Files
mercury/compiler/code_util.m
Zoltan Somogyi 189b9215ae This diff implements stack slot optimization for the LLDS back end based on
Estimated hours taken: 400
Branches: main

This diff implements stack slot optimization for the LLDS back end based on
the idea that after a unification such as A = f(B, C, D), saving the
variable A on the stack indirectly also saves the values of B, C and D.

Figuring out what subset of {B,C,D} to access via A and what subset to access
via their own stack slots is a tricky optimization problem. The algorithm we
use to solve it is described in the paper "Using the heap to eliminate stack
accesses" by Zoltan Somogyi and Peter Stuckey, available in ~zs/rep/stackslot.
That paper also describes (and has examples of) the source-to-source
transformation that implements the optimization.

The optimization needs to know what variables are flushed at call sites
and at program points that establish resume points (e.g. entries to
disjunctions and if-then-elses). We already had code to compute this
information in live_vars.m, but this code was being invoked too late.
This diff modifies live_vars.m to allow it to be invoked both by the stack
slot optimization transformation and by the code generator, and allows its
function to be tailored to the requirements of each invocation.

The information computed by live_vars.m is specific to the LLDS back end,
since the MLDS back ends do not (yet) have the same control over stack
frame layout. We therefore store this information in a new back end specific
field in goal_infos. For uniformity, we make all the other existing back end
specific fields in goal_infos, as well as the similarly back end specific
store map field of goal_exprs, subfields of this new field. This happens
to significantly reduce the sizes of goal_infos.

To allow a more meaningful comparison of the gains produced by the new
optimization, do not save any variables across erroneous calls even if
the new optimization is not enabled.

compiler/stack_opt.m:
	New module containing the code that performs the transformation
	to optimize stack slot usage.

compiler/matching.m:
	New module containing an algorithm for maximal matching in bipartite
	graphs, specialized for the graphs needed by stack_opt.m.

compiler/mercury_compile.m:
	Invoke the new optimization if the options ask for it.

compiler/stack_alloc.m:
	New module containing code that is shared between the old,
	non-optimizing stack slot allocation system and the new, optimizing
	stack slot allocation system, and the code for actually allocating
	stack slots in the absence of optimization.

	Live_vars.m used to have two tasks: find out what variables need to be
	saved on the stack, and allocating those variables to stack slots.
	Live_vars.m now does only the first task; stack_alloc.m now does
	the second, using code that used to be in live_vars.m.

compiler/trace_params:
	Add a new function to test the trace level, which returns yes if we
	want to preserve the values of the input headvars.

compiler/notes/compiler_design.html:
	Document the new modules (as well as trace_params.m, which wasn't
	documented earlier).

compiler/live_vars.m:
	Delete the code that is now in stack_alloc.m and graph_colour.m.

	Separate out the kinds of stack uses due to nondeterminism: the stack
	slots used by nondet calls, and the stack slots used by resumption
	points, in order to allow the reuse of stack slots used by resumption
	points after execution has left their scope. This should allow the
	same stack slots to be used by different variables in the resumption
	point at the start of an else branch and nondet calls in the then
	branch, since the resumption point of the else branch is not in effect
	when the then branch is executed.

	If the new option --opt-no-return-calls is set, then say that we do not
	need to save any values across erroneous calls.

	Use type classes to allow the information generated by this module
	to be recorded in the way required by its invoker.

	Package up the data structures being passed around readonly into a
	single tuple.

compiler/store_alloc.m:
	Allow this module to be invoked by stack_opt.m without invoking the
	follow_vars transformation, since applying follow_vars before the form
	of the HLDS code is otherwise final can be a pessimization.

	Make the module_info a part of the record containing the readonly data
	passed around during the traversal.

compiler/common.m:
	Do not delete or move around unifications created by stack_opt.m.

compiler/call_gen.m:
compiler/code_info.m:
compiler/continuation_info.m:
compiler/var_locn.m:
	Allow the code generator to delete its last record of the location
	of a value when generating code to make an erroneous call, if the new
	--opt-no-return-calls option is set.

compiler/code_gen.m:
	Use a more useful algorithm to create the messages/comments that
	we put into incr_sp instructions, e.g. by distinguishing between
	predicates and functions. This is to allow the new scripts in the
	tool directory to gather statistics about the effect of the
	optimization on stack frame sizes.

library/exception.m:
	Make a hand-written incr_sp follow the new pattern.

compiler/arg_info.m:
	Add predicates to figure out the set of input, output and unused
	arguments of a procedure in several different circumstances.
	Previously, variants of these predicates were repeated in several
	places.

compiler/goal_util.m:
	Export some previously private utility predicates.

compiler/handle_options.m:
	Turn off stack slot optimizations when debugging, unless
	--trace-optimized is set.

	Add a new dump format useful for debugging --optimize-saved-vars.

compiler/hlds_llds.m:
	New module for handling all the stuff specific to the LLDS back end
	in HLDS goal_infos.

compiler/hlds_goal.m:
	Move all the relevant stuff into the new back end specific field
	in goal_infos.

compiler/notes/allocation.html:
	Update the documentation of store maps to reflect their movement
	into a subfield of goal_infos.

compiler/*.m:
	Minor changes to accomodate the placement of all back end specific
	information about goals from goal_exprs and individual fields of
	goal_infos into a new field in goal_infos that gathers together
	all back end specific information.

compiler/use_local_vars.m:
	Look for sequences in which several instructions use a fake register
	or stack slot as a base register pointing to a cell, and make those
	instructions use a local variable instead.

	Without this, a key assumption of the stack slot optimization,
	that accessing a field in a cell costs only one load or store
	instruction, would be much less likely to be true. (With this
	optimization, the assumption will be false only if the C compiler's
	code generator runs out of registers in a basic block, which for
	the code we generate should be unlikely even on x86s.)

compiler/options.m:
	Make the old option --optimize-saved-vars ask for both the old stack
	slot optimization (implemented by saved_vars.m) that only eliminates
	the storing of constants in stack slots, and the new optimization.

	Add two new options --optimize-saved-vars-{const,cell} to turn on
	the two optimizations separately.

	Add a bunch of options to specify the parameters of the new
	optimizations, both in stack_opt.m and use_local_vars.m. These are
	for implementors only; they are deliberately not documented.

	Add a new option, --opt-no-return-cells, that governs whether we avoid
	saving variables on the stack at calls that cannot return, either by
	succeeding or by failing. This is for implementors only, and thus
	deliberately documented only in comments. It is enabled by default.

compiler/optimize.m:
	Transmit the value of a new option to use_local_vars.m.

doc/user_guide.texi:
	Update the documentation of --optimize-saved-vars.

library/tree234.m:
	Undo a previous change of mine that effectively applied this
	optimization by hand. That change complicated the code, and now
	the compiler can do the optimization automatically.

tools/extract_incr_sp:
	A new script for extracting stack frame sizes and messages from
	stack increment operations in the C code for LLDS grades.

tools/frame_sizes:
	A new script that uses extract_incr_sp to extract information about
	stack frame sizes from the C files saved from a stage 2 directory
	by makebatch and summarizes the resulting information.

tools/avg_frame_size:
	A new script that computes average stack frame sizes from the files
	created by frame_sizes.

tools/compare_frame_sizes:
	A new script that compares the stack frame size information
	extracted from two different stage 2 directories by frame_sizes,
	reporting on both average stack frame sizes and on specific procedures
	that have different stack frame sizes in the two versions.
2002-03-28 03:44:41 +00:00

1018 lines
36 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1994-2002 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
%
% file: code_util.m.
%
% various utilities routines for code generation and recognition
% of builtins.
%
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- module ll_backend__code_util.
:- interface.
:- import_module parse_tree__prog_data, hlds__hlds_module, hlds__hlds_pred.
:- import_module hlds__hlds_goal, hlds__hlds_data.
:- import_module backend_libs__rtti, ll_backend__llds.
:- import_module bool, list, std_util.
% Create a code address which holds the address of the specified
% procedure.
% The `immed' argument should be `no' if the the caller wants the
% returned address to be valid from everywhere in the program.
% If being valid from within the current procedure is enough,
% this argument should be `yes' wrapped around the value of the
% --procs-per-c-function option and the current procedure id.
% Using an address that is only valid from within the current
% procedure may make jumps more efficient.
:- type immed == maybe(pair(int, pred_proc_id)).
:- pred code_util__make_entry_label(module_info, pred_id, proc_id,
immed, code_addr).
:- mode code_util__make_entry_label(in, in, in, in, out) is det.
:- pred code_util__make_entry_label_from_rtti(rtti_proc_label, immed,
code_addr).
:- mode code_util__make_entry_label_from_rtti(in, in, out) is det.
% Create a label which holds the address of the specified procedure,
% which must be defined in the current module (procedures that are
% imported from other modules have representations only as code_addrs,
% not as labels, since their address is not known at C compilation
% time).
% The fourth argument has the same meaning as for
% code_util__make_entry_label.
:- pred code_util__make_local_entry_label(module_info, pred_id, proc_id,
immed, label).
:- mode code_util__make_local_entry_label(in, in, in, in, out) is det.
% Create a label internal to a Mercury procedure.
:- pred code_util__make_internal_label(module_info, pred_id, proc_id, int,
label).
:- mode code_util__make_internal_label(in, in, in, in, out) is det.
:- pred code_util__make_proc_label(module_info, pred_id, proc_id, proc_label).
:- mode code_util__make_proc_label(in, in, in, out) is det.
:- func code_util__make_proc_label_from_rtti(rtti_proc_label) = proc_label.
% code_util__make_user_proc_label(ModuleName, PredIsImported,
% PredOrFunc, ModuleName, PredName, Arity, ProcId, Label):
% Make a proc_label for a user-defined procedure.
%
% The PredIsImported argument should be the result of
% calling pred_info_is_imported.
:- pred code_util__make_user_proc_label(module_name, bool,
pred_or_func, module_name, string, arity, proc_id, proc_label).
:- mode code_util__make_user_proc_label(in, in,
in, in, in, in, in, out) is det.
:- pred code_util__make_uni_label(module_info, type_ctor, proc_id, proc_label).
:- mode code_util__make_uni_label(in, in, in, out) is det.
:- pred code_util__extract_proc_label_from_code_addr(code_addr, proc_label).
:- mode code_util__extract_proc_label_from_code_addr(in, out) is det.
:- pred code_util__extract_proc_label_from_label(label, proc_label).
:- mode code_util__extract_proc_label_from_label(in, out) is det.
:- pred code_util__arg_loc_to_register(arg_loc, lval).
:- mode code_util__arg_loc_to_register(in, out) is det.
:- pred code_util__max_mentioned_reg(list(lval), int).
:- mode code_util__max_mentioned_reg(in, out) is det.
% Determine whether a goal might allocate some heap space,
% i.e. whether it contains any construction unifications
% or predicate calls. BEWARE that this predicate is only
% an approximation, used to decide whether or not to try to
% reclaim the heap space; currently it fails even for some
% goals which do allocate heap space, such as construction
% of boxed constants.
:- pred code_util__goal_may_allocate_heap(hlds_goal).
:- mode code_util__goal_may_allocate_heap(in) is semidet.
:- pred code_util__goal_list_may_allocate_heap(list(hlds_goal)).
:- mode code_util__goal_list_may_allocate_heap(in) is semidet.
:- pred code_util__goal_may_alloc_temp_frame(hlds_goal).
:- mode code_util__goal_may_alloc_temp_frame(in) is semidet.
% Negate a condition.
% This is used mostly just to make the generated code more readable.
:- pred code_util__neg_rval(rval, rval).
:- mode code_util__neg_rval(in, out) is det.
:- pred code_util__negate_the_test(list(instruction), list(instruction)).
:- mode code_util__negate_the_test(in, out) is det.
% code_util__compiler_generated(PredInfo) succeeds iff
% the PredInfo is for a compiler generated instance of a
% type-specific special_pred (i.e. one of the __Unify__,
% __Index__, or __Compare__ predicates generated as a
% type-specific instance of unify/2, index/2, or compare/3).
%
% XXX The name of this predicate is misleading, because there
% are other kinds of compiler-generated predicates, e.g. those
% for lambda expressions, those generated by higher-order
% specialization, ordinary type specialization, deforestation,
% etc., for which this predicate does not succeed.
:- pred code_util__compiler_generated(pred_info).
:- mode code_util__compiler_generated(in) is semidet.
:- pred code_util__predinfo_is_builtin(pred_info).
:- mode code_util__predinfo_is_builtin(in) is semidet.
:- pred code_util__builtin_state(module_info, pred_id, proc_id, builtin_state).
:- mode code_util__builtin_state(in, in, in, out) is det.
% Find out how a function symbol (constructor) is represented
% in the given type.
:- pred code_util__cons_id_to_tag(cons_id, type, module_info, cons_tag).
:- mode code_util__cons_id_to_tag(in, in, in, out) is det.
% Succeed if execution of the given goal cannot encounter a context
% that causes any variable to be flushed to its stack slot.
% If such a goal needs a resume point, and that resume point cannot
% be backtracked to once control leaves the goal, then the only entry
% point we need for the resume point is the one with the resume
% variables in their original locations.
:- pred code_util__cannot_stack_flush(hlds_goal).
:- mode code_util__cannot_stack_flush(in) is semidet.
% Succeed if execution of the given goal cannot encounter a context
% that causes any variable to be flushed to its stack slot or to a
% register.
:- pred code_util__cannot_flush(hlds_goal).
:- mode code_util__cannot_flush(in) is semidet.
% Succeed if the given goal cannot fail before encountering a context
% that forces all variables to be flushed to their stack slots.
% If such a goal needs a resume point, the only entry point we need
% is the stack entry point.
:- pred code_util__cannot_fail_before_stack_flush(hlds_goal).
:- mode code_util__cannot_fail_before_stack_flush(in) is semidet.
% code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max)
% Given that we are in predicate PredId and procedure ProcId,
% return the minimum and maximum number of recursive calls that
% an execution of Goal may encounter.
:- pred code_util__count_recursive_calls(hlds_goal, pred_id, proc_id,
int, int).
:- mode code_util__count_recursive_calls(in, in, in, out, out) is det.
% These predicates return the set of lvals referenced in an rval
% and an lval respectively. Lvals referenced indirectly through
% lvals of the form var(_) are not counted.
:- pred code_util__lvals_in_rval(rval, list(lval)).
:- mode code_util__lvals_in_rval(in, out) is det.
:- pred code_util__lvals_in_lval(lval, list(lval)).
:- mode code_util__lvals_in_lval(in, out) is det.
:- pred code_util__lvals_in_lvals(list(lval), list(lval)).
:- mode code_util__lvals_in_lvals(in, out) is det.
%---------------------------------------------------------------------------%
:- implementation.
:- import_module parse_tree__prog_util, check_hlds__type_util.
:- import_module hlds__special_pred, backend_libs__builtin_ops.
:- import_module backend_libs__code_model.
:- import_module char, int, string, set, map, term, varset.
:- import_module require, std_util, assoc_list.
%---------------------------------------------------------------------------%
code_util__make_entry_label(ModuleInfo, PredId, ProcId, Immed, ProcAddr) :-
RttiProcLabel = rtti__make_proc_label(ModuleInfo, PredId, ProcId),
code_util__make_entry_label_from_rtti(RttiProcLabel, Immed, ProcAddr).
code_util__make_entry_label_from_rtti(RttiProcLabel, Immed, ProcAddr) :-
(
(
RttiProcLabel^is_imported = yes
;
RttiProcLabel^is_pseudo_imported = yes,
% only the (in, in) mode of unification is imported
hlds_pred__in_in_unification_proc_id(
RttiProcLabel^proc_id)
)
->
code_util__make_proc_label_from_rtti(RttiProcLabel)
= ProcLabel,
ProcAddr = imported(ProcLabel)
;
code_util__make_local_entry_label_from_rtti(RttiProcLabel,
Immed, Label),
ProcAddr = label(Label)
).
code_util__make_local_entry_label(ModuleInfo, PredId, ProcId, Immed, Label) :-
RttiProcLabel = rtti__make_proc_label(ModuleInfo, PredId, ProcId),
code_util__make_local_entry_label_from_rtti(RttiProcLabel,
Immed, Label).
:- pred code_util__make_local_entry_label_from_rtti(rtti_proc_label, immed,
label).
:- mode code_util__make_local_entry_label_from_rtti(in, in, out) is det.
code_util__make_local_entry_label_from_rtti(RttiProcLabel, Immed, Label) :-
code_util__make_proc_label_from_rtti(RttiProcLabel) = ProcLabel,
(
Immed = no,
% If we want to define the label or use it to put it
% into a data structure, a label that is usable only
% within the current C module won't do.
( RttiProcLabel^is_exported = yes ->
Label = exported(ProcLabel)
;
Label = local(ProcLabel)
)
;
Immed = yes(ProcsPerFunc - proc(CurPredId, CurProcId)),
choose_local_label_type(ProcsPerFunc, CurPredId, CurProcId,
RttiProcLabel^pred_id, RttiProcLabel^proc_id,
ProcLabel, Label)
).
:- pred choose_local_label_type(int, pred_id, proc_id,
pred_id, proc_id, proc_label, label).
:- mode choose_local_label_type(in, in, in, in, in, in, out) is det.
choose_local_label_type(ProcsPerFunc, CurPredId, CurProcId,
PredId, ProcId, ProcLabel, Label) :-
(
% If we want to branch to the label now,
% we prefer a form that are usable only within
% the current C module, since it is likely
% to be faster.
(
ProcsPerFunc = 0
;
PredId = CurPredId,
ProcId = CurProcId
)
->
Label = c_local(ProcLabel)
;
Label = local(ProcLabel)
).
%-----------------------------------------------------------------------------%
code_util__make_internal_label(ModuleInfo, PredId, ProcId, LabelNum, Label) :-
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel),
Label = local(LabelNum, ProcLabel).
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel) :-
RttiProcLabel = rtti__make_proc_label(ModuleInfo, PredId, ProcId),
code_util__make_proc_label_from_rtti(RttiProcLabel) = ProcLabel.
code_util__make_proc_label_from_rtti(RttiProcLabel) = ProcLabel :-
RttiProcLabel = rtti_proc_label(PredOrFunc, ThisModule,
PredModule, PredName, PredArity, ArgTypes, _PredId, ProcId,
_VarSet, _HeadVars, _ArgModes, _CodeModel,
IsImported, _IsPseudoImported, _IsExported,
IsSpecialPredInstance),
(
IsSpecialPredInstance = yes
->
(
special_pred_get_type(PredName, ArgTypes, Type),
type_to_ctor_and_args(Type, TypeCtor, _),
% All type_ctors other than tuples here should be
% module qualified, since builtin types are
% handled separately in polymorphism.m.
(
TypeCtor = unqualified(TypeName) - _,
type_ctor_is_tuple(TypeCtor),
mercury_public_builtin_module(TypeModule)
;
TypeCtor = qualified(TypeModule, TypeName) - _
)
->
TypeCtor = _ - TypeArity,
(
ThisModule \= TypeModule,
PredName = "__Unify__",
\+ hlds_pred__in_in_unification_proc_id(ProcId)
->
DefiningModule = ThisModule
;
DefiningModule = TypeModule
),
ProcLabel = special_proc(DefiningModule, PredName,
TypeModule, TypeName, TypeArity, ProcId)
;
string__append_list(["code_util__make_proc_label:\n",
"cannot make label for special pred `",
PredName, "'"], ErrorMessage),
error(ErrorMessage)
)
;
code_util__make_user_proc_label(ThisModule, IsImported,
PredOrFunc, PredModule, PredName, PredArity,
ProcId, ProcLabel)
).
code_util__make_user_proc_label(ThisModule, PredIsImported,
PredOrFunc, PredModule, PredName, PredArity,
ProcId, ProcLabel) :-
(
% Work out which module supplies the code for
% the predicate.
ThisModule \= PredModule,
PredIsImported = no
->
% This predicate is a specialized version of
% a pred from a `.opt' file.
DefiningModule = ThisModule
;
DefiningModule = PredModule
),
ProcLabel = proc(DefiningModule, PredOrFunc,
PredModule, PredName, PredArity, ProcId).
code_util__make_uni_label(ModuleInfo, TypeCtor, UniModeNum, ProcLabel) :-
module_info_name(ModuleInfo, ModuleName),
( TypeCtor = qualified(TypeModule, TypeName) - Arity ->
( hlds_pred__in_in_unification_proc_id(UniModeNum) ->
Module = TypeModule
;
Module = ModuleName
),
ProcLabel = special_proc(Module, "__Unify__", TypeModule,
TypeName, Arity, UniModeNum)
;
error("code_util__make_uni_label: unqualified type_ctor")
).
code_util__extract_proc_label_from_code_addr(CodeAddr, ProcLabel) :-
( code_util__proc_label_from_code_addr(CodeAddr, ProcLabelPrime) ->
ProcLabel = ProcLabelPrime
;
error("code_util__extract_label_from_code_addr failed")
).
:- pred code_util__proc_label_from_code_addr(code_addr::in,
proc_label::out) is semidet.
code_util__proc_label_from_code_addr(CodeAddr, ProcLabel) :-
(
CodeAddr = label(Label),
code_util__extract_proc_label_from_label(Label, ProcLabel)
;
CodeAddr = imported(ProcLabel)
).
code_util__extract_proc_label_from_label(local(_, ProcLabel), ProcLabel).
code_util__extract_proc_label_from_label(c_local(ProcLabel), ProcLabel).
code_util__extract_proc_label_from_label(local(ProcLabel), ProcLabel).
code_util__extract_proc_label_from_label(exported(ProcLabel), ProcLabel).
%-----------------------------------------------------------------------------%
code_util__arg_loc_to_register(ArgLoc, reg(r, ArgLoc)).
%-----------------------------------------------------------------------------%
code_util__max_mentioned_reg(Lvals, MaxRegNum) :-
code_util__max_mentioned_reg_2(Lvals, 0, MaxRegNum).
:- pred code_util__max_mentioned_reg_2(list(lval)::in, int::in, int::out)
is det.
code_util__max_mentioned_reg_2([], MaxRegNum, MaxRegNum).
code_util__max_mentioned_reg_2([Lval | Lvals], MaxRegNum0, MaxRegNum) :-
( Lval = reg(r, N) ->
int__max(MaxRegNum0, N, MaxRegNum1)
;
MaxRegNum1 = MaxRegNum0
),
code_util__max_mentioned_reg_2(Lvals, MaxRegNum1, MaxRegNum).
%-----------------------------------------------------------------------------%
code_util__predinfo_is_builtin(PredInfo) :-
pred_info_module(PredInfo, ModuleName),
pred_info_name(PredInfo, PredName),
pred_info_arity(PredInfo, Arity),
hlds_pred__initial_proc_id(ProcId),
code_util__is_inline_builtin(ModuleName, PredName, ProcId, Arity).
code_util__builtin_state(ModuleInfo, PredId, ProcId, BuiltinState) :-
module_info_pred_info(ModuleInfo, PredId, PredInfo),
pred_info_module(PredInfo, ModuleName),
pred_info_name(PredInfo, PredName),
pred_info_arity(PredInfo, Arity),
( code_util__is_inline_builtin(ModuleName, PredName, ProcId, Arity) ->
BuiltinState = inline_builtin
;
BuiltinState = not_builtin
).
:- pred code_util__is_inline_builtin(module_name, string, proc_id, arity).
:- mode code_util__is_inline_builtin(in, in, in, in) is semidet.
code_util__is_inline_builtin(ModuleName, PredName, ProcId, Arity) :-
Arity =< 3,
prog_varset_init(VarSet),
varset__new_vars(VarSet, Arity, Args, _),
builtin_ops__translate_builtin(ModuleName, PredName, ProcId, Args, _).
:- pred prog_varset_init(prog_varset::out) is det.
prog_varset_init(VarSet) :- varset__init(VarSet).
%-----------------------------------------------------------------------------%
% XXX The name of this predicate is misleading -- see the comment
% in the declaration.
code_util__compiler_generated(PredInfo) :-
pred_info_name(PredInfo, PredName),
pred_info_arity(PredInfo, PredArity),
special_pred_name_arity(_, _, PredName, PredArity).
%-----------------------------------------------------------------------------%
code_util__goal_may_allocate_heap(Goal) :-
code_util__goal_may_allocate_heap(Goal, yes).
code_util__goal_list_may_allocate_heap(Goals) :-
code_util__goal_list_may_allocate_heap(Goals, yes).
:- pred code_util__goal_may_allocate_heap(hlds_goal::in, bool::out) is det.
code_util__goal_may_allocate_heap(Goal - _GoalInfo, May) :-
code_util__goal_may_allocate_heap_2(Goal, May).
:- pred code_util__goal_may_allocate_heap_2(hlds_goal_expr::in, bool::out)
is det.
code_util__goal_may_allocate_heap_2(generic_call(_, _, _, _), yes).
code_util__goal_may_allocate_heap_2(call(_, _, _, Builtin, _, _), May) :-
( Builtin = inline_builtin ->
May = no
;
May = yes
).
code_util__goal_may_allocate_heap_2(unify(_, _, _, Unification, _), May) :-
( Unification = construct(_,_,Args,_,_,_,_), Args = [_|_] ->
May = yes
;
May = no
).
% We cannot safely say that a foreign code fragment does not
% allocate memory without knowing all the #defined macros that
% expand to incr_hp and variants thereof.
% XXX although you could make it an attribute of the foreign code and
% trust the programmer
code_util__goal_may_allocate_heap_2(foreign_proc(_,_,_,_,_,_,_), yes).
code_util__goal_may_allocate_heap_2(some(_Vars, _, Goal), May) :-
code_util__goal_may_allocate_heap(Goal, May).
code_util__goal_may_allocate_heap_2(not(Goal), May) :-
code_util__goal_may_allocate_heap(Goal, May).
code_util__goal_may_allocate_heap_2(conj(Goals), May) :-
code_util__goal_list_may_allocate_heap(Goals, May).
code_util__goal_may_allocate_heap_2(par_conj(_), yes).
code_util__goal_may_allocate_heap_2(disj(Goals), May) :-
code_util__goal_list_may_allocate_heap(Goals, May).
code_util__goal_may_allocate_heap_2(switch(_Var, _Det, Cases), May) :-
code_util__cases_may_allocate_heap(Cases, May).
code_util__goal_may_allocate_heap_2(if_then_else(_Vars, C, T, E), May) :-
( code_util__goal_may_allocate_heap(C, yes) ->
May = yes
; code_util__goal_may_allocate_heap(T, yes) ->
May = yes
;
code_util__goal_may_allocate_heap(E, May)
).
code_util__goal_may_allocate_heap_2(shorthand(ShorthandGoal), May) :-
code_util__goal_may_allocate_heap_2_shorthand(ShorthandGoal, May).
:- pred code_util__goal_may_allocate_heap_2_shorthand(shorthand_goal_expr::in,
bool::out) is det.
code_util__goal_may_allocate_heap_2_shorthand(bi_implication(G1, G2), May) :-
( code_util__goal_may_allocate_heap(G1, yes) ->
May = yes
;
code_util__goal_may_allocate_heap(G2, May)
).
:- pred code_util__goal_list_may_allocate_heap(list(hlds_goal)::in, bool::out)
is det.
code_util__goal_list_may_allocate_heap([], no).
code_util__goal_list_may_allocate_heap([Goal | Goals], May) :-
( code_util__goal_may_allocate_heap(Goal, yes) ->
May = yes
;
code_util__goal_list_may_allocate_heap(Goals, May)
).
:- pred code_util__cases_may_allocate_heap(list(case)::in, bool::out) is det.
code_util__cases_may_allocate_heap([], no).
code_util__cases_may_allocate_heap([case(_, Goal) | Cases], May) :-
( code_util__goal_may_allocate_heap(Goal, yes) ->
May = yes
;
code_util__cases_may_allocate_heap(Cases, May)
).
%-----------------------------------------------------------------------------%
code_util__goal_may_alloc_temp_frame(Goal) :-
code_util__goal_may_alloc_temp_frame(Goal, yes).
:- pred code_util__goal_may_alloc_temp_frame(hlds_goal::in, bool::out) is det.
code_util__goal_may_alloc_temp_frame(Goal - _GoalInfo, May) :-
code_util__goal_may_alloc_temp_frame_2(Goal, May).
:- pred code_util__goal_may_alloc_temp_frame_2(hlds_goal_expr::in, bool::out)
is det.
code_util__goal_may_alloc_temp_frame_2(generic_call(_, _, _, _), no).
code_util__goal_may_alloc_temp_frame_2(call(_, _, _, _, _, _), no).
code_util__goal_may_alloc_temp_frame_2(unify(_, _, _, _, _), no).
% We cannot safely say that a foreign code fragment does not allocate
% temporary nondet frames without knowing all the #defined macros
% that expand to mktempframe and variants thereof. The performance
% impact of being too conservative is probably not too bad.
code_util__goal_may_alloc_temp_frame_2(foreign_proc(_,_,_,_,_,_,_),
yes).
code_util__goal_may_alloc_temp_frame_2(some(_Vars, _, Goal), May) :-
Goal = _ - GoalInfo,
goal_info_get_code_model(GoalInfo, CodeModel),
( CodeModel = model_non ->
May = yes
;
code_util__goal_may_alloc_temp_frame(Goal, May)
).
code_util__goal_may_alloc_temp_frame_2(not(Goal), May) :-
code_util__goal_may_alloc_temp_frame(Goal, May).
code_util__goal_may_alloc_temp_frame_2(conj(Goals), May) :-
code_util__goal_list_may_alloc_temp_frame(Goals, May).
code_util__goal_may_alloc_temp_frame_2(par_conj(Goals), May) :-
code_util__goal_list_may_alloc_temp_frame(Goals, May).
code_util__goal_may_alloc_temp_frame_2(disj(Goals), May) :-
code_util__goal_list_may_alloc_temp_frame(Goals, May).
code_util__goal_may_alloc_temp_frame_2(switch(_Var, _Det, Cases), May) :-
code_util__cases_may_alloc_temp_frame(Cases, May).
code_util__goal_may_alloc_temp_frame_2(if_then_else(_Vars, C, T, E), May) :-
( code_util__goal_may_alloc_temp_frame(C, yes) ->
May = yes
; code_util__goal_may_alloc_temp_frame(T, yes) ->
May = yes
;
code_util__goal_may_alloc_temp_frame(E, May)
).
code_util__goal_may_alloc_temp_frame_2(shorthand(ShorthandGoal), May) :-
code_util__goal_may_alloc_temp_frame_2_shorthand(ShorthandGoal,May).
:- pred code_util__goal_may_alloc_temp_frame_2_shorthand(
shorthand_goal_expr::in, bool::out) is det.
code_util__goal_may_alloc_temp_frame_2_shorthand(bi_implication(G1, G2),
May) :-
( code_util__goal_may_alloc_temp_frame(G1, yes) ->
May = yes
;
code_util__goal_may_alloc_temp_frame(G2, May)
).
:- pred code_util__goal_list_may_alloc_temp_frame(list(hlds_goal)::in,
bool::out) is det.
code_util__goal_list_may_alloc_temp_frame([], no).
code_util__goal_list_may_alloc_temp_frame([Goal | Goals], May) :-
( code_util__goal_may_alloc_temp_frame(Goal, yes) ->
May = yes
;
code_util__goal_list_may_alloc_temp_frame(Goals, May)
).
:- pred code_util__cases_may_alloc_temp_frame(list(case)::in, bool::out)
is det.
code_util__cases_may_alloc_temp_frame([], no).
code_util__cases_may_alloc_temp_frame([case(_, Goal) | Cases], May) :-
( code_util__goal_may_alloc_temp_frame(Goal, yes) ->
May = yes
;
code_util__cases_may_alloc_temp_frame(Cases, May)
).
%-----------------------------------------------------------------------------%
% Negate a condition.
% This is used mostly just to make the generated code more readable.
code_util__neg_rval(Rval, NegRval) :-
( code_util__neg_rval_2(Rval, NegRval0) ->
NegRval = NegRval0
;
NegRval = unop(not, Rval)
).
:- pred code_util__neg_rval_2(rval, rval).
:- mode code_util__neg_rval_2(in, out) is semidet.
code_util__neg_rval_2(const(Const), const(NegConst)) :-
(
Const = true, NegConst = false
;
Const = false, NegConst = true
).
code_util__neg_rval_2(unop(not, Rval), Rval).
code_util__neg_rval_2(binop(Op, X, Y), binop(NegOp, X, Y)) :-
code_util__neg_op(Op, NegOp).
:- pred code_util__neg_op(binary_op, binary_op).
:- mode code_util__neg_op(in, out) is semidet.
code_util__neg_op(eq, ne).
code_util__neg_op(ne, eq).
code_util__neg_op(<, >=).
code_util__neg_op(<=, >).
code_util__neg_op(>, <=).
code_util__neg_op(>=, <).
code_util__neg_op(str_eq, str_ne).
code_util__neg_op(str_ne, str_eq).
code_util__neg_op(str_lt, str_ge).
code_util__neg_op(str_le, str_gt).
code_util__neg_op(str_gt, str_le).
code_util__neg_op(str_ge, str_lt).
code_util__neg_op(float_eq, float_ne).
code_util__neg_op(float_ne, float_eq).
code_util__neg_op(float_lt, float_ge).
code_util__neg_op(float_le, float_gt).
code_util__neg_op(float_gt, float_le).
code_util__neg_op(float_ge, float_lt).
code_util__negate_the_test([], _) :-
error("code_util__negate_the_test on empty list").
code_util__negate_the_test([Instr0 | Instrs0], Instrs) :-
( Instr0 = if_val(Test, Target) - Comment ->
code_util__neg_rval(Test, NewTest),
Instrs = [if_val(NewTest, Target) - Comment]
;
code_util__negate_the_test(Instrs0, Instrs1),
Instrs = [Instr0 | Instrs1]
).
%-----------------------------------------------------------------------------%
code_util__cons_id_to_tag(int_const(X), _, _, int_constant(X)).
code_util__cons_id_to_tag(float_const(X), _, _, float_constant(X)).
code_util__cons_id_to_tag(string_const(X), _, _, string_constant(X)).
code_util__cons_id_to_tag(code_addr_const(P,M), _, _, code_addr_constant(P,M)).
code_util__cons_id_to_tag(pred_const(P,M,E), _, _, pred_closure_tag(P,M,E)).
code_util__cons_id_to_tag(type_ctor_info_const(M,T,A), _, _,
type_ctor_info_constant(M,T,A)).
code_util__cons_id_to_tag(base_typeclass_info_const(M,C,_,N), _, _,
base_typeclass_info_constant(M,C,N)).
code_util__cons_id_to_tag(tabling_pointer_const(PredId,ProcId), _, _,
tabling_pointer_constant(PredId,ProcId)).
code_util__cons_id_to_tag(deep_profiling_proc_static(PPId), _, _,
deep_profiling_proc_static_tag(PPId)).
code_util__cons_id_to_tag(table_io_decl(PPId), _, _, table_io_decl_tag(PPId)).
code_util__cons_id_to_tag(cons(Name, Arity), Type, ModuleInfo, Tag) :-
(
% handle the `character' type specially
Type = term__functor(term__atom("character"), [], _),
Name = unqualified(ConsName),
string__char_to_string(Char, ConsName)
->
char__to_int(Char, CharCode),
Tag = int_constant(CharCode)
;
% Tuples do not need a tag. Note that unary tuples are not
% treated as no_tag types. There's no reason why they
% couldn't be, it's just not worth the effort.
type_is_tuple(Type, _)
->
Tag = single_functor
;
% Use the type to determine the type_ctor
( type_to_ctor_and_args(Type, TypeCtor0, _) ->
TypeCtor = TypeCtor0
;
% the type-checker should ensure that this never happens
error("code_util__cons_id_to_tag: invalid type")
),
% Given the type_ctor, lookup up the constructor tag
% table for that type
module_info_types(ModuleInfo, TypeTable),
map__lookup(TypeTable, TypeCtor, TypeDefn),
hlds_data__get_type_defn_body(TypeDefn, TypeBody),
(
TypeBody = du_type(_, ConsTable0, _, _)
->
ConsTable = ConsTable0
;
% this should never happen
error(
"code_util__cons_id_to_tag: type is not d.u. type?"
)
),
% Finally look up the cons_id in the table
map__lookup(ConsTable, cons(Name, Arity), Tag)
).
%-----------------------------------------------------------------------------%
code_util__cannot_stack_flush(GoalExpr - _) :-
code_util__cannot_stack_flush_2(GoalExpr).
:- pred code_util__cannot_stack_flush_2(hlds_goal_expr).
:- mode code_util__cannot_stack_flush_2(in) is semidet.
code_util__cannot_stack_flush_2(unify(_, _, _, Unify, _)) :-
Unify \= complicated_unify(_, _, _).
code_util__cannot_stack_flush_2(call(_, _, _, BuiltinState, _, _)) :-
BuiltinState = inline_builtin.
code_util__cannot_stack_flush_2(conj(Goals)) :-
code_util__cannot_stack_flush_goals(Goals).
code_util__cannot_stack_flush_2(switch(_, _, Cases)) :-
code_util__cannot_stack_flush_cases(Cases).
code_util__cannot_stack_flush_2(not(unify(_, _, _, Unify, _) - _)) :-
Unify \= complicated_unify(_, _, _).
:- pred code_util__cannot_stack_flush_goals(list(hlds_goal)).
:- mode code_util__cannot_stack_flush_goals(in) is semidet.
code_util__cannot_stack_flush_goals([]).
code_util__cannot_stack_flush_goals([Goal | Goals]) :-
code_util__cannot_stack_flush(Goal),
code_util__cannot_stack_flush_goals(Goals).
:- pred code_util__cannot_stack_flush_cases(list(case)).
:- mode code_util__cannot_stack_flush_cases(in) is semidet.
code_util__cannot_stack_flush_cases([]).
code_util__cannot_stack_flush_cases([case(_, Goal) | Cases]) :-
code_util__cannot_stack_flush(Goal),
code_util__cannot_stack_flush_cases(Cases).
%-----------------------------------------------------------------------------%
code_util__cannot_flush(GoalExpr - _) :-
code_util__cannot_flush_2(GoalExpr).
:- pred code_util__cannot_flush_2(hlds_goal_expr).
:- mode code_util__cannot_flush_2(in) is semidet.
code_util__cannot_flush_2(unify(_, _, _, Unify, _)) :-
Unify \= complicated_unify(_, _, _).
code_util__cannot_flush_2(call(_, _, _, BuiltinState, _, _)) :-
BuiltinState = inline_builtin.
code_util__cannot_flush_2(conj(Goals)) :-
code_util__cannot_flush_goals(Goals).
:- pred code_util__cannot_flush_goals(list(hlds_goal)).
:- mode code_util__cannot_flush_goals(in) is semidet.
code_util__cannot_flush_goals([]).
code_util__cannot_flush_goals([Goal | Goals]) :-
code_util__cannot_flush(Goal),
code_util__cannot_flush_goals(Goals).
%-----------------------------------------------------------------------------%
code_util__cannot_fail_before_stack_flush(GoalExpr - GoalInfo) :-
goal_info_get_determinism(GoalInfo, Detism),
determinism_components(Detism, CanFail, _),
( CanFail = cannot_fail ->
true
;
code_util__cannot_fail_before_stack_flush_2(GoalExpr)
).
:- pred code_util__cannot_fail_before_stack_flush_2(hlds_goal_expr).
:- mode code_util__cannot_fail_before_stack_flush_2(in) is semidet.
code_util__cannot_fail_before_stack_flush_2(conj(Goals)) :-
code_util__cannot_fail_before_stack_flush_conj(Goals).
:- pred code_util__cannot_fail_before_stack_flush_conj(list(hlds_goal)).
:- mode code_util__cannot_fail_before_stack_flush_conj(in) is semidet.
code_util__cannot_fail_before_stack_flush_conj([]).
code_util__cannot_fail_before_stack_flush_conj([Goal | Goals]) :-
Goal = GoalExpr - GoalInfo,
(
(
GoalExpr = call(_, _, _, BuiltinState, _, _),
BuiltinState \= inline_builtin
;
GoalExpr = generic_call(_, _, _, _)
)
->
true
;
goal_info_get_determinism(GoalInfo, Detism),
determinism_components(Detism, cannot_fail, _)
->
code_util__cannot_fail_before_stack_flush_conj(Goals)
;
fail
).
%-----------------------------------------------------------------------------%
code_util__count_recursive_calls(Goal - _, PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_2(Goal, PredId, ProcId, Min, Max).
:- pred code_util__count_recursive_calls_2(hlds_goal_expr, pred_id, proc_id,
int, int).
:- mode code_util__count_recursive_calls_2(in, in, in, out, out) is det.
code_util__count_recursive_calls_2(not(Goal), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(some(_, _, Goal),
PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(unify(_, _, _, _, _), _, _, 0, 0).
code_util__count_recursive_calls_2(generic_call(_, _, _, _), _, _,
0, 0).
code_util__count_recursive_calls_2(foreign_proc(_, _, _, _, _, _, _),
_, _, 0, 0).
code_util__count_recursive_calls_2(call(CallPredId, CallProcId, _, _, _, _),
PredId, ProcId, Count, Count) :-
(
PredId = CallPredId,
ProcId = CallProcId
->
Count = 1
;
Count = 0
).
code_util__count_recursive_calls_2(conj(Goals), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_conj(Goals, PredId, ProcId, 0, 0,
Min, Max).
code_util__count_recursive_calls_2(par_conj(Goals), PredId, ProcId,
Min, Max) :-
code_util__count_recursive_calls_conj(Goals, PredId, ProcId, 0, 0,
Min, Max).
code_util__count_recursive_calls_2(disj(Goals), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_disj(Goals, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(switch(_, _, Cases), PredId, ProcId,
Min, Max) :-
code_util__count_recursive_calls_cases(Cases, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(if_then_else(_, Cond, Then, Else),
PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls(Cond, PredId, ProcId, CMin, CMax),
code_util__count_recursive_calls(Then, PredId, ProcId, TMin, TMax),
code_util__count_recursive_calls(Else, PredId, ProcId, EMin, EMax),
CTMin is CMin + TMin,
CTMax is CMax + TMax,
int__min(CTMin, EMin, Min),
int__max(CTMax, EMax, Max).
code_util__count_recursive_calls_2(shorthand(_),
_, _, _, _) :-
% these should have been expanded out by now
error("code_util__count_recursive_calls_2: unexpected shorthand").
:- pred code_util__count_recursive_calls_conj(list(hlds_goal),
pred_id, proc_id, int, int, int, int).
:- mode code_util__count_recursive_calls_conj(in, in, in, in, in, out, out)
is det.
code_util__count_recursive_calls_conj([], _, _, Min, Max, Min, Max).
code_util__count_recursive_calls_conj([Goal | Goals], PredId, ProcId,
Min0, Max0, Min, Max) :-
code_util__count_recursive_calls(Goal, PredId, ProcId, Min1, Max1),
Min2 is Min0 + Min1,
Max2 is Max0 + Max1,
code_util__count_recursive_calls_conj(Goals, PredId, ProcId,
Min2, Max2, Min, Max).
:- pred code_util__count_recursive_calls_disj(list(hlds_goal),
pred_id, proc_id, int, int).
:- mode code_util__count_recursive_calls_disj(in, in, in, out, out) is det.
code_util__count_recursive_calls_disj([], _, _, 0, 0).
code_util__count_recursive_calls_disj([Goal | Goals], PredId, ProcId,
Min, Max) :-
( Goals = [] ->
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min, Max)
;
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min0, Max0),
code_util__count_recursive_calls_disj(Goals, PredId, ProcId,
Min1, Max1),
int__min(Min0, Min1, Min),
int__max(Max0, Max1, Max)
).
:- pred code_util__count_recursive_calls_cases(list(case),
pred_id, proc_id, int, int).
:- mode code_util__count_recursive_calls_cases(in, in, in, out, out) is det.
code_util__count_recursive_calls_cases([], _, _, _, _) :-
error("empty cases in code_util__count_recursive_calls_cases").
code_util__count_recursive_calls_cases([case(_, Goal) | Cases], PredId, ProcId,
Min, Max) :-
( Cases = [] ->
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min, Max)
;
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min0, Max0),
code_util__count_recursive_calls_cases(Cases, PredId, ProcId,
Min1, Max1),
int__min(Min0, Min1, Min),
int__max(Max0, Max1, Max)
).
%-----------------------------------------------------------------------------%
code_util__lvals_in_lvals([], []).
code_util__lvals_in_lvals([First | Rest], Lvals) :-
code_util__lvals_in_lval(First, FirstLvals),
code_util__lvals_in_lvals(Rest, RestLvals),
list__append(FirstLvals, RestLvals, Lvals).
code_util__lvals_in_rval(lval(Lval), [Lval | Lvals]) :-
code_util__lvals_in_lval(Lval, Lvals).
code_util__lvals_in_rval(var(_), []).
code_util__lvals_in_rval(create(_, _, _, _, _, _, _), []).
code_util__lvals_in_rval(mkword(_, Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_rval(const(_), []).
code_util__lvals_in_rval(unop(_, Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_rval(binop(_, Rval1, Rval2), Lvals) :-
code_util__lvals_in_rval(Rval1, Lvals1),
code_util__lvals_in_rval(Rval2, Lvals2),
list__append(Lvals1, Lvals2, Lvals).
code_util__lvals_in_rval(mem_addr(MemRef), Lvals) :-
code_util__lvals_in_mem_ref(MemRef, Lvals).
code_util__lvals_in_lval(reg(_, _), []).
code_util__lvals_in_lval(stackvar(_), []).
code_util__lvals_in_lval(framevar(_), []).
code_util__lvals_in_lval(succip, []).
code_util__lvals_in_lval(maxfr, []).
code_util__lvals_in_lval(curfr, []).
code_util__lvals_in_lval(succip(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(redofr(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(redoip(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(succfr(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(prevfr(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(hp, []).
code_util__lvals_in_lval(sp, []).
code_util__lvals_in_lval(field(_, Rval1, Rval2), Lvals) :-
code_util__lvals_in_rval(Rval1, Lvals1),
code_util__lvals_in_rval(Rval2, Lvals2),
list__append(Lvals1, Lvals2, Lvals).
code_util__lvals_in_lval(lvar(_), []).
code_util__lvals_in_lval(temp(_, _), []).
code_util__lvals_in_lval(mem_ref(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
:- pred code_util__lvals_in_mem_ref(mem_ref, list(lval)).
:- mode code_util__lvals_in_mem_ref(in, out) is det.
code_util__lvals_in_mem_ref(stackvar_ref(_), []).
code_util__lvals_in_mem_ref(framevar_ref(_), []).
code_util__lvals_in_mem_ref(heap_ref(Rval, _, _), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
%-----------------------------------------------------------------------------%