mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-15 05:44:58 +00:00
Estimated hours taken: 0.1 Fix a bug in inlining of polymorphic predicates, which showed up for the `pseudoknot' benchmark when excess_assign was turned on again. compiler/inlining.m: Make sure we substitute in the new values of any type parameters which are bound by an inlined call. This fixed a bug which led to the the code generator aborting because the code output from inlining.m was not type-correct. Also, tidy up the source code a bit and a some comments. type_util.m: Add predicate type_list_subsumes/3, for use by inlining.m and modes.m. modes.m: Use type_list_subsumes/3.
418 lines
13 KiB
Mathematica
418 lines
13 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 1995 University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% File: type_util.m.
|
|
% Main author: fjh.
|
|
|
|
% This file provides some utility predicates which operate on types.
|
|
% It is used by various stages of the compilation after type-checking,
|
|
% include the mode checker and the code generator.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- module type_util.
|
|
|
|
:- interface.
|
|
|
|
:- import_module hlds_module, hlds_pred, hlds_data, prog_io.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Succeed iff type is an "atomic" type - one which can be
|
|
% unified using a simple_test rather than a complicated_unify.
|
|
|
|
:- pred type_is_atomic(type, module_info).
|
|
:- mode type_is_atomic(in, in) is semidet.
|
|
|
|
% type_is_higher_order_type(Type, PredOrFunc, ArgTypes) succeeds iff
|
|
% Type is a higher-order predicate or function type with the specified
|
|
% argument types (for functions, the return type is appended to the
|
|
% end of the argument types).
|
|
|
|
:- pred type_is_higher_order(type, pred_or_func, list(type)).
|
|
:- mode type_is_higher_order(in, out, out) is semidet.
|
|
|
|
% Given a type, determine what sort of type it is.
|
|
|
|
:- pred classify_type(type, module_info, builtin_type).
|
|
:- mode classify_type(in, in, out) is det.
|
|
|
|
:- type builtin_type ---> int_type
|
|
; char_type
|
|
; str_type
|
|
; float_type
|
|
; pred_type
|
|
; enum_type
|
|
; polymorphic_type
|
|
; user_type(type).
|
|
|
|
% Given a non-variable type, return it's type-id and argument types.
|
|
|
|
:- pred type_to_type_id(type, type_id, list(type)).
|
|
:- mode type_to_type_id(in, out, out) is semidet.
|
|
|
|
% Given a constant and an arity, return a type_id.
|
|
% Fails if the constant is not an atom.
|
|
|
|
:- pred make_type_id(const, int, type_id).
|
|
:- mode make_type_id(in, in, out) is semidet.
|
|
|
|
% Given a type_id, look up its module/name/arity
|
|
|
|
:- pred type_util__type_id_module(module_info, type_id, module_name).
|
|
:- mode type_util__type_id_module(in, in, out) is det.
|
|
|
|
:- pred type_util__type_id_name(module_info, type_id, string).
|
|
:- mode type_util__type_id_name(in, in, out) is det.
|
|
|
|
:- pred type_util__type_id_arity(module_info, type_id, arity).
|
|
:- mode type_util__type_id_arity(in, in, out) is det.
|
|
|
|
% If the type is a du type, return the list of it's constructors.
|
|
|
|
:- pred type_constructors(type, module_info, list(constructor)).
|
|
:- mode type_constructors(in, in, out) is semidet.
|
|
|
|
% Unify (with occurs check) two types with respect to a type
|
|
% substitution and update the type bindings.
|
|
% The third argument is a list of type variables which cannot
|
|
% be bound (i.e. head type variables).
|
|
|
|
:- pred type_unify(type, type, list(tvar), tsubst, tsubst).
|
|
:- mode type_unify(in, in, in, in, out) is semidet.
|
|
|
|
:- pred type_unify_list(list(type), list(type), list(tvar), tsubst, tsubst).
|
|
:- mode type_unify_list(in, in, in, in, out) is semidet.
|
|
|
|
% type_list_subsumes(TypesA, TypesB, Subst) succeeds iff the list
|
|
% TypesA subsumes (is more general than) TypesB, producing a
|
|
% type substitution which when applied to TypesA will give TypesB.
|
|
|
|
:- pred type_list_subsumes(list(type), list(type), tsubst).
|
|
:- mode type_list_subsumes(in, in, out) is semidet.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
:- import_module bool, list, term, require, map, std_util.
|
|
:- import_module prog_util.
|
|
|
|
type_util__type_id_module(_ModuleInfo, _TypeId, ModuleName) :-
|
|
% XXX Module qualifiers not yet implemented
|
|
ModuleName = "xxx".
|
|
|
|
type_util__type_id_name(_ModuleInfo, Name0 - _Arity, Name) :-
|
|
unqualify_name(Name0, Name).
|
|
|
|
type_util__type_id_arity(_ModuleInfo, _Name - Arity, Arity).
|
|
|
|
type_is_atomic(Type, ModuleInfo) :-
|
|
classify_type(Type, ModuleInfo, BuiltinType),
|
|
BuiltinType \= polymorphic_type,
|
|
BuiltinType \= pred_type,
|
|
BuiltinType \= user_type(_).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Given a type, determine what sort of type it is.
|
|
|
|
classify_type(VarType, ModuleInfo, Type) :-
|
|
(
|
|
VarType = term__variable(_)
|
|
->
|
|
Type = polymorphic_type
|
|
;
|
|
VarType = term__functor(term__atom("character"), [], _)
|
|
->
|
|
Type = char_type
|
|
;
|
|
VarType = term__functor(term__atom("int"), [], _)
|
|
->
|
|
Type = int_type
|
|
;
|
|
VarType = term__functor(term__atom("float"), [], _)
|
|
->
|
|
Type = float_type
|
|
;
|
|
VarType = term__functor(term__atom("string"), [], _)
|
|
->
|
|
Type = str_type
|
|
;
|
|
type_is_higher_order(VarType, _, _)
|
|
->
|
|
Type = pred_type
|
|
;
|
|
type_is_enumeration(VarType, ModuleInfo)
|
|
->
|
|
Type = enum_type
|
|
;
|
|
Type = user_type(VarType)
|
|
).
|
|
|
|
type_is_higher_order(Type, PredOrFunc, PredArgTypes) :-
|
|
(
|
|
Type = term__functor(term__atom("pred"),
|
|
PredArgTypes, _),
|
|
PredOrFunc = predicate
|
|
;
|
|
Type = term__functor(term__atom("="),
|
|
[term__functor(term__atom("func"),
|
|
FuncArgTypes, _),
|
|
FuncRetType], _),
|
|
list__append(FuncArgTypes, [FuncRetType], PredArgTypes),
|
|
PredOrFunc = function
|
|
).
|
|
|
|
:- pred type_is_enumeration(type, module_info).
|
|
:- mode type_is_enumeration(in, in) is semidet.
|
|
|
|
type_is_enumeration(Type, ModuleInfo) :-
|
|
type_to_type_id(Type, TypeId, _),
|
|
module_info_types(ModuleInfo, TypeDefnTable),
|
|
map__search(TypeDefnTable, TypeId, TypeDefn),
|
|
TypeDefn = hlds__type_defn(_, _, TypeBody, _, _),
|
|
TypeBody = du_type(_, _, IsEnum),
|
|
IsEnum = yes.
|
|
|
|
type_to_type_id(term__functor(Name, Args, _), TypeId, Args) :-
|
|
list__length(Args, Arity),
|
|
make_type_id(Name, Arity, TypeId).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Given a constant and an arity, return a type_id.
|
|
% This really ought to take a name and an arity -
|
|
% use of integers/floats/strings as type names should
|
|
% be rejected by the parser in prog_io.m, not in undef_types.m.
|
|
|
|
make_type_id(term__atom(Name), Arity, unqualified(Name) - Arity).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% If the type is a du type, return the list of it's constructors.
|
|
|
|
type_constructors(Type, ModuleInfo, Constructors) :-
|
|
type_to_type_id(Type, TypeId, TypeArgs),
|
|
module_info_types(ModuleInfo, TypeTable),
|
|
map__search(TypeTable, TypeId, TypeDefn),
|
|
TypeDefn = hlds__type_defn(_, TypeParams, TypeBody, _, _),
|
|
TypeBody = du_type(Constructors0, _, _),
|
|
substitute_type_args(TypeParams, TypeArgs, Constructors0,
|
|
Constructors).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Substitute the actual values of the type parameters
|
|
% in list of constructors, for a particular instance of
|
|
% a polymorphic type.
|
|
|
|
:- pred substitute_type_args(list(type_param), list(type),
|
|
list(constructor), list(constructor)).
|
|
:- mode substitute_type_args(in, in, in, out) is det.
|
|
|
|
substitute_type_args(TypeParams0, TypeArgs, Constructors0, Constructors) :-
|
|
( TypeParams0 = [] ->
|
|
Constructors = Constructors0
|
|
;
|
|
term__term_list_to_var_list(TypeParams0, TypeParams),
|
|
substitute_type_args_2(Constructors0, TypeParams, TypeArgs,
|
|
Constructors)
|
|
).
|
|
|
|
:- pred substitute_type_args_2(list(constructor), list(var), list(type),
|
|
list(constructor)).
|
|
:- mode substitute_type_args_2(in, in, in, out) is det.
|
|
|
|
substitute_type_args_2([], _TypeParams, _TypeArgs, []).
|
|
substitute_type_args_2([Name - Args0 | Ctors0], TypeParams, TypeArgs,
|
|
[Name - Args | Ctors]) :-
|
|
term__substitute_corresponding_list(TypeParams, TypeArgs, Args0, Args),
|
|
substitute_type_args_2(Ctors0, TypeParams, TypeArgs, Ctors).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Check whether TypesA subsumes TypesB, and if so return
|
|
% a type substitution that will map from TypesA to TypesB.
|
|
|
|
type_list_subsumes(TypesA, TypesB, TypeSubst) :-
|
|
%
|
|
% TypesA subsumes TypesB iff TypesA can be unified with TypesB
|
|
% without binding any of the type variables in TypesB.
|
|
%
|
|
term__vars_list(TypesB, TypesBVars),
|
|
map__init(TypeSubst0),
|
|
type_unify_list(TypesA, TypesB, TypesBVars, TypeSubst0, TypeSubst).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Types are represented as terms, but we can't just use term__unify
|
|
% because we need to avoid binding any of the "head type params"
|
|
% (the type variables that occur in the head of the clause),
|
|
% and because one day we might want to handle equivalent types.
|
|
|
|
:- type_unify(X, Y, _, _, _) when X and Y. % NU-Prolog indexing
|
|
|
|
type_unify(term__variable(X), term__variable(Y), HeadTypeParams, Bindings0,
|
|
Bindings) :-
|
|
( list__member(Y, HeadTypeParams) ->
|
|
type_unify_head_type_param(X, Y, HeadTypeParams,
|
|
Bindings0, Bindings)
|
|
; list__member(X, HeadTypeParams) ->
|
|
type_unify_head_type_param(Y, X, HeadTypeParams,
|
|
Bindings0, Bindings)
|
|
; map__search(Bindings0, X, BindingOfX) ->
|
|
( map__search(Bindings0, Y, BindingOfY) ->
|
|
% both X and Y already have bindings - just
|
|
% unify the types they are bound to
|
|
type_unify(BindingOfX, BindingOfY, HeadTypeParams,
|
|
Bindings0, Bindings)
|
|
;
|
|
term__apply_rec_substitution(BindingOfX,
|
|
Bindings0, SubstBindingOfX),
|
|
% Y is a type variable which hasn't been bound yet
|
|
( SubstBindingOfX = term__variable(Y) ->
|
|
Bindings = Bindings0
|
|
;
|
|
\+ term__occurs(SubstBindingOfX, Y, Bindings0),
|
|
map__set(Bindings0, Y, SubstBindingOfX,
|
|
Bindings)
|
|
)
|
|
)
|
|
;
|
|
( map__search(Bindings0, Y, BindingOfY) ->
|
|
term__apply_rec_substitution(BindingOfY,
|
|
Bindings0, SubstBindingOfY),
|
|
% X is a type variable which hasn't been bound yet
|
|
( SubstBindingOfY = term__variable(X) ->
|
|
Bindings = Bindings0
|
|
;
|
|
\+ term__occurs(SubstBindingOfY, X, Bindings0),
|
|
map__set(Bindings0, X, SubstBindingOfY,
|
|
Bindings)
|
|
)
|
|
;
|
|
% both X and Y are unbound type variables -
|
|
% bind one to the other
|
|
( X = Y ->
|
|
Bindings = Bindings0
|
|
;
|
|
map__set(Bindings0, X, term__variable(Y),
|
|
Bindings)
|
|
)
|
|
)
|
|
).
|
|
|
|
type_unify(term__variable(X), term__functor(F, As, C), HeadTypeParams,
|
|
Bindings0, Bindings) :-
|
|
(
|
|
map__search(Bindings0, X, BindingOfX)
|
|
->
|
|
type_unify(BindingOfX, term__functor(F, As, C), HeadTypeParams,
|
|
Bindings0, Bindings)
|
|
;
|
|
\+ term__occurs_list(As, X, Bindings0),
|
|
\+ list__member(X, HeadTypeParams),
|
|
map__set(Bindings0, X, term__functor(F, As, C), Bindings)
|
|
).
|
|
|
|
type_unify(term__functor(F, As, C), term__variable(X), HeadTypeParams,
|
|
Bindings0, Bindings) :-
|
|
(
|
|
map__search(Bindings0, X, BindingOfX)
|
|
->
|
|
type_unify(term__functor(F, As, C), BindingOfX, HeadTypeParams,
|
|
Bindings0, Bindings)
|
|
;
|
|
\+ term__occurs_list(As, X, Bindings0),
|
|
\+ list__member(X, HeadTypeParams),
|
|
map__set(Bindings0, X, term__functor(F, As, C), Bindings)
|
|
).
|
|
|
|
type_unify(term__functor(FX, AsX, _CX), term__functor(FY, AsY, _CY),
|
|
HeadTypeParams, Bindings0, Bindings) :-
|
|
list__length(AsX, ArityX),
|
|
list__length(AsY, ArityY),
|
|
(
|
|
FX = FY,
|
|
ArityX = ArityY
|
|
->
|
|
type_unify_list(AsX, AsY, HeadTypeParams, Bindings0, Bindings)
|
|
;
|
|
fail
|
|
).
|
|
|
|
% XXX Instead of just failing if the functors' name/arity is different,
|
|
% we should check here if these types have been defined
|
|
% to be equivalent using equivalence types. But this
|
|
% is difficult because (1) it causes typevarset synchronization
|
|
% problems, and (2) the relevant variables TypeInfo, TVarSet0, TVarSet
|
|
% haven't been passed in to here.
|
|
|
|
/*******
|
|
...
|
|
;
|
|
replace_eqv_type(FX, ArityX, AsX, EqvType)
|
|
->
|
|
type_unify(EqvType, term__functor(FY, AsY, CY), HeadTypeParams,
|
|
Bindings0, Bindings)
|
|
;
|
|
replace_eqv_type(FY, ArityY, AsY, EqvType)
|
|
->
|
|
type_unify(term__functor(FX, AsX, CX), EqvType, HeadTypeParams,
|
|
Bindings0, Bindings)
|
|
;
|
|
fail
|
|
).
|
|
|
|
:- pred replace_eqv_type(const, int, list(type), type).
|
|
:- mode replace_eqv_type(in, in, in, out) is semidet.
|
|
|
|
replace_eqv_type(Functor, Arity, Args, EqvType) :-
|
|
|
|
% XXX magically_obtain(TypeTable, TVarSet0, TVarSet)
|
|
|
|
make_type_id(Functor, Arity, TypeId),
|
|
map__search(TypeTable, TypeId, TypeDefn),
|
|
TypeDefn = hlds__type_defn(TypeVarSet, TypeParams0,
|
|
eqv_type(EqvType0), _Condition, Context),
|
|
varset__merge(TVarSet0, TypeVarSet, [EqvType0 | TypeParams0],
|
|
TVarSet, [EqvType1, TypeParams1]),
|
|
type_param_to_var_list(TypeParams1, TypeParams),
|
|
term__substitute_corresponding(EqvType1, TypeParams, AsX,
|
|
EqvType).
|
|
|
|
******/
|
|
|
|
type_unify_list([], [], _) --> [].
|
|
type_unify_list([X | Xs], [Y | Ys], HeadTypeParams) -->
|
|
type_unify(X, Y, HeadTypeParams),
|
|
type_unify_list(Xs, Ys, HeadTypeParams).
|
|
|
|
:- pred type_unify_head_type_param(tvar, tvar, list(tvar), tsubst, tsubst).
|
|
:- mode type_unify_head_type_param(in, in, in, in, out) is semidet.
|
|
|
|
type_unify_head_type_param(Var, HeadVar, HeadTypeParams, Bindings0,
|
|
Bindings) :-
|
|
( map__search(Bindings0, Var, BindingOfVar) ->
|
|
BindingOfVar = term__variable(Var2),
|
|
type_unify_head_type_param(Var2, HeadVar, HeadTypeParams,
|
|
Bindings0, Bindings)
|
|
;
|
|
( Var = HeadVar ->
|
|
Bindings = Bindings0
|
|
;
|
|
\+ list__member(Var, HeadTypeParams),
|
|
map__set(Bindings0, Var, term__variable(HeadVar),
|
|
Bindings)
|
|
)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|