Files
mercury/library/bt_array.m
Julien Fischer e0f5ac47db Make it easier for vi to jump past the initial comments
Estimated hours taken: 0.1
Branches: main

library/*.m:
	Make it easier for vi to jump past the initial comments
	at the head of a module.
2006-04-19 05:18:00 +00:00

678 lines
22 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et wm=0 tw=0
%-----------------------------------------------------------------------------%
% Copyright (C) 1997, 1999-2000, 2002-2003, 2005-2006 The University of Melbourne.
% This file may only be copied under the terms of the GNU Library General
% Public License - see the file COPYING.LIB in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: bt_array.m
% Main author: bromage.
% Stability: medium-low
%
% This file contains a set of predicates for generating an manipulating
% a bt_array data structure. This implementation allows O(log n) access
% and update time, and does not require the bt_array to be unique. If you
% need O(1) access/update time, use the array datatype instead.
% (`bt_array' is supposed to stand for either "binary tree array"
% or "backtrackable array".)
%
% Implementation obscurity: This implementation is biased towards larger
% indices. The access/update time for a bt_array of size N with index I
% is actually O(log(N-I)). The reason for this is so that the resize
% operations can be optimised for a (possibly very) common case, and to
% exploit accumulator recursion in some operations. See the documentation
% of bt_array.resize and bt_array.shrink for more details.
%
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- module bt_array.
:- interface.
:- import_module int.
:- import_module list.
:- type bt_array(T).
%-----------------------------------------------------------------------------%
% bt_array.make_empty_array(Low, Array) is true iff Array is a
% bt_array of size zero starting at index Low.
%
:- pred bt_array.make_empty_array(int::in, bt_array(T)::out) is det.
:- func bt_array.make_empty_array(int) = bt_array(T).
% bt_array.init(Low, High, Init, Array) is true iff Array is a
% bt_array with bounds from Low to High whose elements each equal Init.
%
:- pred bt_array.init(int::in, int::in, T::in, bt_array(T)::out) is det.
:- func bt_array.init(int, int, T) = bt_array(T).
%-----------------------------------------------------------------------------%
% array.min returns the lower bound of the array.
%
:- pred bt_array.min(bt_array(_T)::in, int::out) is det.
:- func bt_array.min(bt_array(_T)) = int.
% array.max returns the upper bound of the array.
%
:- pred bt_array.max(bt_array(_T)::in, int::out) is det.
:- func bt_array.max(bt_array(_T)) = int.
% array.size returns the length of the array,
% i.e. upper bound - lower bound + 1.
%
:- pred bt_array.size(bt_array(_T)::in, int::out) is det.
:- func bt_array.size(bt_array(_T)) = int.
% bt_array.bounds returns the upper and lower bounds of a bt_array.
%
:- pred bt_array.bounds(bt_array(_T)::in, int::out, int::out) is det.
% bt_array.in_bounds checks whether an index is in the bounds
% of a bt_array.
%
:- pred bt_array.in_bounds(bt_array(_T)::in, int::in) is semidet.
%-----------------------------------------------------------------------------%
% bt_array.lookup returns the Nth element of a bt_array.
% It is an error if the index is out of bounds.
%
:- pred bt_array.lookup(bt_array(T)::in, int::in, T::out) is det.
:- func bt_array.lookup(bt_array(T), int) = T.
% bt_array.semidet_lookup is like bt_array.lookup except that it fails
% if the index is out of bounds.
%
:- pred bt_array.semidet_lookup(bt_array(T)::in, int::in, T::out) is semidet.
% bt_array.set sets the nth element of a bt_array, and returns the
% resulting bt_array. It is an error if the index is out of bounds.
%
:- pred bt_array.set(bt_array(T)::in, int::in, T::in, bt_array(T)::out)
is det.
:- func bt_array.set(bt_array(T), int, T) = bt_array(T).
% bt_array.set sets the nth element of a bt_array, and returns the
% resulting bt_array (good opportunity for destructive update ;-).
% It fails if the index is out of bounds.
%
:- pred bt_array.semidet_set(bt_array(T)::in, int::in, T::in,
bt_array(T)::out) is semidet.
% `bt_array.resize(BtArray0, Lo, Hi, Item, BtArray)' is true if BtArray
% is a bt_array created by expanding or shrinking BtArray0 to fit the
% bounds (Lo, Hi). If the new bounds are not wholly contained within
% the bounds of BtArray0, Item is used to fill out the other places.
%
% Note: This operation is optimised for the case where the lower bound
% of the new bt_array is the same as that of the old bt_array. In that
% case, the operation takes time proportional to the absolute difference
% in size between the two bt_arrays. If this is not the case, it may take
% time proportional to the larger of the two bt_arrays.
%
:- pred bt_array.resize(bt_array(T)::in, int::in, int::in, T::in,
bt_array(T)::out) is det.
:- func bt_array.resize(bt_array(T), int, int, T) = bt_array(T).
% bt_array.shrink(BtArray0, Lo, Hi, Item, BtArray) is true if BtArray
% is a bt_array created by shrinking BtArray0 to fit the bounds (Lo, Hi).
% It is an error if the new bounds are not wholly within the bounds of
% BtArray0.
%
% Note: This operation is optimised for the case where the lower bound
% of the new bt_array is the same as that of the old bt_array. In that
% case, the operation takes time proportional to the absolute difference
% in size between the two bt_arrays. If this is not the case, it may take
% time proportional to the larger of the two bt_arrays.
%
:- pred bt_array.shrink(bt_array(T)::in, int::in, int::in, bt_array(T)::out)
is det.
:- func bt_array.shrink(bt_array(T), int, int) = bt_array(T).
% bt_array.from_list(Low, List, BtArray) takes a list (of possibly zero
% length), and returns a bt_array containing % those elements in the same
% order that they occurred in the list. The lower bound of the new array
% is `Low'.
:- pred bt_array.from_list(int::in, list(T)::in, bt_array(T)::out) is det.
:- func bt_array.from_list(int, list(T)) = bt_array(T).
% bt_array.to_list takes a bt_array and returns a list containing
% the elements of the bt_array in the same order that they occurred
% in the bt_array.
%
:- pred bt_array.to_list(bt_array(T)::in, list(T)::out) is det.
:- func bt_array.to_list(bt_array(T)) = list(T).
% bt_array.fetch_items takes a bt_array and a lower and upper index,
% and places those items in the bt_array between these indices into a list.
% It is an error if either index is out of bounds.
%
:- pred bt_array.fetch_items(bt_array(T)::in, int::in, int::in, list(T)::out)
is det.
:- func bt_array.fetch_items(bt_array(T), int, int) = list(T).
% bt_array.bsearch takes a bt_array, an element to be matched and a
% comparison predicate and returns the position of the first occurrence
% in the bt_array of an element which is equivalent to the given one
% in the ordering provided. Assumes the bt_array is sorted according
% to this ordering. Fails if the element is not present.
%
:- pred bt_array.bsearch(bt_array(T)::in, T::in,
comparison_pred(T)::in(comparison_pred), int::out) is semidet.
% Field selection for arrays.
% Array ^ elem(Index) = bt_array.lookup(Array, Index).
%
:- func bt_array.elem(int, bt_array(T)) = T.
% Field update for arrays.
% (Array ^ elem(Index) := Value) = bt_array.set(Array, Index, Value).
%
:- func 'elem :='(int, bt_array(T), T) = bt_array(T).
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module require.
:- import_module string.
:- type bt_array(T)
---> bt_array(int, int, ra_list(T)).
%-----------------------------------------------------------------------------%
make_empty_array(Low, bt_array(Low, High, ListOut)) :-
High = Low - 1,
ra_list_nil(ListOut).
init(Low, High, Item, bt_array(Low, High, ListOut)) :-
ra_list_nil(ListIn),
ElemsToAdd = High - Low + 1,
add_elements(ElemsToAdd, Item, ListIn, ListOut).
:- pred add_elements(int::in, T::in, ra_list(T)::in, ra_list(T)::out) is det.
add_elements(ElemsToAdd, Item, RaList0, RaList) :-
( ElemsToAdd =< 0 ->
RaList0 = RaList
;
ra_list_cons(Item, RaList0, RaList1),
ElemsToAdd1 = ElemsToAdd - 1,
add_elements(ElemsToAdd1, Item, RaList1, RaList)
).
%-----------------------------------------------------------------------------%
min(bt_array(Low, _, _), Low).
max(bt_array(_, High, _), High).
size(bt_array(Low, High, _), Size) :-
Size = High - Low + 1.
bounds(bt_array(Low, High, _), Low, High).
in_bounds(bt_array(Low, High, _), Index) :-
Low =< Index, Index =< High.
%-----------------------------------------------------------------------------%
:- pragma inline(actual_position/4).
:- pred actual_position(int::in, int::in, int::in, int::out) is det.
actual_position(Low, High, Index, Pos) :-
Pos = High - Low - Index.
lookup(bt_array(Low, High, RaList), Index, Item) :-
actual_position(Low, High, Index, Pos),
( ra_list_lookup(Pos, RaList, Item0) ->
Item = Item0
;
error("bt_array.lookup: Array subscript out of bounds")
).
semidet_lookup(bt_array(Low, High, RaList), Index, Item) :-
actual_position(Low, High, Index, Pos),
ra_list_lookup(Pos, RaList, Item).
%-----------------------------------------------------------------------------%
set(BtArray0, Index, Item, BtArray) :-
( semidet_set(BtArray0, Index, Item, BtArray1) ->
BtArray = BtArray1
;
error("bt_array.set: index out of bounds")
).
semidet_set(bt_array(Low, High, RaListIn), Index, Item,
bt_array(Low, High, RaListOut)) :-
actual_position(Low, High, Index, Pos),
ra_list_update(RaListIn, Pos, Item, RaListOut).
%-----------------------------------------------------------------------------%
resize(Array0, L, H, Item, Array) :-
Array0 = bt_array(L0, H0, RaList0),
( L = L0 ->
% Optimise the common case where the lower bounds are
% the same.
( H < H0 ->
SizeDiff = H0 - H,
( ra_list_drop(SizeDiff, RaList0, RaList1) ->
RaList = RaList1
;
error("bt_array.resize: " ++
"Can't resize to a less-than-empty array")
),
Array = bt_array(L, H, RaList)
; H > H0 ->
SizeDiff = H - H0,
add_elements(SizeDiff, Item, RaList0, RaList),
Array = bt_array(L, H, RaList)
;
Array = Array0
)
;
int.max(L, L0, L1),
int.min(H, H0, H1),
fetch_items(Array0, L1, H1, Items),
init(L, H, Item, Array1),
insert_items(Array1, L1, Items, Array)
).
shrink(Array0, L, H, Array) :-
Array0 = bt_array(L0, H0, RaList0),
( ( L < L0 ; H > H0 ) ->
error("bt_array.shrink: New bounds are larger than old ones")
; L = L0 ->
% Optimise the common case where the lower bounds are the same.
SizeDiff = H0 - H,
( ra_list_drop(SizeDiff, RaList0, RaList1) ->
RaList = RaList1
;
error("bt_array.shrink: Can't resize to a less-than-empty array")
),
Array = bt_array(L, H, RaList)
;
( ra_list_head(RaList0, Item0) ->
Item = Item0
;
error("bt_array.shrink: Can't shrink an empty array")
),
int.max(L, L0, L1),
int.min(H, H0, H1),
fetch_items(Array0, L1, H1, Items),
init(L, H, Item, Array1),
insert_items(Array1, L1, Items, Array)
).
%-----------------------------------------------------------------------------%
from_list(Low, List, bt_array(Low, High, RaList)) :-
list.length(List, Len),
High = Low + Len - 1,
ra_list_nil(RaList0),
reverse_into_ra_list(List, RaList0, RaList).
:- pred reverse_into_ra_list(list(T)::in,
ra_list(T)::in, ra_list(T)::out) is det.
reverse_into_ra_list([], RaList, RaList).
reverse_into_ra_list([X | Xs], RaList0, RaList) :-
ra_list_cons(X, RaList0, RaList1),
reverse_into_ra_list(Xs, RaList1, RaList).
%-----------------------------------------------------------------------------%
:- pred insert_items(bt_array(T)::in, int::in, list(T)::in, bt_array(T)::out)
is det.
insert_items(Array, _N, [], Array).
insert_items(Array0, N, [Head|Tail], Array) :-
set(Array0, N, Head, Array1),
N1 = N + 1,
insert_items(Array1, N1, Tail, Array).
%-----------------------------------------------------------------------------%
to_list(bt_array(_, _, RaList), List) :-
reverse_from_ra_list(RaList, [], List).
:- pred reverse_from_ra_list(ra_list(T)::in, list(T)::in, list(T)::out) is det.
reverse_from_ra_list(RaList0, Xs0, Xs) :-
( ra_list_head_tail(RaList0, X, RaList1) ->
reverse_from_ra_list(RaList1, [X | Xs0], Xs)
;
Xs0 = Xs
).
%-----------------------------------------------------------------------------%
fetch_items(bt_array(ALow, AHigh, RaList0), Low, High, List) :-
(
Low > High
->
List = []
;
actual_position(ALow, AHigh, High, Drop),
ra_list_drop(Drop, RaList0, RaList),
Take = High - Low + 1,
reverse_from_ra_list_count(Take, RaList, [], List0)
->
List = List0
;
List = []
).
:- pred reverse_from_ra_list_count(int::in, ra_list(T)::in,
list(T)::in, list(T)::out) is det.
reverse_from_ra_list_count(I, RaList0, Xs0, Xs) :-
(
ra_list_head_tail(RaList0, X, RaList1),
I >= 0
->
I1 = I - 1,
reverse_from_ra_list_count(I1, RaList1, [X | Xs0], Xs)
;
Xs0 = Xs
).
%-----------------------------------------------------------------------------%
bsearch(A, El, Compare, I) :-
bounds(A, Lo, Hi),
Lo =< Hi,
bsearch_2(A, Lo, Hi, El, Compare, I).
% XXX Would we gain anything by traversing the ra_list instead
% of doing a vanilla binary chop?
:- pred bsearch_2(bt_array(T)::in, int::in, int::in, T::in,
pred(T, T, comparison_result)::in(pred(in, in, out) is det), int::out)
is semidet.
bsearch_2(A, Lo, Hi, El, Compare, I) :-
Width = Hi - Lo,
% If Width < 0, there is no range left.
Width >= 0,
% If Width == 0, we may just have found our element.
% Do a Compare to check.
( Width = 0 ->
lookup(A, Lo, X),
call(Compare, El, X, (=)),
I = Lo
;
% Otherwise find the middle element of the range and check against
% that. NOTE: We can't use "// 2" because division always rounds
% towards zero whereas we want the result to be rounded down.
% (Indices can be negative.) We could use "div 2", but that's a
% little more expensive, and we know that we're always dividing
% by a power of 2. Until such time as we implement strength reduction,
% the >> 1 stays.
Mid = (Lo + Hi) >> 1,
lookup(A, Mid, XMid),
call(Compare, XMid, El, Comp),
( Comp = (<),
Mid1 = Mid + 1,
bsearch_2(A, Mid1, Hi, El, Compare, I)
; Comp = (=),
bsearch_2(A, Lo, Mid, El, Compare, I)
; Comp = (>),
Mid1 = Mid - 1,
bsearch_2(A, Lo, Mid1, El, Compare, I)
)
).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% This is a perfect application for submodules, but Mercury didn't have them
% when this was written. :-(
% The heart of the implementation of bt_array is a `random access list'
% or ra_list for short. It is very similar to a list data type, and
% it supports O(1) head/tail/cons operations, but O(log n) lookup and
% update. The representation is a list of perfectly balanced binary trees.
%
% For more details on the implementation:
%
% Chris Okasaki, "Purely Functional Random-Access Lists"
% Functional Programming Languages and Computer Architecture,
% June 1995, pp 86-95.
% :- module ra_list.
% :- interface.
% :- type ra_list(T).
:- pred ra_list_nil(ra_list(T)::uo) is det.
:- pred ra_list_cons(T::in, ra_list(T)::in, ra_list(T)::out) is det.
:- pred ra_list_head(ra_list(T)::in, T::out) is semidet.
:- pred ra_list_tail(ra_list(T)::in, ra_list(T)::out) is semidet.
:- pred ra_list_head_tail(ra_list(T)::in, T::out, ra_list(T)::out) is semidet.
%-----------------------------------------------------------------------------%
:- pred ra_list_lookup(int::in, ra_list(T)::in, T::out) is semidet.
:- pred ra_list_update(ra_list(T)::in, int::in, T::in, ra_list(T)::out)
is semidet.
%-----------------------------------------------------------------------------%
:- pred ra_list_drop(int::in, ra_list(T)::in, ra_list(T)::out) is semidet.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% :- implementation.
:- type ra_list(T)
---> nil
; cons(int, ra_list_bintree(T), ra_list(T)).
:- type ra_list_bintree(T)
---> leaf(T)
; node(T, ra_list_bintree(T), ra_list_bintree(T)).
%-----------------------------------------------------------------------------%
:- pragma inline(ra_list_nil/1).
ra_list_nil(nil).
:- pragma inline(ra_list_cons/3).
ra_list_cons(X, List0, List) :-
(
List0 = cons(Size1, T1, cons(Size2, T2, Rest)),
Size1 = Size2
->
NewSize = 1 + Size1 + Size2,
List = cons(NewSize, node(X, T1, T2), Rest)
;
List = cons(1, leaf(X), List0)
).
:- pragma inline(ra_list_head/2).
ra_list_head(cons(_, leaf(X), _), X).
ra_list_head(cons(_, node(X, _, _), _), X).
:- pragma inline(ra_list_tail/2).
ra_list_tail(cons(_, leaf(_), Tail), Tail).
ra_list_tail(cons(Size, node(_, T1, T2), Rest), Tail) :-
Size2 = Size // 2,
Tail = cons(Size2, T1, cons(Size2, T2, Rest)).
:- pragma inline(ra_list_head_tail/3).
ra_list_head_tail(cons(_, leaf(X), Tail), X, Tail).
ra_list_head_tail(cons(Size, node(X, T1, T2), Rest), X, Tail) :-
Size2 = Size // 2,
Tail = cons(Size2, T1, cons(Size2, T2, Rest)).
%-----------------------------------------------------------------------------%
:- pragma inline(ra_list_lookup/3).
ra_list_lookup(I, List, X) :-
I >= 0,
ra_list_lookup_2(I, List, X).
:- pred ra_list_lookup_2(int::in, ra_list(T)::in, T::out) is semidet.
ra_list_lookup_2(I, cons(Size, T, Rest), X) :-
( I < Size ->
ra_list_bintree_lookup(Size, T, I, X)
;
NewI = I - Size,
ra_list_lookup_2(NewI, Rest, X)
).
:- pred ra_list_bintree_lookup(int::in, ra_list_bintree(T)::in, int::in,
T::out) is semidet.
ra_list_bintree_lookup(_, leaf(X), 0, X).
ra_list_bintree_lookup(Size, node(X0, T1, T2), I, X) :-
( I = 0 ->
X0 = X
;
Size2 = Size // 2,
( I =< Size2 ->
NewI = I - 1,
ra_list_bintree_lookup(Size2, T1, NewI, X)
;
NewI = I - 1 - Size2,
ra_list_bintree_lookup(Size2, T2, NewI, X)
)
).
%-----------------------------------------------------------------------------%
:- pragma inline(ra_list_update/4).
ra_list_update(List0, I, X, List) :-
I >= 0,
ra_list_update_2(List0, I, X, List).
:- pred ra_list_update_2(ra_list(T)::in, int::in, T::in, ra_list(T)::out)
is semidet.
ra_list_update_2(cons(Size, T0, Rest), I, X, List) :-
( I < Size ->
ra_list_bintree_update(Size, T0, I, X, T),
List = cons(Size, T, Rest)
;
NewI = I - Size,
ra_list_update_2(Rest, NewI, X, List0),
List = cons(Size, T0, List0)
).
:- pred ra_list_bintree_update(int::in, ra_list_bintree(T)::in, int::in, T::in,
ra_list_bintree(T)::out) is semidet.
ra_list_bintree_update(_, leaf(_), 0, X, leaf(X)).
ra_list_bintree_update(Size, node(X0, T1, T2), I, X, T) :-
( I = 0 ->
T = node(X, T1, T2)
;
Size2 = Size // 2,
( I =< Size2 ->
NewI = I - 1,
ra_list_bintree_update(Size2, T1, NewI, X, T0),
T = node(X0, T0, T2)
;
NewI = I - 1 - Size2,
ra_list_bintree_update(Size2, T2, NewI, X, T0),
T = node(X0, T1, T0)
)
).
%-----------------------------------------------------------------------------%
ra_list_drop(N, As, Bs) :-
( N > 0 ->
As = cons(Size, _, Cs),
( Size < N ->
N1 = N - Size,
ra_list_drop(N1, Cs, Bs)
;
ra_list_slow_drop(N, As, Bs)
)
;
As = Bs
).
:- pred ra_list_slow_drop(int::in, ra_list(T)::in, ra_list(T)::out) is semidet.
ra_list_slow_drop(N, As, Bs) :-
( N > 0 ->
N1 = N - 1,
ra_list_tail(As, Cs),
ra_list_slow_drop(N1, Cs, Bs)
;
As = Bs
).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% Ralph Becket <rwab1@cl.cam.ac.uk> 29/04/99
% Function forms added.
make_empty_array(N) = BTA :-
make_empty_array(N, BTA).
init(N1, N2, T) = BTA :-
init(N1, N2, T, BTA).
min(BTA) = N :-
min(BTA, N).
max(BTA) = N :-
max(BTA, N).
size(BTA) = N :-
size(BTA, N).
lookup(BTA, N) = T :-
lookup(BTA, N, T).
set(BT1A, N, T) = BTA2 :-
set(BT1A, N, T, BTA2).
resize(BT1A, N1, N2, T) = BTA2 :-
resize(BT1A, N1, N2, T, BTA2).
shrink(BT1A, N1, N2) = BTA2 :-
shrink(BT1A, N1, N2, BTA2).
from_list(N, Xs) = BTA :-
from_list(N, Xs, BTA).
to_list(BTA) = Xs :-
to_list(BTA, Xs).
fetch_items(BTA, N1, N2) = Xs :-
fetch_items(BTA, N1, N2, Xs).
elem(Index, Array) = lookup(Array, Index).
'elem :='(Index, Array, Value) = set(Array, Index, Value).