Files
mercury/library/sparse_bitset.m
Julien Fischer e0f5ac47db Make it easier for vi to jump past the initial comments
Estimated hours taken: 0.1
Branches: main

library/*.m:
	Make it easier for vi to jump past the initial comments
	at the head of a module.
2006-04-19 05:18:00 +00:00

1158 lines
41 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et wm=0 tw=0
%-----------------------------------------------------------------------------%
% Copyright (C) 2000-2006 The University of Melbourne.
% This file may only be copied under the terms of the GNU Library General
% Public License - see the file COPYING.LIB in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: sparse_bitset.m.
% Author: stayl.
% Stability: medium.
%
% This module provides an ADT for storing sets of integers.
% If the integers stored are closely grouped, a sparse_bitset
% is much more compact than the representation provided by set.m,
% and the operations will be much faster.
%
% Efficiency notes:
%
% A sparse bitset is represented as a sorted list of pairs of integers.
% For a pair `Offset - Bits', `Offset' is a multiple of `int.bits_per_int'.
% The bits of `Bits' describe which of the elements of the range
% `Offset' .. `Offset + bits_per_int - 1' are in the set.
% Pairs with the same value of `Offset' are merged.
% Pairs for which `Bits' is zero are removed.
%
% The values of `Offset' in the list need not be contiguous multiples
% of `bits_per_int', hence the name _sparse_ bitset.
%
% A sparse_bitset is suitable for storing sets of integers which
% can be represented using only a few `Offset - Bits' pairs.
% In the worst case, where the integers stored are not closely
% grouped, a sparse_bitset will take more memory than an
% ordinary set, but the operations should not be too much slower.
%
% In the asymptotic complexities of the operations below,
% `rep_size(Set)' is the number of pairs needed to represent `Set',
% and `card(Set)' is the number of elements in `Set'.
%
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- module sparse_bitset.
:- interface.
:- import_module enum.
:- import_module list.
:- import_module term.
:- use_module set.
%-----------------------------------------------------------------------------%
:- type sparse_bitset(T). % <= enum(T).
% Return an empty set.
%
:- func init = sparse_bitset(T).
:- pred init(sparse_bitset(T)).
:- mode init(out) is det.
:- pred empty(sparse_bitset(T)).
:- mode empty(in) is semidet.
:- mode empty(out) is det.
% `equal(SetA, SetB' is true iff `SetA' and `SetB' contain the same
% elements. Takes O(min(rep_size(SetA), rep_size(SetB))) time.
%
:- pred equal(sparse_bitset(T)::in, sparse_bitset(T)::in) is semidet.
% `list_to_set(List)' returns a set containing only the members of `List'.
% In the worst case this will take O(length(List)^2) time and space.
% If the elements of the list are closely grouped, it will be closer
% to O(length(List)).
%
:- func list_to_set(list(T)) = sparse_bitset(T) <= enum(T).
:- pred list_to_set(list(T)::in, sparse_bitset(T)::out) is det <= enum(T).
% `sorted_list_to_set(List)' returns a set containing only the members
% of `List'. `List' must be sorted. Takes O(length(List)) time and space.
%
:- func sorted_list_to_set(list(T)) = sparse_bitset(T) <= enum(T).
:- pred sorted_list_to_set(list(T)::in, sparse_bitset(T)::out)
is det <= enum(T).
% `sorted_list_to_set(Set)' returns a bitset containing only the members
% of `Set'. `List' must be sorted. Takes O(card(Set)) time and space.
%
:- func from_set(set.set(T)) = sparse_bitset(T) <= enum(T).
% `to_sorted_list(Set)' returns a list containing all the members of `Set',
% in sorted order. Takes O(card(Set)) time and space.
%
:- func to_sorted_list(sparse_bitset(T)) = list(T) <= enum(T).
:- pred to_sorted_list(sparse_bitset(T)::in, list(T)::out) is det <= enum(T).
% `to_sorted_list(Set)' returns a set.set containing all the members
% of `Set', in sorted order. Takes O(card(Set)) time and space.
%
:- func to_set(sparse_bitset(T)) = set.set(T) <= enum(T).
% `make_singleton_set(Elem)' returns a set containing just the single
% element `Elem'.
%
:- func make_singleton_set(T) = sparse_bitset(T) <= enum(T).
% Note: set.m contains the reverse mode of this predicate, but it is
% difficult to implement both modes using the representation in this
% module.
%
:- pred singleton_set(sparse_bitset(T)::out, T::in) is det <= enum(T).
% `subset(Subset, Set)' is true iff `Subset' is a subset of `Set'.
% Same as `intersect(Set, Subset, Subset)', but may be more efficient.
%
:- pred subset(sparse_bitset(T)::in, sparse_bitset(T)::in) is semidet.
% `superset(Superset, Set)' is true iff `Superset' is a superset of `Set'.
% Same as `intersect(Superset, Set, Set)', but may be more efficient.
%
:- pred superset(sparse_bitset(T)::in, sparse_bitset(T)::in) is semidet.
% `contains(Set, X)' is true iff `X' is a member of `Set'.
% Takes O(rep_size(Set)) time.
%
:- pred contains(sparse_bitset(T)::in, T::in) is semidet <= enum(T).
% `member(Set, X)' is true iff `X' is a member of `Set'.
% Takes O(rep_size(Set)) time.
%
:- pred member(T, sparse_bitset(T)) <= enum(T).
:- mode member(in, in) is semidet.
:- mode member(out, in) is nondet.
% `insert(Set, X)' returns the union of `Set' and the set containing
% only `X'. Takes O(rep_size(Set)) time and space.
%
:- func insert(sparse_bitset(T), T) = sparse_bitset(T) <= enum(T).
:- pred insert(sparse_bitset(T)::in, T::in, sparse_bitset(T)::out)
is det <= enum(T).
% `insert_list(Set, X)' returns the union of `Set' and the set containing
% only the members of `X'. Same as `union(Set, list_to_set(X))', but may be
% more efficient.
%
:- func insert_list(sparse_bitset(T), list(T)) = sparse_bitset(T) <= enum(T).
:- pred insert_list(sparse_bitset(T)::in, list(T)::in, sparse_bitset(T)::out)
is det <= enum(T).
% `delete(Set, X)' returns the difference of `Set' and the set containing
% only `X'. Takes O(rep_size(Set)) time and space.
%
:- func delete(sparse_bitset(T), T) = sparse_bitset(T) <= enum(T).
:- pred delete(sparse_bitset(T)::in, T::in, sparse_bitset(T)::out)
is det <= enum(T).
% `delete_list(Set, X)' returns the difference of `Set' and the set
% containing only the members of `X'. Same as
% `difference(Set, list_to_set(X))', but may be more efficient.
%
:- func delete_list(sparse_bitset(T), list(T)) = sparse_bitset(T) <= enum(T).
:- pred delete_list(sparse_bitset(T)::in, list(T)::in, sparse_bitset(T)::out)
is det <= enum(T).
% `remove(Set, X)' returns the difference of `Set' and the set containing
% only `X', failing if `Set' does not contain `X'. Takes O(rep_size(Set))
% time and space.
%
:- func remove(sparse_bitset(T)::in, T::in) = (sparse_bitset(T)::out)
is semidet <= enum(T).
:- pred remove(sparse_bitset(T)::in, T::in, sparse_bitset(T)::out)
is semidet <= enum(T).
% `remove_list(Set, X)' returns the difference of `Set' and the set
% containing all the elements of `X', failing if any element of `X'
% is not in `Set0'.
% Same as `subset(list_to_set(X), Set), difference(Set, list_to_set(X))',
% but may be more efficient.
%
:- func remove_list(sparse_bitset(T)::in, list(T)::in) = (sparse_bitset(T)::out)
is semidet <= enum(T).
:- pred remove_list(sparse_bitset(T)::in, list(T)::in, sparse_bitset(T)::out)
is semidet <= enum(T).
% `remove_leq(Set, X)' returns `Set' with all elements less than or equal
% to `X' removed. In other words, it returns the set containing all the
% elements of `Set' which are greater than `X'.
%
:- func remove_leq(sparse_bitset(T), T) = sparse_bitset(T) <= enum(T).
:- pred remove_leq(sparse_bitset(T)::in, T::in, sparse_bitset(T)::out)
is det <= enum(T).
% `remove_gt(Set, X)' returns `Set' with all elements greater than `X'
% removed. In other words, it returns the set containing % all the elements
% of `Set' which are less than or equal to `X'.
%
:- func remove_gt(sparse_bitset(T), T) = sparse_bitset(T) <= enum(T).
:- pred remove_gt(sparse_bitset(T)::in, T::in, sparse_bitset(T)::out)
is det <= enum(T).
% `remove_least(Set0, X, Set)' is true iff `X' is the least element in
% `Set0', and `Set' is the set which contains all the elements of `Set0'
% except `X'. Takes O(1) time and space.
%
:- pred remove_least(sparse_bitset(T)::in, T::out, sparse_bitset(T)::out)
is semidet <= enum(T).
% `union(SetA, SetB)' returns the union of `SetA' and `SetB'. The
% efficiency of the union operation is not sensitive to the argument
% ordering. Takes O(rep_size(SetA) + rep_size(SetB)) time and space.
%
:- func union(sparse_bitset(T), sparse_bitset(T)) = sparse_bitset(T).
:- pred union(sparse_bitset(T)::in, sparse_bitset(T)::in,
sparse_bitset(T)::out) is det.
% `intersect(SetA, SetB)' returns the intersection of `SetA' and `SetB'.
% The efficiency of the intersection operation is not sensitive to the
% argument ordering. Takes O(rep_size(SetA) + rep_size(SetB)) time and
% O(min(rep_size(SetA)), rep_size(SetB)) space.
%
:- func intersect(sparse_bitset(T), sparse_bitset(T)) = sparse_bitset(T).
:- pred intersect(sparse_bitset(T)::in, sparse_bitset(T)::in,
sparse_bitset(T)::out) is det.
% `difference(SetA, SetB)' returns the set containing all the elements
% of `SetA' except those that occur in `SetB'. Takes
% O(rep_size(SetA) + rep_size(SetB)) time and O(rep_size(SetA)) space.
%
:- func difference(sparse_bitset(T), sparse_bitset(T)) = sparse_bitset(T).
:- pred difference(sparse_bitset(T)::in, sparse_bitset(T)::in,
sparse_bitset(T)::out) is det.
% `count(Set)' returns the number of elements in `Set'.
% Takes O(card(Set)) time.
%
:- func count(sparse_bitset(T)) = int <= enum(T).
% `foldl(Func, Set, Start)' calls Func with each element of `Set'
% (in sorted order) and an accumulator (with the initial value of `Start'),
% and returns the final value. Takes O(card(Set)) time.
%
:- func foldl(func(T, U) = U, sparse_bitset(T), U) = U <= enum(T).
:- pred foldl(pred(T, U, U), sparse_bitset(T), U, U) <= enum(T).
:- mode foldl(pred(in, di, uo) is det, in, di, uo) is det.
:- mode foldl(pred(in, in, out) is det, in, in, out) is det.
:- mode foldl(pred(in, in, out) is semidet, in, in, out) is semidet.
:- mode foldl(pred(in, in, out) is nondet, in, in, out) is nondet.
:- mode foldl(pred(in, di, uo) is cc_multi, in, di, uo) is cc_multi.
:- mode foldl(pred(in, in, out) is cc_multi, in, in, out) is cc_multi.
:- pred foldl2(pred(T, U, U, V, V), sparse_bitset(T), U, U, V, V) <= enum(T).
:- mode foldl2(pred(in, di, uo, di, uo) is det, in, di, uo, di, uo) is det.
:- mode foldl2(pred(in, in, out, di, uo) is det, in, in, out, di, uo) is det.
:- mode foldl2(pred(in, in, out, in, out) is det, in, in, out, in, out) is det.
:- mode foldl2(pred(in, in, out, in, out) is semidet, in, in, out, in, out)
is semidet.
:- mode foldl2(pred(in, in, out, in, out) is nondet, in, in, out, in, out)
is nondet.
:- mode foldl2(pred(in, di, uo, di, uo) is cc_multi, in, di, uo, di, uo)
is cc_multi.
:- mode foldl2(pred(in, in, out, di, uo) is cc_multi, in, in, out, di, uo)
is cc_multi.
:- mode foldl2(pred(in, in, out, in, out) is cc_multi, in, in, out, in, out)
is cc_multi.
% `foldr(Func, Set, Start)' calls Func with each element of `Set'
% (in reverse sorted order) and an accumulator (with the initial value
% of `Start'), and returns the final value. Takes O(card(Set)) time.
%
:- func foldr(func(T, U) = U, sparse_bitset(T), U) = U <= enum(T).
:- pred foldr(pred(T, U, U), sparse_bitset(T), U, U) <= enum(T).
:- mode foldr(pred(in, di, uo) is det, in, di, uo) is det.
:- mode foldr(pred(in, in, out) is det, in, in, out) is det.
:- mode foldr(pred(in, in, out) is semidet, in, in, out) is semidet.
:- mode foldr(pred(in, in, out) is nondet, in, in, out) is nondet.
:- mode foldr(pred(in, di, uo) is cc_multi, in, di, uo) is cc_multi.
:- mode foldr(pred(in, in, out) is cc_multi, in, in, out) is cc_multi.
:- pred foldr2(pred(T, U, U, V, V), sparse_bitset(T), U, U, V, V) <= enum(T).
:- mode foldr2(pred(in, di, uo, di, uo) is det, in, di, uo, di, uo) is det.
:- mode foldr2(pred(in, in, out, di, uo) is det, in, in, out, di, uo) is det.
:- mode foldr2(pred(in, in, out, in, out) is det, in, in, out, in, out) is det.
:- mode foldr2(pred(in, in, out, in, out) is semidet, in, in, out, in, out)
is semidet.
:- mode foldr2(pred(in, in, out, in, out) is nondet, in, in, out, in, out)
is nondet.
:- mode foldr2(pred(in, di, uo, di, uo) is cc_multi, in, di, uo, di, uo)
is cc_multi.
:- mode foldr2(pred(in, in, out, di, uo) is cc_multi, in, in, out, di, uo)
is cc_multi.
:- mode foldr2(pred(in, in, out, in, out) is cc_multi, in, in, out, in, out)
is cc_multi.
% `filter(Pred, Set)' removes those elements from `Set' for which
% `Pred' fails. In other words, it returns the set consisting of those
% elements of `Set' for which `Pred' succeeds.
%
:- func filter(pred(T), sparse_bitset(T)) = sparse_bitset(T) <= enum(T).
:- mode filter(pred(in) is semidet, in) = out is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
% Everything below here is not intended to be part of the public interface,
% and will not be included in the Mercury library reference manual.
:- interface.
:- pragma type_spec(list_to_set/1, T = var(_)).
:- pragma type_spec(list_to_set/1, T = int).
:- pragma type_spec(sorted_list_to_set/1, T = var(_)).
:- pragma type_spec(sorted_list_to_set/1, T = int).
:- pragma type_spec(to_sorted_list/1, T = var(_)).
:- pragma type_spec(to_sorted_list/1, T = int).
:- pragma type_spec(to_set/1, T = var(_)).
:- pragma type_spec(to_set/1, T = int).
:- pragma type_spec(from_set/1, T = var(_)).
:- pragma type_spec(from_set/1, T = int).
:- pragma type_spec(make_singleton_set/1, T = var(_)).
:- pragma type_spec(make_singleton_set/1, T = int).
:- pragma type_spec(contains/2, T = var(_)).
:- pragma type_spec(contains/2, T = int).
:- pragma type_spec(insert/2, T = var(_)).
:- pragma type_spec(insert/2, T = int).
:- pragma type_spec(insert_list/2, T = var(_)).
:- pragma type_spec(insert_list/2, T = int).
:- pragma type_spec(delete/2, T = var(_)).
:- pragma type_spec(delete/2, T = int).
:- pragma type_spec(delete_list/2, T = var(_)).
:- pragma type_spec(delete_list/2, T = int).
:- pragma type_spec(foldr/3, T = int).
:- pragma type_spec(foldr/3, T = var(_)).
:- pragma type_spec(foldr/4, T = int).
:- pragma type_spec(foldr/4, T = var(_)).
:- pragma type_spec(foldl/3, T = int).
:- pragma type_spec(foldl/3, T = var(_)).
:- pragma type_spec(foldl/4, T = int).
:- pragma type_spec(foldl/4, T = var(_)).
:- pragma type_spec(list_to_set/2, T = var(_)).
:- pragma type_spec(list_to_set/2, T = int).
:- pragma type_spec(sorted_list_to_set/2, T = var(_)).
:- pragma type_spec(sorted_list_to_set/2, T = int).
:- pragma type_spec(to_sorted_list/2, T = var(_)).
:- pragma type_spec(to_sorted_list/2, T = int).
:- pragma type_spec(singleton_set/2, T = var(_)).
:- pragma type_spec(singleton_set/2, T = int).
:- pragma type_spec(insert/3, T = var(_)).
:- pragma type_spec(insert/3, T = int).
:- pragma type_spec(insert_list/3, T = var(_)).
:- pragma type_spec(insert_list/3, T = int).
:- pragma type_spec(delete/3, T = var(_)).
:- pragma type_spec(delete/3, T = int).
:- pragma type_spec(delete_list/3, T = var(_)).
:- pragma type_spec(delete_list/3, T = int).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module int.
:- import_module list.
:- import_module require.
%-----------------------------------------------------------------------------%
% The number of variables for most procedures
% should fit into one or two words.
:- type sparse_bitset(T) % <= enum(T)
---> sparse_bitset(bitset_impl).
% The list of elements, sorted on offset.
% No two elements have the same offset.
:- type bitset_impl == list(bitset_elem).
% Cells of this type should only be
% constructed using make_bitset_elem/2.
:- type bitset_elem
---> bitset_elem(
offset :: int, % multiple of bits_per_int
bits :: int % bits offset .. offset + bits_per_int - 1
% The sparse_bitset operations all remove
% elements of the list with a `bits'
% field of zero.
).
%-----------------------------------------------------------------------------%
init = sparse_bitset([]).
empty(init).
equal(X, X).
%-----------------------------------------------------------------------------%
to_sorted_list(Set) = foldr(func(Elem, Acc0) = [Elem | Acc0], Set, []).
to_set(Set) = set.sorted_list_to_set(to_sorted_list(Set)).
from_set(Set) = sorted_list_to_set(set.to_sorted_list(Set)).
%-----------------------------------------------------------------------------%
:- type fold_direction
---> low_to_high
; high_to_low.
foldl(F, sparse_bitset(Set), Acc0) = Acc :-
do_foldl_pred(
(pred(E::in, Acc1::in, Acc2::out) is det :-
Acc2 = F(E, Acc1)
), Set, Acc0, Acc).
foldl(P, sparse_bitset(Set), !Acc) :-
do_foldl_pred(P, Set, !Acc).
foldl2(P, sparse_bitset(Set), !Acc1, !Acc2) :-
do_foldl2_pred(P, Set, !Acc1, !Acc2).
:- pred do_foldl_pred(pred(T, U, U), bitset_impl, U, U) <= enum(T).
:- mode do_foldl_pred(pred(in, di, uo) is det, in, di, uo) is det.
:- mode do_foldl_pred(pred(in, in, out) is det, in, in, out) is det.
:- mode do_foldl_pred(pred(in, in, out) is semidet, in, in, out) is semidet.
:- mode do_foldl_pred(pred(in, in, out) is nondet, in, in, out) is nondet.
:- mode do_foldl_pred(pred(in, di, uo) is cc_multi, in, di, uo) is cc_multi.
:- mode do_foldl_pred(pred(in, in, out) is cc_multi, in, in, out) is cc_multi.
:- pragma type_spec(do_foldl_pred/4, T = int).
:- pragma type_spec(do_foldl_pred/4, T = var(_)).
do_foldl_pred(_, [], !Acc).
do_foldl_pred(P, [H | T], !Acc) :-
fold_bits(low_to_high, P, H ^ offset, H ^ bits, bits_per_int, !Acc),
do_foldl_pred(P, T, !Acc).
:- pred do_foldl2_pred(pred(T, U, U, V, V), bitset_impl, U, U, V, V) <= enum(T).
:- mode do_foldl2_pred(pred(in, di, uo, di, uo) is det,
in, di, uo, di, uo) is det.
:- mode do_foldl2_pred(pred(in, in, out, di, uo) is det,
in, in, out, di, uo) is det.
:- mode do_foldl2_pred(pred(in, in, out, in, out) is det,
in, in, out, in, out) is det.
:- mode do_foldl2_pred(pred(in, in, out, in, out) is semidet,
in, in, out, in, out) is semidet.
:- mode do_foldl2_pred(pred(in, in, out, in, out) is nondet,
in, in, out, in, out) is nondet.
:- mode do_foldl2_pred(pred(in, di, uo, di, uo) is cc_multi,
in, di, uo, di, uo) is cc_multi.
:- mode do_foldl2_pred(pred(in, in, out, di, uo) is cc_multi,
in, in, out, di, uo) is cc_multi.
:- mode do_foldl2_pred(pred(in, in, out, in, out) is cc_multi,
in, in, out, in, out) is cc_multi.
:- pragma type_spec(do_foldl2_pred/6, T = int).
:- pragma type_spec(do_foldl2_pred/6, T = var(_)).
do_foldl2_pred(_, [], !Acc1, !Acc2).
do_foldl2_pred(P, [H | T], !Acc1, !Acc2) :-
fold2_bits(low_to_high, P, H ^ offset, H ^ bits, bits_per_int,
!Acc1, !Acc2),
do_foldl2_pred(P, T, !Acc1, !Acc2).
foldr(F, sparse_bitset(Set), Acc0) = Acc :-
do_foldr_pred(
(pred(E::in, Acc1::in, Acc2::out) is det :-
Acc2 = F(E, Acc1)
), Set, Acc0, Acc).
foldr(P, sparse_bitset(Set), !Acc) :-
do_foldr_pred(P, Set, !Acc).
foldr2(P, sparse_bitset(Set), !Acc1, !Acc2) :-
do_foldr2_pred(P, Set, !Acc1, !Acc2).
:- pred do_foldr_pred(pred(T, U, U), bitset_impl, U, U) <= enum(T).
:- mode do_foldr_pred(pred(in, di, uo) is det, in, di, uo) is det.
:- mode do_foldr_pred(pred(in, in, out) is det, in, in, out) is det.
:- mode do_foldr_pred(pred(in, in, out) is semidet, in, in, out) is semidet.
:- mode do_foldr_pred(pred(in, in, out) is nondet, in, in, out) is nondet.
:- mode do_foldr_pred(pred(in, di, uo) is cc_multi, in, di, uo) is cc_multi.
:- mode do_foldr_pred(pred(in, in, out) is cc_multi, in, in, out) is cc_multi.
:- pragma type_spec(do_foldr_pred/4, T = int).
:- pragma type_spec(do_foldr_pred/4, T = var(_)).
% We don't just use list.foldr here because the overhead of allocating
% the closure for fold_bits is significant for the compiler's runtime,
% so it's best to avoid that even if `--optimize-higher-order' is not set.
do_foldr_pred(_, [], !Acc).
do_foldr_pred(P, [H | T], !Acc) :-
do_foldr_pred(P, T, !Acc),
fold_bits(high_to_low, P, H ^ offset, H ^ bits, bits_per_int, !Acc).
:- pred do_foldr2_pred(pred(T, U, U, V, V), bitset_impl, U, U, V, V)
<= enum(T).
:- mode do_foldr2_pred(pred(in, di, uo, di, uo) is det,
in, di, uo, di, uo) is det.
:- mode do_foldr2_pred(pred(in, in, out, di, uo) is det,
in, in, out, di, uo) is det.
:- mode do_foldr2_pred(pred(in, in, out, in, out) is det,
in, in, out, in, out) is det.
:- mode do_foldr2_pred(pred(in, in, out, in, out) is semidet,
in, in, out, in, out) is semidet.
:- mode do_foldr2_pred(pred(in, in, out, in, out) is nondet,
in, in, out, in, out) is nondet.
:- mode do_foldr2_pred(pred(in, di, uo, di, uo) is cc_multi,
in, di, uo, di, uo) is cc_multi.
:- mode do_foldr2_pred(pred(in, in, out, di, uo) is cc_multi,
in, in, out, di, uo) is cc_multi.
:- mode do_foldr2_pred(pred(in, in, out, in, out) is cc_multi,
in, in, out, in, out) is cc_multi.
:- pragma type_spec(do_foldr2_pred/6, T = int).
:- pragma type_spec(do_foldr2_pred/6, T = var(_)).
% We don't just use list.foldr here because the overhead of allocating
% the closure for fold_bits is significant for the compiler's runtime,
% so it's best to avoid that even if `--optimize-higher-order' is not set.
do_foldr2_pred(_, [], !Acc1, !Acc2).
do_foldr2_pred(P, [H | T], !Acc1, !Acc2) :-
do_foldr2_pred(P, T, !Acc1, !Acc2),
fold2_bits(high_to_low, P, H ^ offset, H ^ bits, bits_per_int,
!Acc1, !Acc2).
% Do a binary search for the 1 bits in an int.
:- pred fold_bits(fold_direction, pred(T, U, U),
int, int, int, U, U) <= enum(T).
:- mode fold_bits(in, pred(in, in, out) is det,
in, in, in, in, out) is det.
:- mode fold_bits(in, pred(in, di, uo) is det,
in, in, in, di, uo) is det.
:- mode fold_bits(in, pred(in, in, out) is semidet,
in, in, in, in, out) is semidet.
:- mode fold_bits(in, pred(in, in, out) is nondet,
in, in, in, in, out) is nondet.
:- mode fold_bits(in, pred(in, di, uo) is cc_multi,
in, in, in, di, uo) is cc_multi.
:- mode fold_bits(in, pred(in, in, out) is cc_multi,
in, in, in, in, out) is cc_multi.
:- pragma type_spec(fold_bits/7, T = int).
:- pragma type_spec(fold_bits/7, T = var(_)).
fold_bits(Dir, P, Offset, Bits, Size, !Acc) :-
( Bits = 0 ->
true
; Size = 1 ->
( Elem = from_int(Offset) ->
P(Elem, !Acc)
;
% We only apply `from_int/1' to integers returned
% by `to_int/1', so it should never fail.
error("sparse_bitset.m: `enum.from_int/1' failed")
)
;
HalfSize = unchecked_right_shift(Size, 1),
Mask = mask(HalfSize),
% Extract the low-order half of the bits.
LowBits = Mask /\ Bits,
% Extract the high-order half of the bits.
HighBits = Mask /\ unchecked_right_shift(Bits, HalfSize),
(
Dir = low_to_high,
fold_bits(Dir, P, Offset, LowBits, HalfSize, !Acc),
fold_bits(Dir, P, Offset + HalfSize, HighBits, HalfSize, !Acc)
;
Dir = high_to_low,
fold_bits(Dir, P, Offset + HalfSize, HighBits, HalfSize, !Acc),
fold_bits(Dir, P, Offset, LowBits, HalfSize, !Acc)
)
).
:- pred fold2_bits(fold_direction, pred(T, U, U, V, V),
int, int, int, U, U, V, V) <= enum(T).
:- mode fold2_bits(in, pred(in, di, uo, di, uo) is det,
in, in, in, di, uo, di, uo) is det.
:- mode fold2_bits(in, pred(in, in, out, di, uo) is det,
in, in, in, in, out, di, uo) is det.
:- mode fold2_bits(in, pred(in, in, out, in, out) is det,
in, in, in, in, out, in, out) is det.
:- mode fold2_bits(in, pred(in, in, out, in, out) is semidet,
in, in, in, in, out, in, out) is semidet.
:- mode fold2_bits(in, pred(in, in, out, in, out) is nondet,
in, in, in, in, out, in, out) is nondet.
:- mode fold2_bits(in, pred(in, di, uo, di, uo) is cc_multi,
in, in, in, di, uo, di, uo) is cc_multi.
:- mode fold2_bits(in, pred(in, in, out, di, uo) is cc_multi,
in, in, in, in, out, di, uo) is cc_multi.
:- mode fold2_bits(in, pred(in, in, out, in, out) is cc_multi,
in, in, in, in, out, in, out) is cc_multi.
:- pragma type_spec(fold2_bits/9, T = int).
:- pragma type_spec(fold2_bits/9, T = var(_)).
fold2_bits(Dir, P, Offset, Bits, Size, !Acc1, !Acc2) :-
( Bits = 0 ->
true
; Size = 1 ->
( Elem = from_int(Offset) ->
P(Elem, !Acc1, !Acc2)
;
% We only apply `from_int/1' to integers returned
% by `to_int/1', so it should never fail.
error("sparse_bitset.m: `enum.from_int/1' failed")
)
;
HalfSize = unchecked_right_shift(Size, 1),
Mask = mask(HalfSize),
% Extract the low-order half of the bits.
LowBits = Mask /\ Bits,
% Extract the high-order half of the bits.
HighBits = Mask /\ unchecked_right_shift(Bits, HalfSize),
(
Dir = low_to_high,
fold2_bits(Dir, P, Offset, LowBits, HalfSize, !Acc1, !Acc2),
fold2_bits(Dir, P, Offset + HalfSize, HighBits, HalfSize,
!Acc1, !Acc2)
;
Dir = high_to_low,
fold2_bits(Dir, P, Offset + HalfSize, HighBits, HalfSize,
!Acc1, !Acc2),
fold2_bits(Dir, P, Offset, LowBits, HalfSize, !Acc1, !Acc2)
)
).
%-----------------------------------------------------------------------------%
% XXX could make this more efficient.
filter(P, S) = S ^ to_sorted_list ^ list.filter(P) ^ sorted_list_to_set.
%-----------------------------------------------------------------------------%
count(Set) = foldl((func(_, Acc) = Acc + 1), Set, 0).
%-----------------------------------------------------------------------------%
make_singleton_set(A) = insert(init, A).
insert(sparse_bitset(Set), Elem) =
sparse_bitset(insert_2(Set, enum.to_int(Elem))).
:- func insert_2(bitset_impl, int) = bitset_impl.
insert_2([], Index) = [make_bitset_elem(Offset, Bits)] :-
bits_for_index(Index, Offset, Bits).
insert_2(Set0, Index) = Set :-
Set0 = [Data0 | Rest],
Offset0 = Data0 ^ offset,
( Index < Offset0 ->
bits_for_index(Index, Offset, Bits),
Set = [make_bitset_elem(Offset, Bits) | Set0]
; BitToSet = Index - Offset0, BitToSet < bits_per_int ->
Bits0 = Data0 ^ bits,
( get_bit(Bits0, BitToSet) \= 0 ->
Set = Set0
;
Bits = set_bit(Bits0, BitToSet),
Set = [make_bitset_elem(Offset0, Bits) | Rest]
)
;
Set = [Data0 | insert_2(Rest, Index)]
).
insert_list(Set, List) = union(list_to_set(List), Set).
%-----------------------------------------------------------------------------%
delete(Set, Elem) = difference(Set, insert(init, Elem)).
delete_list(Set, List) = difference(Set, list_to_set(List)).
remove(Set0, Elem) = Set :-
contains(Set0, Elem),
Set = delete(Set0, Elem).
remove_list(Set0, Elems) = Set :-
list_to_set(Elems, ElemsSet),
subset(ElemsSet, Set0),
Set = difference(Set0, ElemsSet).
%-----------------------------------------------------------------------------%
remove_leq(sparse_bitset(Set), Elem) =
sparse_bitset(remove_leq_2(Set, enum.to_int(Elem))).
:- func remove_leq_2(bitset_impl, int) = bitset_impl.
remove_leq_2([], _) = [].
remove_leq_2([Data | Rest], Index) = Result :-
Offset = Data ^ offset,
Result =
( Offset + bits_per_int =< Index ->
remove_leq_2(Rest, Index)
; Offset =< Index ->
(
Bits = Data ^ bits /\
unchecked_left_shift(\ 0, Index - Offset + 1),
Bits \= 0
->
[make_bitset_elem(Offset, Bits) | Rest]
;
Rest
)
;
[Data | Rest]
).
%-----------------------------------------------------------------------------%
remove_gt(sparse_bitset(Set), Elem) =
sparse_bitset(remove_gt_2(Set, enum.to_int(Elem))).
:- func remove_gt_2(bitset_impl, int) = bitset_impl.
remove_gt_2([], _) = [].
remove_gt_2([Data | Rest], Index) = Result :-
Offset = Data ^ offset,
Result =
( Offset + bits_per_int - 1 =< Index ->
[Data | remove_gt_2(Rest, Index)]
; Offset =< Index ->
(
Bits = Data ^ bits /\
\ unchecked_left_shift(\ 0, Index - Offset + 1),
Bits \= 0
->
[make_bitset_elem(Offset, Bits)]
;
[]
)
;
[]
).
%-----------------------------------------------------------------------------%
remove_least(sparse_bitset(Set0), Elem, sparse_bitset(Set)) :-
Set0 = [First | Rest],
Bits0 = First ^ bits,
Offset = First ^ offset,
Bit = find_least_bit(Bits0),
( Elem0 = from_int(Offset + Bit) ->
Elem = Elem0
;
% We only apply `from_int/1' to integers returned
% by `to_int/1', so it should never fail.
error("sparse_bitset.m: `enum.from_int/1' failed")
),
Bits = clear_bit(Bits0, Bit),
( Bits = 0 ->
Set = Rest
;
Set = [make_bitset_elem(Offset, Bits) | Rest]
).
:- func find_least_bit(int) = int.
find_least_bit(Bits0) = BitNum :-
Size = bits_per_int,
BitNum0 = 0,
BitNum = find_least_bit_2(Bits0, Size, BitNum0).
:- func find_least_bit_2(int, int, int) = int.
find_least_bit_2(Bits0, Size, BitNum0) = BitNum :-
( Size = 1 ->
% We can't get here unless the bit is a 1 bit.
BitNum = BitNum0
;
HalfSize = unchecked_right_shift(Size, 1),
Mask = mask(HalfSize),
LowBits = Bits0 /\ Mask,
( LowBits \= 0 ->
BitNum = find_least_bit_2(LowBits, HalfSize, BitNum0)
;
HighBits = Mask /\ unchecked_right_shift(Bits0, HalfSize),
BitNum = find_least_bit_2(HighBits, HalfSize, BitNum0 + HalfSize)
)
).
%-----------------------------------------------------------------------------%
list_to_set(List) =
sparse_bitset(list_to_set_2(List, [])).
% Each pass over the input list selects out the elements which belong
% in the same bitset_elem as the first element. The assumption here is that
% the items in the input list will have similar values, so that only a few
% passes will be needed.
:- func list_to_set_2(list(T), bitset_impl) = bitset_impl <= enum(T).
:- pragma type_spec(list_to_set_2/2, T = var(_)).
:- pragma type_spec(list_to_set_2/2, T = int).
list_to_set_2([], List) = List.
list_to_set_2([H | T], List0) = List :-
bits_for_index(enum.to_int(H), Offset, Bits0),
list_to_set_3(T, Offset, Bits0, Bits, [], Rest),
List1 = insert_bitset_elem(make_bitset_elem(Offset, Bits), List0),
List = list_to_set_2(Rest, List1).
% Go through the list picking out the elements which belong in the same
% bitset_elem as the first element, returning the uncollected elements.
:- pred list_to_set_3(list(T)::in, int::in, int::in, int::out,
list(T)::in, list(T)::out) is det <= enum(T).
:- pragma type_spec(list_to_set_3/6, T = var(_)).
:- pragma type_spec(list_to_set_3/6, T = int).
list_to_set_3([], _, !Bits, !Rest).
list_to_set_3([H | T], Offset, !Bits, !Rest) :-
BitToSet = enum.to_int(H) - Offset,
( BitToSet >= 0, BitToSet < bits_per_int ->
!:Bits = set_bit(!.Bits, BitToSet)
;
!:Rest = [H | !.Rest]
),
list_to_set_3(T, Offset, !Bits, !Rest).
% The list of elements here is pretty much guaranteed
% to be small, so use an insertion sort.
:- func insert_bitset_elem(bitset_elem, bitset_impl) = bitset_impl.
insert_bitset_elem(Data, []) = [Data].
insert_bitset_elem(Data0, [Data1 | Rest]) = List :-
( Data0 ^ offset < Data1 ^ offset ->
List = [Data0, Data1 | Rest]
;
List = [Data1 | insert_bitset_elem(Data0, Rest)]
).
%-----------------------------------------------------------------------------%
sorted_list_to_set(L) = sparse_bitset(sorted_list_to_set_2(L)).
:- func sorted_list_to_set_2(list(T)) = bitset_impl <= enum(T).
:- pragma type_spec(sorted_list_to_set_2/1, T = var(_)).
:- pragma type_spec(sorted_list_to_set_2/1, T = int).
sorted_list_to_set_2([]) = [].
sorted_list_to_set_2([H | T]) = Set :-
sorted_list_to_set_3(H, T, Offset, Bits, Set0),
( Bits = 0 ->
Set = Set0
;
Set = [make_bitset_elem(Offset, Bits) | Set0]
).
:- pred sorted_list_to_set_3(T::in, list(T)::in, int::out, int::out,
bitset_impl::out) is det <= enum(T).
:- pragma type_spec(sorted_list_to_set_3/5, T = var(_)).
:- pragma type_spec(sorted_list_to_set_3/5, T = int).
sorted_list_to_set_3(Elem, [], Offset, Bits, []) :-
bits_for_index(enum.to_int(Elem), Offset, Bits).
sorted_list_to_set_3(Elem1, [Elem2 | Elems], Offset, Bits, Rest) :-
sorted_list_to_set_3(Elem2, Elems, Offset0, Bits0, Rest0),
bits_for_index(enum.to_int(Elem1), Offset1, Bits1),
( Offset1 = Offset0 ->
Bits = Bits1 \/ Bits0,
Offset = Offset1,
Rest = Rest0
;
Rest = [make_bitset_elem(Offset0, Bits0) | Rest0],
Offset = Offset1,
Bits = Bits1
).
%-----------------------------------------------------------------------------%
subset(Subset, Set) :- intersect(Set, Subset, Subset).
superset(Superset, Set) :- subset(Set, Superset).
%-----------------------------------------------------------------------------%
contains(sparse_bitset(Set), Elem) :-
contains_2(Set, enum.to_int(Elem)).
:- pred contains_2(bitset_impl::in, int::in) is semidet.
contains_2([Data | Rest], Index) :-
Offset = Data ^ offset,
Index >= Offset,
( Index < Offset + bits_per_int ->
get_bit(Data ^ bits, Index - Offset) \= 0
;
contains_2(Rest, Index)
).
%-----------------------------------------------------------------------------%
:- pragma promise_pure(member/2).
member(Elem::in, Set::in) :-
contains(Set, Elem).
member(Elem::out, sparse_bitset(Set)::in) :-
member_2(Index, Set),
( Elem0 = from_int(Index) ->
Elem = Elem0
;
% We only apply `from_int/1' to integers returned
% by `to_int/1', so it should never fail.
error("sparse_bitset.m: `enum.from_int/1' failed")
).
:- pred member_2(int::out, bitset_impl::in) is nondet.
member_2(Index, [Elem | Elems]) :-
( member_3(Index, Elem ^ offset, bits_per_int, Elem ^ bits)
; member_2(Index, Elems)
).
:- pred member_3(int::out, int::in, int::in, int::in) is nondet.
member_3(Index, Offset, Size, Bits) :-
( Bits = 0 ->
fail
; Size = 1 ->
Index = Offset
;
HalfSize = unchecked_right_shift(Size, 1),
Mask = mask(HalfSize),
% Extract the low-order half of the bits.
LowBits = Mask /\ Bits,
% Extract the high-order half of the bits.
HighBits = Mask /\ unchecked_right_shift(Bits, HalfSize),
( member_3(Index, Offset, HalfSize, LowBits)
; member_3(Index, Offset + HalfSize, HalfSize, HighBits)
)
).
%-----------------------------------------------------------------------------%
:- func rest(bitset_impl::in(bound([ground | ground]))) =
(bitset_impl::out) is det.
rest([_ | Rest]) = Rest.
union(sparse_bitset(Set1), sparse_bitset(Set2)) =
sparse_bitset(union_2(Set1, Set2)).
:- func union_2(bitset_impl, bitset_impl) = bitset_impl.
union_2([], []) = [].
union_2([], B) = B :-
B = [_ | _].
union_2(A, []) = A :-
A = [_ | _].
union_2(Set1, Set2) = Set :-
Set1 = [Data1 | _],
Set2 = [Data2 | _],
Offset1 = Data1 ^ offset,
Offset2 = Data2 ^ offset,
( Offset1 = Offset2 ->
Elem = make_bitset_elem(Offset1, (Data1 ^ bits) \/ (Data2 ^ bits)),
Set = [Elem | union_2(Set1 ^ rest, Set2 ^ rest)]
; Offset1 < Offset2 ->
Set = [Data1 | union_2(Set1 ^ rest, Set2)]
;
Set = [Data2 | union_2(Set1, Set2 ^ rest)]
).
%-----------------------------------------------------------------------------%
intersect(sparse_bitset(Set1), sparse_bitset(Set2)) =
sparse_bitset(intersect_2(Set1, Set2)).
:- func intersect_2(bitset_impl, bitset_impl) = bitset_impl.
intersect_2([], []) = [].
intersect_2([], B) = [] :-
B = [_ | _].
intersect_2(A, []) = [] :-
A = [_ | _].
intersect_2(Set1, Set2) = Set :-
Set1 = [Data1 | _],
Set2 = [Data2 | _],
Offset1 = Data1 ^ offset,
Offset2 = Data2 ^ offset,
( Offset1 = Offset2 ->
Bits = Data1 ^ bits /\ Data2 ^ bits,
( Bits = 0 ->
Set = intersect_2(Set1 ^ rest, Set2 ^ rest)
;
Set = [make_bitset_elem(Offset1, Bits) |
intersect_2(Set1 ^ rest, Set2 ^ rest)]
)
; Offset1 < Offset2 ->
Set = intersect_2(Set1 ^ rest, Set2)
;
Set = intersect_2(Set1, Set2 ^ rest)
).
%-----------------------------------------------------------------------------%
difference(sparse_bitset(Set1), sparse_bitset(Set2)) =
sparse_bitset(difference_2(Set1, Set2)).
:- func difference_2(bitset_impl, bitset_impl) = bitset_impl.
difference_2([], []) = [].
difference_2([], B) = [] :-
B = [_ | _].
difference_2(A, []) = A :-
A = [_ | _].
difference_2(Set1, Set2) = Set :-
Set1 = [Data1 | _],
Set2 = [Data2 | _],
Offset1 = Data1 ^ offset,
Offset2 = Data2 ^ offset,
( Offset1 = Offset2 ->
Bits = (Data1 ^ bits) /\ \ (Data2 ^ bits),
( Bits = 0 ->
Set = difference_2(Set1 ^ rest, Set2 ^ rest)
;
Set = [make_bitset_elem(Offset1, Bits) |
difference_2(Set1 ^ rest, Set2 ^ rest)]
)
; Offset1 < Offset2 ->
Set = [Data1 | difference_2(Set1 ^ rest, Set2)]
;
Set = difference_2(Set1, Set2 ^ rest)
).
%-----------------------------------------------------------------------------%
% Return the offset of the element of a set which should contain the given
% element, and an int with the bit corresponding to that element set.
:- pred bits_for_index(int::in, int::out, int::out) is det.
:- pragma inline(bits_for_index/3).
bits_for_index(Index, Offset, Bits) :-
Offset = int.floor_to_multiple_of_bits_per_int(Index),
BitToSet = Index - Offset,
Bits = set_bit(0, BitToSet).
:- func get_bit(int, int) = int.
:- pragma inline(get_bit/2).
get_bit(Int, Bit) = Int /\ unchecked_left_shift(1, Bit).
:- func set_bit(int, int) = int.
:- pragma inline(set_bit/2).
set_bit(Int0, Bit) = Int0 \/ unchecked_left_shift(1, Bit).
:- func clear_bit(int, int) = int.
:- pragma inline(clear_bit/2).
clear_bit(Int0, Bit) = Int0 /\ \ unchecked_left_shift(1, Bit).
% `mask(N)' returns a mask which can be `and'ed with an integer to return
% the lower `N' bits of the integer. `N' must be less than bits_per_int.
:- func mask(int) = int.
:- pragma inline(mask/1).
mask(N) = \ unchecked_left_shift(\ 0, N).
:- func make_bitset_elem(int, int) = bitset_elem.
:- pragma inline(make_bitset_elem/2).
%make_bitset_elem(A, B) = bitset_elem(A, B).
:- pragma foreign_decl("C", "
#include ""mercury_heap.h"" /* for MR_tag_offset_incr_hp_atomic_msg() */
").
% The bit pattern will often look like a pointer, so allocate the pairs
% using GC_malloc_atomic() to avoid unnecessary memory retention. Doing
% this slows down the compiler by about 1%, but in a library module it is
% better to be safe.
:- pragma foreign_proc("C",
make_bitset_elem(A::in, B::in) = (Pair::out),
[will_not_call_mercury, promise_pure, thread_safe, will_not_modify_trail],
"{
#define ML_BITSET_TAG MR_FIRST_UNRESERVED_RAW_TAG
MR_tag_offset_incr_hp_atomic_msg(Pair, MR_mktag(ML_BITSET_TAG),
MR_SIZE_SLOT_SIZE, MR_SIZE_SLOT_SIZE + 2,
MR_PROC_LABEL, ""sparse_bitset:bitset_elem/0"");
MR_define_size_slot(MR_mktag(ML_BITSET_TAG), Pair, 1);
MR_field(MR_mktag(ML_BITSET_TAG), Pair, 0) = A;
MR_field(MR_mktag(ML_BITSET_TAG), Pair, 1) = B;
}").
make_bitset_elem(Offset, Bits) = bitset_elem(Offset, Bits).
%-----------------------------------------------------------------------------%
init(init).
singleton_set(make_singleton_set(A), A).
insert(A, B, insert(A, B)).
insert_list(A, B, insert_list(A, B)).
delete(A, B, delete(A, B)).
delete_list(A, B, delete_list(A, B)).
remove(A, B, remove(A, B)).
remove_list(A, B, remove_list(A, B)).
remove_leq(A, B, remove_leq(A, B)).
remove_gt(A, B, remove_gt(A, B)).
list_to_set(A, list_to_set(A)).
to_sorted_list(A, to_sorted_list(A)).
sorted_list_to_set(A, sorted_list_to_set(A)).
union(A, B, union(A, B)).
intersect(A, B, intersect(A, B)).
difference(A, B, difference(A, B)).
%-----------------------------------------------------------------------------%