__list_to_set(List, Set).
unsorted_solutions(Pred, List) :-
builtin_solutions(Pred, UnsortedList),
cc_multi_equal(UnsortedList, List).
:- pred builtin_solutions(pred(T), list(T)).
:- mode builtin_solutions(pred(out) is multi, out)
is det. /* really cc_multi */
:- mode builtin_solutions(pred(out) is nondet, out)
is det. /* really cc_multi */
builtin_solutions(Generator, UnsortedList) :-
builtin_aggregate(Generator, cons, [], UnsortedList).
:- pred cons(T::in, list(T)::in, list(T)::out) is det.
cons(H, T, [H|T]).
%-----------------------------------------------------------------------------%
aggregate(Generator, Accumulator, Acc0, Acc) :-
solutions(Generator, Solutions),
list__foldl(Accumulator, Solutions, Acc0, Acc).
aggregate2(Generator, Accumulator, Acc0, Acc) -->
{ solutions(Generator, Solutions) },
list__foldl2(Accumulator, Solutions, Acc0, Acc).
unsorted_aggregate(Generator, Accumulator, Acc0, Acc) :-
builtin_aggregate(Generator, Accumulator, Acc0, Acc1),
cc_multi_equal(Acc1, Acc).
%-----------------------------------------------------------------------------%
% semidet_succeed and semidet_fail, implemented using the C interface
% to make sure that the compiler doesn't issue any determinism warnings
% for them.
:- pragma foreign_proc("C",
semidet_succeed,
[will_not_call_mercury, thread_safe, promise_pure],
"SUCCESS_INDICATOR = TRUE;").
:- pragma foreign_proc("C",
semidet_fail,
[will_not_call_mercury, thread_safe, promise_pure],
"SUCCESS_INDICATOR = FALSE;").
:- pragma foreign_proc("C",
cc_multi_equal(X::in, Y::out),
[will_not_call_mercury, thread_safe, promise_pure],
"Y = X;").
:- pragma foreign_proc("C",
cc_multi_equal(X::di, Y::uo),
[will_not_call_mercury, thread_safe, promise_pure],
"Y = X;").
:- pragma foreign_proc("MC++",
semidet_succeed,
[will_not_call_mercury, thread_safe, promise_pure],
"SUCCESS_INDICATOR = TRUE;").
:- pragma foreign_proc("MC++",
semidet_fail,
[will_not_call_mercury, thread_safe, promise_pure],
"SUCCESS_INDICATOR = FALSE;").
:- pragma foreign_proc("MC++",
cc_multi_equal(X::in, Y::out),
[will_not_call_mercury, thread_safe, promise_pure],
"Y = X;").
:- pragma foreign_proc("MC++",
cc_multi_equal(X::di, Y::uo),
[will_not_call_mercury, thread_safe, promise_pure],
"Y = X;").
%-----------------------------------------------------------------------------%
% We call the constructor for univs `univ_cons' to avoid ambiguity
% with the univ/1 function which returns a univ.
:- type univ --->
some [T] univ_cons(T).
univ_to_type(Univ, X) :- type_to_univ(X, Univ).
univ(X) = Univ :- type_to_univ(X, Univ).
det_univ_to_type(Univ, X) :-
( type_to_univ(X0, Univ) ->
X = X0
;
UnivTypeName = type_desc__type_name(univ_type(Univ)),
ObjectTypeName = type_desc__type_name(type_desc__type_of(X)),
string__append_list(["det_univ_to_type: conversion failed\\n",
"\tUniv Type: ", UnivTypeName,
"\\n\tObject Type: ", ObjectTypeName], ErrorString),
error(ErrorString)
).
univ_value(univ_cons(X)) = X.
:- pragma promise_pure(type_to_univ/2).
type_to_univ(T::di, Univ::uo) :-
Univ0 = 'new univ_cons'(T),
unsafe_promise_unique(Univ0, Univ).
type_to_univ(T::in, Univ::out) :-
Univ0 = 'new univ_cons'(T),
unsafe_promise_unique(Univ0, Univ).
type_to_univ(T::out, Univ::in) :-
Univ = univ_cons(T0),
private_builtin__typed_unify(T0, T).
univ_type(Univ) = type_desc__type_of(univ_value(Univ)).
:- pred construct_univ(T, univ).
:- mode construct_univ(in, out) is det.
:- pragma export(construct_univ(in, out), "ML_construct_univ").
construct_univ(X, Univ) :-
Univ = univ(X).
:- some [T] pred unravel_univ(univ, T).
:- mode unravel_univ(in, out) is det.
:- pragma export(unravel_univ(in, out), "ML_unravel_univ").
unravel_univ(Univ, X) :-
univ_value(Univ) = X.
dynamic_cast(X, Y) :-
univ_to_type(univ(X), Y).
%-----------------------------------------------------------------------------%
% The actual code of these predicates and functions is now in
% the file type_desc.m.
type_of(Value) =
type_desc__type_of(Value).
has_type(Arg, TypeInfo) :-
type_desc__has_type(Arg, TypeInfo).
type_name(Type) =
type_desc__type_name(Type).
type_args(Type) =
type_desc__type_args(Type).
type_ctor_name(TypeCtor) =
type_desc__type_ctor_name(TypeCtor).
type_ctor_module_name(TypeCtor) =
type_desc__type_ctor_module_name(TypeCtor).
type_ctor_arity(TypeCtor) =
type_desc__type_ctor_arity(TypeCtor).
det_make_type(TypeCtor, ArgTypes) =
type_desc__det_make_type(TypeCtor, ArgTypes).
type_ctor(TypeInfo) =
type_desc__type_ctor(TypeInfo).
type_ctor_and_args(TypeDesc, TypeCtorDesc, ArgTypes) :-
type_desc__type_ctor_and_args(TypeDesc, TypeCtorDesc, ArgTypes).
make_type(TypeCtorDesc, ArgTypes) =
type_desc__make_type(TypeCtorDesc, ArgTypes).
type_ctor_name_and_arity(TypeCtorDesc, TypeCtorModuleName,
TypeCtorName, TypeCtorArity) :-
type_desc__type_ctor_name_and_arity(TypeCtorDesc, TypeCtorModuleName,
TypeCtorName, TypeCtorArity).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% The actual code of these predicates and functions is now in
% the file construct.m.
num_functors(TypeInfo) =
construct__num_functors(TypeInfo).
get_functor(TypeDesc, FunctorNumber, FunctorName, Arity, TypeInfoList) :-
construct__get_functor(TypeDesc, FunctorNumber, FunctorName,
Arity, TypeInfoList).
get_functor(TypeDesc, FunctorNumber, FunctorName, Arity, TypeInfoList,
ArgNameList) :-
construct__get_functor(TypeDesc, FunctorNumber, FunctorName,
Arity, TypeInfoList, ArgNameList).
get_functor_ordinal(TypeDesc, FunctorNumber, Ordinal) :-
construct__get_functor_ordinal(TypeDesc, FunctorNumber, Ordinal).
construct(TypeDesc, FunctorNumber, ArgList) =
construct__construct(TypeDesc, FunctorNumber, ArgList).
construct_tuple(Args) =
construct__construct_tuple(Args).
%-----------------------------------------------------------------------------%
% The actual code of these predicates and functions is now in
% the file deconstruct.m.
functor(Term, Functor, Arity) :-
deconstruct__functor(Term, canonicalize, Functor, Arity).
functor_cc(Term, Functor, Arity) :-
deconstruct__functor(Term, include_details_cc, Functor, Arity).
arg(Term, Index) = Argument :-
deconstruct__arg(Term, canonicalize, Index, Argument0),
private_builtin__typed_unify(Argument0, Argument).
arg_cc(Term, Index, Argument) :-
deconstruct__arg(Term, include_details_cc, Index, Argument0),
( private_builtin__typed_unify(Argument0, Argument1) ->
Argument = Argument1
;
error("arg_cc: argument has wrong type")
).
argument(Term, Index) = ArgumentUniv :-
deconstruct__arg(Term, canonicalize, Index, Argument),
type_to_univ(Argument, ArgumentUniv).
argument_cc(Term, Index, ArgumentUniv) :-
deconstruct__arg(Term, include_details_cc, Index, Argument),
type_to_univ(Argument, ArgumentUniv).
named_argument(Term, Name) = ArgumentUniv :-
deconstruct__named_arg(Term, canonicalize, Name, Argument),
type_to_univ(Argument, ArgumentUniv).
named_argument_cc(Term, Name, ArgumentUniv) :-
deconstruct__named_arg(Term, include_details_cc,
Name, Argument),
type_to_univ(Argument, ArgumentUniv).
deconstruct(Term, Functor, Arity, Arguments) :-
deconstruct__deconstruct(Term, canonicalize,
Functor, Arity, Arguments).
deconstruct_cc(Term, Functor, Arity, Arguments) :-
deconstruct__deconstruct(Term, include_details_cc,
Functor, Arity, Arguments).
limited_deconstruct(Term, MaxArity, Functor, Arity, Arguments) :-
deconstruct__limited_deconstruct(Term, canonicalize,
MaxArity, Functor, Arity, Arguments).
limited_deconstruct_cc(Term, MaxArity, Functor, Arity, Arguments) :-
deconstruct__limited_deconstruct(Term, include_details_cc,
MaxArity, Functor, Arity, Arguments).
det_arg(Type, Index) = Argument :-
deconstruct__det_arg(Type, canonicalize, Index, Argument0),
( private_builtin__typed_unify(Argument0, Argument1) ->
Argument = Argument1
;
error("det_arg: argument has wrong type")
).
det_arg_cc(Type, Index, Argument) :-
deconstruct__det_arg(Type, include_details_cc, Index, Argument0),
( private_builtin__typed_unify(Argument0, Argument1) ->
Argument = Argument1
;
error("det_arg_cc: argument has wrong type")
).
det_argument(Type, Index) = ArgumentUniv :-
deconstruct__det_arg(Type, canonicalize, Index, Argument),
type_to_univ(Argument, ArgumentUniv).
det_argument_cc(Type, Index, ArgumentUniv) :-
deconstruct__det_arg(Type, include_details_cc, Index, Argument),
type_to_univ(Argument, ArgumentUniv).
det_named_argument(Type, Name) = ArgumentUniv :-
deconstruct__det_named_arg(Type, canonicalize, Name, Argument),
type_to_univ(Argument, ArgumentUniv).
det_named_argument_cc(Type, Name, ArgumentUniv) :-
deconstruct__det_named_arg(Type, include_details_cc, Name, Argument),
type_to_univ(Argument, ArgumentUniv).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% Ralph Becket <rwab1@cam.sri.com> 24/04/99
% Function forms added.
pair(X, Y) =
X-Y.
maybe_func(PF, X) =
( if Y = PF(X) then yes(Y) else no ).
compose(F, G, X) =
F(G(X)).
converse(F, X, Y) =
F(Y, X).
pow(F, N, X) =
( if N = 0 then X else pow(F, N - 1, F(X)) ).
isnt(P, X) :-
not P(X).
id(X) = X.
solutions(P) = S :- solutions(P, S).
solutions_set(P) = S :- solutions_set(P, S).
aggregate(P, F, Acc0) = Acc :-
aggregate(P, (pred(X::in, A0::in, A::out) is det :- A = F(X, A0)),
Acc0, Acc).
%------------------------------------------------------------------------------%
%------------------------------------------------------------------------------%