Files
mercury/compiler/det_analysis.m
Zoltan Somogyi 010a9ecf74 Fix several bugs in deep profiling. These allow the compiler to bootstrap
Estimated hours taken: 30
Branches: main

Fix several bugs in deep profiling. These allow the compiler to bootstrap
again, *including* writing out the profiling data, with sanity checks enabled.
Some test cases still fail, but significantly fewer than before.

These fixes required several improvements in the infrastructure for low
level debugging in the LLDS grades.

compiler/deep_profiling.m:
	Mark calls that have a prepare_for_{normal,ho,...}_call inserted before
	them as impure, to prevent simplify from optimizing them away, e.g. as
	duplicate calls. This is needed because a prepare_for_{...}_call that
	is not followed immediately by the call port code of the callee leaves
	the profiling tree in a state that violates its invariants.

	Mark the redo port code of model_non predicates as needing to be
	preserved, even if determinism analysis would normally cause it to be
	cut by marking the disjunction it is part of (whose two disjuncts are
	the det exit port code and the failure redo port code) as det.

	Fix the generation of goal paths to match what the rest of the compiler
	does. Start number conjuncts, disjuncts and switch arms from 1, not 0,
	and do not reverse goal paths before attaching them to goals; they will
	be reversed when they are converted to strings.

compiler/det_analysis.m:
	If a disjunct has determinism failure but is impure, treat it as being
	able to succeed when computing the max number of solutions of the
	disjunction as a whole, *provided* that some earlier disjuct could
	succeed. The idea is that ( impure failure ; det ) should be treated
	as det, since all backtracking is local within it, while disjunctions
	of the form ( det ; impure failure ) should be treated as multi, since
	we want to be able to backtrack to the second disjunct from *outside*
	the disjunction.

	At the moment, we do this not for all impure goals, but only for the
	impure goals that deep_profiling marks with the preserve_backtrack_into
	feature.

compiler/hlds_goal.m:
	Add the preserve_backtrack_into feature.

	Add utility predicates for handling the features of a goal directly,
	without explicitly dealing with its goal_info.

runtime/mercury_debug.[ch]:
	Add mechanisms for turning the printing of low level debugging messages
	on and off. Without this, enabling low level debugging can generate
	literally gigabytes of debugging output.

	The mechanisms all depend on numbering calls.

	One mechanism allows messages to be printed starting from calls in
	given ranges, by including e.g. -di100-200,300-400 in MERCURY_OPTIONS.

	Another mechanism allows N messages to be printed starting from calls
	to a given procedure or from calls at which next_call_site_dynamic
	has a given value. The value of N (the size of the block of calls)
	can be specified by include -dB<num> in MERCURY_OPTIONS. The name of
	the given procedure (actually the name of its entry label) can be
	specified by including -dj<entrylabel> in MERCURY_OPTIONS. The address
	of the call_site_dynamic structure to watch for is specified with the
	-dW<addr> option in MERCURY_OPTIONS, as before.

runtime/mercury_wrapper.[ch]:
	Add the global variables required to implement the new low level
	debugging functionality, as well as the option processing code required
	to set those global variables.

	Separate the flags controlling the printing of the values of stack
	control registers (sp, curfr etc) and ordinary registers (r1, r2 etc).
	Print ordinary registers only if explicitly requested.

runtime/mercury_engine.h:
	Add the required global flags.

runtime/mercury_deep_profiling.[ch]:
	Add two extra arguments to MR_deep_assert, and print them if an
	assertion fails. This makes it easier to decide what parameters to give
	to the new low level debugging mechanisms.

runtime/mercury_deep_*_port_body.h:
runtime/mercury_deep_rec_depth_*.h:
library/profiling_builtin.m:
	Pass the extra arguments to MR_deep_assert, and print low level
	debugging messages only if the relevant flag is set.

tools/lmc:
	Add mechanisms to add to the list of C compiler flags the program is
	compiled with by lmc.
2002-08-14 06:41:36 +00:00

1324 lines
49 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1994-2002 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% det_analysis.m - the determinism analysis pass.
% Main authors: conway, fjh, zs.
% This pass has three components:
%
% o Segregate the procedures into those that have determinism
% declarations, and those that don't
%
% o A step of performing a local inference pass on each procedure
% without a determinism declaration is iterated until
% a fixpoint is reached
%
% o A checking step is performed on all the procedures that have
% determinism declarations to ensure that they are at
% least as deterministic as their declaration. This uses
% a form of the local inference pass.
%
% If we are to avoid global inference for predicates with
% declarations, then it must be an error, not just a warning,
% if the determinism checking step detects that the determinism
% annotation was wrong. If we were to issue just a warning, then
% we would have to override the determinism annotation, and that
% would force us to re-check the inferred determinism for all
% calling predicates.
%
% Alternately, we could leave it as a warning, but then we would
% have to _make_ the predicate deterministic (or semideterministic)
% by inserting run-time checking code which calls error/1 if the
% predicate really isn't deterministic (semideterministic).
% Determinism has three components:
%
% whether a goal can fail
% whether a goal has more than one possible solution
% whether a goal occurs in a context where only the first solution
% is required
%
% The first two components are synthesized attributes: they are inferred
% bottom-up. The last component is an inherited attribute: it is
% propagated top-down.
%-----------------------------------------------------------------------------%
:- module check_hlds__det_analysis.
:- interface.
:- import_module parse_tree__prog_data.
:- import_module hlds__hlds_goal, hlds__hlds_module, hlds__hlds_pred.
:- import_module hlds__hlds_data, hlds__instmap.
:- import_module check_hlds__det_report, check_hlds__det_util, libs__globals.
:- import_module list, std_util, io.
% Perform determinism inference for local predicates with no
% determinism declarations, and determinism checking for all other
% predicates.
:- pred determinism_pass(module_info, module_info, io__state, io__state).
:- mode determinism_pass(in, out, di, uo) is det.
% Check the determinism of a single procedure
% (only works if the determinism of the procedures it calls
% has already been inferred).
:- pred determinism_check_proc(proc_id, pred_id, module_info, module_info,
io__state, io__state).
:- mode determinism_check_proc(in, in, in, out, di, uo) is det.
% Infer the determinism of a procedure.
:- pred det_infer_proc(pred_id, proc_id, module_info, module_info, globals,
determinism, determinism, list(det_msg)).
:- mode det_infer_proc(in, in, in, out, in, out, out, out) is det.
% Infers the determinism of `Goal0' and returns this in `Detism'.
% It annotates the goal and all its subgoals with their determinism
% and returns the annotated goal in `Goal'.
:- pred det_infer_goal(hlds_goal, instmap, soln_context, det_info,
hlds_goal, determinism, list(det_msg)).
:- mode det_infer_goal(in, in, in, in, out, out, out) is det.
% Work out how many solutions are needed for a given determinism.
:- pred det_get_soln_context(determinism, soln_context).
:- mode det_get_soln_context(in, out) is det.
:- type soln_context
---> all_solns
; first_soln.
% The tables for computing the determinism of compound goals
% from the determinism of their components.
:- pred det_conjunction_detism(determinism, determinism, determinism).
:- mode det_conjunction_detism(in, in, out) is det.
:- pred det_par_conjunction_detism(determinism, determinism, determinism).
:- mode det_par_conjunction_detism(in, in, out) is det.
:- pred det_switch_detism(determinism, determinism, determinism).
:- mode det_switch_detism(in, in, out) is det.
:- pred det_disjunction_maxsoln(soln_count, soln_count, soln_count).
:- mode det_disjunction_maxsoln(in, in, out) is det.
:- pred det_disjunction_canfail(can_fail, can_fail, can_fail).
:- mode det_disjunction_canfail(in, in, out) is det.
:- pred det_switch_maxsoln(soln_count, soln_count, soln_count).
:- mode det_switch_maxsoln(in, in, out) is det.
:- pred det_switch_canfail(can_fail, can_fail, can_fail).
:- mode det_switch_canfail(in, in, out) is det.
:- pred det_negation_det(determinism, maybe(determinism)).
:- mode det_negation_det(in, out) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module check_hlds__purity.
:- import_module check_hlds__type_util, check_hlds__modecheck_call.
:- import_module check_hlds__mode_util, libs__options, hlds__passes_aux.
:- import_module hlds__hlds_out, parse_tree__mercury_to_mercury.
:- import_module assoc_list, bool, map, set, require, term.
%-----------------------------------------------------------------------------%
determinism_pass(ModuleInfo0, ModuleInfo) -->
{ determinism_declarations(ModuleInfo0, DeclaredProcs,
UndeclaredProcs, NoInferProcs) },
{ list__foldl(set_non_inferred_proc_determinism, NoInferProcs,
ModuleInfo0, ModuleInfo1) },
globals__io_lookup_bool_option(verbose, Verbose),
globals__io_lookup_bool_option(debug_det, Debug),
( { UndeclaredProcs = [] } ->
{ ModuleInfo2 = ModuleInfo1 }
;
maybe_write_string(Verbose,
"% Doing determinism inference...\n"),
global_inference_pass(ModuleInfo1, UndeclaredProcs, Debug,
ModuleInfo2),
maybe_write_string(Verbose, "% done.\n")
),
maybe_write_string(Verbose, "% Doing determinism checking...\n"),
global_final_pass(ModuleInfo2, DeclaredProcs, Debug, ModuleInfo),
maybe_write_string(Verbose, "% done.\n").
determinism_check_proc(ProcId, PredId, ModuleInfo0, ModuleInfo) -->
globals__io_lookup_bool_option(debug_det, Debug),
global_final_pass(ModuleInfo0, [proc(PredId, ProcId)], Debug,
ModuleInfo).
%-----------------------------------------------------------------------------%
:- pred global_inference_pass(module_info, pred_proc_list, bool, module_info,
io__state, io__state).
:- mode global_inference_pass(in, in, in, out, di, uo) is det.
% Iterate until a fixpoint is reached. This can be expensive
% if a module has many predicates with undeclared determinisms.
% If this ever becomes a problem, we should switch to doing
% iterations only on strongly connected components of the
% dependency graph.
global_inference_pass(ModuleInfo0, ProcList, Debug, ModuleInfo) -->
global_inference_single_pass(ProcList, Debug, ModuleInfo0, ModuleInfo1,
[], Msgs, unchanged, Changed),
maybe_write_string(Debug, "% Inference pass complete\n"),
( { Changed = changed } ->
global_inference_pass(ModuleInfo1, ProcList, Debug, ModuleInfo)
;
% We have arrived at a fixpoint. Therefore all the messages we
% have are based on the final determinisms of all procedures,
% which means it is safe to print them.
det_report_and_handle_msgs(Msgs, ModuleInfo1, ModuleInfo)
).
:- pred global_inference_single_pass(pred_proc_list, bool,
module_info, module_info, list(det_msg), list(det_msg),
maybe_changed, maybe_changed, io__state, io__state).
:- mode global_inference_single_pass(in, in, in, out, in, out, in, out, di, uo)
is det.
global_inference_single_pass([], _, ModuleInfo, ModuleInfo, Msgs, Msgs,
Changed, Changed) --> [].
global_inference_single_pass([proc(PredId, ProcId) | PredProcs], Debug,
ModuleInfo0, ModuleInfo, Msgs0, Msgs, Changed0, Changed) -->
globals__io_get_globals(Globals),
{ det_infer_proc(PredId, ProcId, ModuleInfo0, ModuleInfo1, Globals,
Detism0, Detism, ProcMsgs) },
( { Detism = Detism0 } ->
( { Debug = yes } ->
io__write_string("% Inferred old detism "),
mercury_output_det(Detism),
io__write_string(" for "),
hlds_out__write_pred_proc_id(ModuleInfo1,
PredId, ProcId),
io__write_string("\n")
;
[]
),
{ Changed1 = Changed0 }
;
( { Debug = yes } ->
io__write_string("% Inferred new detism "),
mercury_output_det(Detism),
io__write_string(" for "),
hlds_out__write_pred_proc_id(ModuleInfo1,
PredId, ProcId),
io__write_string("\n")
;
[]
),
{ Changed1 = changed }
),
{ list__append(ProcMsgs, Msgs0, Msgs1) },
global_inference_single_pass(PredProcs, Debug,
ModuleInfo1, ModuleInfo, Msgs1, Msgs, Changed1, Changed).
:- pred global_final_pass(module_info, pred_proc_list, bool,
module_info, io__state, io__state).
:- mode global_final_pass(in, in, in, out, di, uo) is det.
global_final_pass(ModuleInfo0, ProcList, Debug, ModuleInfo) -->
global_inference_single_pass(ProcList, Debug, ModuleInfo0, ModuleInfo1,
[], Msgs, unchanged, _),
det_report_and_handle_msgs(Msgs, ModuleInfo1, ModuleInfo2),
global_checking_pass(ProcList, ModuleInfo2, ModuleInfo).
%-----------------------------------------------------------------------------%
det_infer_proc(PredId, ProcId, ModuleInfo0, ModuleInfo, Globals,
Detism0, Detism, Msgs) :-
% Get the proc_info structure for this procedure
module_info_preds(ModuleInfo0, Preds0),
map__lookup(Preds0, PredId, Pred0),
pred_info_procedures(Pred0, Procs0),
map__lookup(Procs0, ProcId, Proc0),
% Remember the old inferred determinism of this procedure
proc_info_inferred_determinism(Proc0, Detism0),
% Work out whether the procedure occurs in a single-solution
% context or not. Currently we only assume so if
% the predicate has an explicit determinism declaration
% that says so.
det_get_soln_context(Detism0, OldInferredSolnContext),
proc_info_declared_determinism(Proc0, MaybeDeclaredDetism),
( MaybeDeclaredDetism = yes(DeclaredDetism) ->
det_get_soln_context(DeclaredDetism, DeclaredSolnContext)
;
DeclaredSolnContext = all_solns
),
(
( DeclaredSolnContext = first_soln
; OldInferredSolnContext = first_soln
)
->
SolnContext = first_soln
;
SolnContext = all_solns
),
% Infer the determinism of the goal
proc_info_goal(Proc0, Goal0),
proc_info_get_initial_instmap(Proc0, ModuleInfo0, InstMap0),
proc_info_vartypes(Proc0, VarTypes),
det_info_init(ModuleInfo0, VarTypes, PredId, ProcId, Globals, DetInfo),
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo,
Goal, Detism1, Msgs),
% Take the worst of the old and new detisms.
% This is needed to prevent loops on p :- not(p)
% at least if the initial assumed detism is det.
% This may also be needed to ensure that we don't change
% the interface determinism of procedures, if we are
% re-running determinism analysis.
determinism_components(Detism0, CanFail0, MaxSoln0),
determinism_components(Detism1, CanFail1, MaxSoln1),
det_switch_canfail(CanFail0, CanFail1, CanFail),
det_switch_maxsoln(MaxSoln0, MaxSoln1, MaxSoln),
determinism_components(Detism2, CanFail, MaxSoln),
% Now see if the evaluation model can change the detism
proc_info_eval_method(Proc0, EvalMethod),
Detism = eval_method_change_determinism(EvalMethod, Detism2),
% Save the newly inferred information
proc_info_set_goal(Proc0, Goal, Proc1),
proc_info_set_inferred_determinism(Proc1, Detism, Proc),
% Put back the new proc_info structure.
map__det_update(Procs0, ProcId, Proc, Procs),
pred_info_set_procedures(Pred0, Procs, Pred),
map__det_update(Preds0, PredId, Pred, Preds),
module_info_set_preds(ModuleInfo0, Preds, ModuleInfo).
%-----------------------------------------------------------------------------%
det_infer_goal(Goal0 - GoalInfo0, InstMap0, SolnContext0, DetInfo,
Goal - GoalInfo, Detism, Msgs) :-
goal_info_get_nonlocals(GoalInfo0, NonLocalVars),
goal_info_get_instmap_delta(GoalInfo0, DeltaInstMap),
% If a pure or semipure goal has no output variables,
% then the goal is in a single-solution context.
(
det_no_output_vars(NonLocalVars, InstMap0, DeltaInstMap,
DetInfo),
\+ goal_info_is_impure(GoalInfo0)
->
AddPruning = yes,
SolnContext = first_soln
;
AddPruning = no,
SolnContext = SolnContext0
),
% Some other part of the compiler has determined that we need to keep
% the cut represented by this quantification. This can happen e.g.
% when deep profiling adds impure code to the goal inside the some;
% it doesn't want to change the behavior of the some, even though
% the addition of impurity would make the if-then-else treat it
% differently.
(
Goal0 = some(_, _, _),
goal_info_has_feature(GoalInfo0, keep_this_commit)
->
Prune = yes
;
Prune = AddPruning
),
det_infer_goal_2(Goal0, GoalInfo0, InstMap0, SolnContext, DetInfo,
NonLocalVars, DeltaInstMap, Goal1, InternalDetism0, Msgs1),
determinism_components(InternalDetism0, InternalCanFail,
InternalSolns0),
(
% If mode analysis notices that a goal cannot succeed,
% then determinism analysis should notice this too.
instmap_delta_is_unreachable(DeltaInstMap)
->
InternalSolns = at_most_zero
;
InternalSolns = InternalSolns0
),
(
( InternalSolns = at_most_many
; InternalSolns = at_most_many_cc
),
Prune = yes
->
Solns = at_most_one
;
% If a goal with multiple solutions occurs in a
% single-solution context, then we will need to do pruning.
InternalSolns = at_most_many,
SolnContext = first_soln
->
Solns = at_most_many_cc
;
Solns = InternalSolns
),
determinism_components(Detism, InternalCanFail, Solns),
goal_info_set_determinism(GoalInfo0, Detism, GoalInfo),
%
% The code generators assume that conjunctions containing
% multi or nondet goals and if-then-elses containing
% multi or nondet conditions can only occur inside other
% multi or nondet goals. simplify.m modifies the code to make
% these invariants hold. Determinism analysis can be rerun
% after simplification, and without this code here the
% invariants would not hold after determinism analysis
% (the number of solutions of the inner goal would be changed
% back from at_most_many to at_most_one or at_most_zero).
%
(
%
% If-then-elses that are det or semidet may
% nevertheless contain nondet or multidet
% conditions. If this happens, the if-then-else
% must be put inside a `some' to appease the
% code generator. (Both the MLDS and LLDS
% back-ends rely on this.)
%
Goal1 = if_then_else(_, _ - CondInfo, _, _),
goal_info_get_determinism(CondInfo, CondDetism),
determinism_components(CondDetism, _, at_most_many),
Solns \= at_most_many
->
FinalInternalSolns = at_most_many
;
%
% Conjunctions that cannot produce solutions may nevertheless
% contain nondet and multidet goals. If this happens, the
% conjunction is put inside a `some' to appease the code
% generator.
%
Goal1 = conj(ConjGoals),
Solns = at_most_zero,
some [ConjGoalInfo] (
list__member(_ - ConjGoalInfo, ConjGoals),
goal_info_get_determinism(ConjGoalInfo,
ConjGoalDetism),
determinism_components(ConjGoalDetism, _, at_most_many)
)
->
FinalInternalSolns = at_most_many
;
FinalInternalSolns = InternalSolns
),
determinism_components(FinalInternalDetism, InternalCanFail,
FinalInternalSolns),
% See how we should introduce the commit operator, if one is needed.
(
% do we need a commit?
Detism \= FinalInternalDetism,
% for disjunctions, we want to use a semidet
% or cc_nondet disjunction which avoids creating a
% choice point at all, rather than wrapping a
% some [] around a nondet disj, which would
% create a choice point and then prune it.
Goal1 \= disj(_),
% do we already have a commit?
Goal1 \= some(_, _, _)
->
% a commit needed - we must introduce an explicit `some'
% so that the code generator knows to insert the appropriate
% code for pruning
goal_info_set_determinism(GoalInfo0,
FinalInternalDetism, InnerInfo),
Goal = some([], can_remove, Goal1 - InnerInfo),
Msgs = Msgs1
;
% either no commit needed, or a `some' already present
Goal = Goal1,
Msgs = Msgs1
).
%-----------------------------------------------------------------------------%
:- pred det_infer_goal_2(hlds_goal_expr, hlds_goal_info, instmap,
soln_context, det_info, set(prog_var), instmap_delta,
hlds_goal_expr, determinism, list(det_msg)).
:- mode det_infer_goal_2(in, in, in, in, in, in, in, out, out, out) is det.
% The determinism of a conjunction is the worst case of the elements
% of that conjuction.
det_infer_goal_2(conj(Goals0), _, InstMap0, SolnContext, DetInfo, _, _,
conj(Goals), Detism, Msgs) :-
det_infer_conj(Goals0, InstMap0, SolnContext, DetInfo,
Goals, Detism, Msgs).
det_infer_goal_2(par_conj(Goals0), GoalInfo, InstMap0, SolnContext,
DetInfo, _, _, par_conj(Goals), Detism, Msgs) :-
det_infer_par_conj(Goals0, InstMap0, SolnContext, DetInfo,
Goals, Detism, Msgs0),
(
determinism_components(Detism, CanFail, Solns),
CanFail = cannot_fail,
Solns \= at_most_many
->
Msgs = Msgs0
;
det_info_get_pred_id(DetInfo, PredId),
det_info_get_proc_id(DetInfo, ProcId),
Msg = par_conj_not_det(Detism, PredId, ProcId, GoalInfo, Goals),
Msgs = [Msg|Msgs0]
).
det_infer_goal_2(disj(Goals0), _, InstMap0, SolnContext, DetInfo, _, _,
disj(Goals), Detism, Msgs) :-
det_infer_disj(Goals0, InstMap0, SolnContext, DetInfo,
can_fail, at_most_zero, Goals, Detism, Msgs).
% The determinism of a switch is the worst of the determinism of each
% of the cases. Also, if only a subset of the constructors are handled,
% then it is semideterministic or worse - this is determined
% in switch_detection.m and handled via the SwitchCanFail field.
det_infer_goal_2(switch(Var, SwitchCanFail, Cases0), GoalInfo,
InstMap0, SolnContext, DetInfo, _, _,
switch(Var, SwitchCanFail, Cases), Detism, Msgs) :-
det_infer_switch(Cases0, InstMap0, SolnContext, DetInfo,
cannot_fail, at_most_zero, Cases, CasesDetism, Msgs0),
determinism_components(CasesDetism, CasesCanFail, CasesSolns),
% The switch variable tests are in a first_soln context if and only
% if the switch goal as a whole was in a first_soln context and the
% cases cannot fail.
(
CasesCanFail = cannot_fail,
SolnContext = first_soln
->
SwitchSolnContext = first_soln
;
SwitchSolnContext = all_solns
),
ExaminesRep = yes,
det_check_for_noncanonical_type(Var, ExaminesRep, SwitchCanFail,
SwitchSolnContext, GoalInfo, switch, DetInfo, Msgs0,
SwitchSolns, Msgs),
det_conjunction_canfail(SwitchCanFail, CasesCanFail, CanFail),
det_conjunction_maxsoln(SwitchSolns, CasesSolns, NumSolns),
determinism_components(Detism, CanFail, NumSolns).
% For calls, just look up the determinism entry associated with
% the called predicate.
% This is the point at which annotations start changing
% when we iterate to fixpoint for global determinism inference.
det_infer_goal_2(call(PredId, ModeId0, A, B, C, N), GoalInfo, _,
SolnContext, DetInfo, _, _,
call(PredId, ModeId, A, B, C, N), Detism, Msgs) :-
det_lookup_detism(DetInfo, PredId, ModeId0, Detism0),
%
% Make sure we don't try to call a committed-choice pred
% from a non-committed-choice context.
%
determinism_components(Detism0, CanFail, NumSolns),
(
NumSolns = at_most_many_cc,
SolnContext \= first_soln
->
(
det_find_matching_non_cc_mode(DetInfo, PredId, ModeId0,
ModeId1)
->
ModeId = ModeId1,
Msgs = [],
determinism_components(Detism, CanFail, at_most_many)
;
Msgs = [cc_pred_in_wrong_context(GoalInfo, Detism0,
PredId, ModeId0)],
ModeId = ModeId0,
% Code elsewhere relies on the assumption that
% SolnContext \= first_soln =>
% NumSolns \= at_most_many_cc,
% so we need to enforce that here.
determinism_components(Detism, CanFail, at_most_many)
)
;
Msgs = [],
ModeId = ModeId0,
Detism = Detism0
).
det_infer_goal_2(generic_call(GenericCall, ArgVars, Modes, Det0),
GoalInfo, _InstMap0, SolnContext,
_MiscInfo, _NonLocalVars, _DeltaInstMap,
generic_call(GenericCall, ArgVars, Modes, Det0),
Det, Msgs) :-
determinism_components(Det0, CanFail, NumSolns),
(
NumSolns = at_most_many_cc,
SolnContext \= first_soln
->
% This error can only occur for higher-order calls.
% class_method calls are only introduced by polymorphism,
% and the aditi_builtins are all det (for the updates)
% or introduced later (for calls).
Msgs = [higher_order_cc_pred_in_wrong_context(GoalInfo, Det0)],
% Code elsewhere relies on the assumption that
% SolnContext \= first_soln => NumSolns \= at_most_many_cc,
% so we need to enforce that here.
determinism_components(Det, CanFail, at_most_many)
;
Msgs = [],
Det = Det0
).
% unifications are either deterministic or semideterministic.
% (see det_infer_unify).
det_infer_goal_2(unify(LT, RT0, M, U, C), GoalInfo, InstMap0, SolnContext,
DetInfo, _, _, unify(LT, RT, M, U, C), UnifyDet, Msgs) :-
(
RT0 = lambda_goal(PredOrFunc, EvalMethod, FixModes,
NonLocalVars, Vars, Modes, LambdaDeclaredDet, Goal0)
->
(
determinism_components(LambdaDeclaredDet, _,
at_most_many_cc)
->
LambdaSolnContext = first_soln
;
LambdaSolnContext = all_solns
),
det_info_get_module_info(DetInfo, ModuleInfo),
instmap__pre_lambda_update(ModuleInfo, Vars, Modes,
InstMap0, InstMap1),
det_infer_goal(Goal0, InstMap1, LambdaSolnContext, DetInfo,
Goal, LambdaInferredDet, Msgs1),
det_check_lambda(LambdaDeclaredDet, LambdaInferredDet,
Goal, GoalInfo, DetInfo, Msgs2),
list__append(Msgs1, Msgs2, Msgs3),
RT = lambda_goal(PredOrFunc, EvalMethod, FixModes,
NonLocalVars, Vars, Modes, LambdaDeclaredDet, Goal)
;
RT = RT0,
Msgs3 = []
),
det_infer_unify_canfail(U, UnifyCanFail),
det_infer_unify_examines_rep(U, ExaminesRepresentation),
det_check_for_noncanonical_type(LT, ExaminesRepresentation,
UnifyCanFail, SolnContext, GoalInfo, unify(C), DetInfo, Msgs3,
UnifyNumSolns, Msgs),
determinism_components(UnifyDet, UnifyCanFail, UnifyNumSolns).
det_infer_goal_2(if_then_else(Vars, Cond0, Then0, Else0), _GoalInfo0,
InstMap0, SolnContext, DetInfo, _NonLocalVars, _DeltaInstMap,
if_then_else(Vars, Cond, Then, Else), Detism, Msgs) :-
% We process the goal right-to-left, doing the `then' before
% the condition of the if-then-else, so that we can propagate
% the SolnContext correctly.
% First process the `then' part
update_instmap(Cond0, InstMap0, InstMap1),
det_infer_goal(Then0, InstMap1, SolnContext, DetInfo,
Then, ThenDetism, ThenMsgs),
determinism_components(ThenDetism, ThenCanFail, ThenMaxSoln),
% Next, work out the right soln_context to use for the condition.
% The condition is in a first_soln context if and only if the goal
% as a whole was in a first_soln context and the `then' part
% cannot fail.
(
ThenCanFail = cannot_fail,
SolnContext = first_soln
->
CondSolnContext = first_soln
;
CondSolnContext = all_solns
),
% Process the `condition' part
det_infer_goal(Cond0, InstMap0, CondSolnContext, DetInfo,
Cond, CondDetism, CondMsgs),
determinism_components(CondDetism, CondCanFail, CondMaxSoln),
% Process the `else' part
det_infer_goal(Else0, InstMap0, SolnContext, DetInfo,
Else, ElseDetism, ElseMsgs),
determinism_components(ElseDetism, ElseCanFail, ElseMaxSoln),
% Finally combine the results from the three parts
( CondCanFail = cannot_fail ->
% A -> B ; C is equivalent to A, B if A cannot fail
det_conjunction_detism(CondDetism, ThenDetism, Detism)
; CondMaxSoln = at_most_zero ->
% A -> B ; C is equivalent to ~A, C if A cannot succeed
det_negation_det(CondDetism, MaybeNegDetism),
(
MaybeNegDetism = no,
error("cannot find determinism of negated condition")
;
MaybeNegDetism = yes(NegDetism)
),
det_conjunction_detism(NegDetism, ElseDetism, Detism)
;
det_conjunction_maxsoln(CondMaxSoln, ThenMaxSoln, CTMaxSoln),
det_switch_maxsoln(CTMaxSoln, ElseMaxSoln, MaxSoln),
det_switch_canfail(ThenCanFail, ElseCanFail, CanFail),
determinism_components(Detism, CanFail, MaxSoln)
),
list__append(ThenMsgs, ElseMsgs, AfterMsgs),
list__append(CondMsgs, AfterMsgs, Msgs).
% Negations are almost always semideterministic. It is an error for
% a negation to further instantiate any non-local variable. Such
% errors will be reported by the mode analysis.
%
% Question: should we warn about the negation of goals that either
% cannot succeed or cannot fail?
% Answer: yes, probably, but it's not a high priority.
det_infer_goal_2(not(Goal0), _, InstMap0, _SolnContext, DetInfo, _, _,
not(Goal), Det, Msgs) :-
det_infer_goal(Goal0, InstMap0, first_soln, DetInfo,
Goal, NegDet, Msgs),
det_negation_det(NegDet, MaybeDet),
(
MaybeDet = no,
error("inappropriate determinism inside a negation")
;
MaybeDet = yes(Det)
).
% Existential quantification may require a cut to throw away solutions,
% but we cannot rely on explicit quantification to detect this.
% Therefore cuts are handled in det_infer_goal.
det_infer_goal_2(some(Vars, CanRemove, Goal0), _, InstMap0, SolnContext,
DetInfo, _, _, some(Vars, CanRemove, Goal), Det, Msgs) :-
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo,
Goal, Det, Msgs).
% pragma foregin_codes are handled in the same way as predicate calls
det_infer_goal_2(foreign_proc(Attributes, PredId, ProcId,
Args, ArgNameMap, OrigArgTypes, PragmaCode),
GoalInfo, _, SolnContext, DetInfo, _, _,
foreign_proc(Attributes, PredId, ProcId, Args,
ArgNameMap, OrigArgTypes, PragmaCode),
Detism, Msgs) :-
det_info_get_module_info(DetInfo, ModuleInfo),
module_info_pred_proc_info(ModuleInfo, PredId, ProcId, _, ProcInfo),
proc_info_declared_determinism(ProcInfo, MaybeDetism),
( MaybeDetism = yes(Detism0) ->
determinism_components(Detism0, CanFail, NumSolns0),
( PragmaCode = nondet(_, _, _, _, _, _, _, _, _) ->
% pragma C codes of this form
% can have more than one solution
NumSolns1 = at_most_many
;
NumSolns1 = NumSolns0
),
(
NumSolns1 = at_most_many_cc,
SolnContext \= first_soln
->
Msgs = [cc_pred_in_wrong_context(GoalInfo, Detism0,
PredId, ProcId)],
NumSolns = at_most_many
;
Msgs = [],
NumSolns = NumSolns1
),
determinism_components(Detism, CanFail, NumSolns)
;
Msgs = [pragma_c_code_without_det_decl(PredId, ProcId)],
Detism = erroneous
).
det_infer_goal_2(shorthand(_), _, _, _, _, _, _, _, _, _) :-
% these should have been expanded out by now
error("det_infer_goal_2: unexpected shorthand").
%-----------------------------------------------------------------------------%
:- pred det_infer_conj(list(hlds_goal), instmap, soln_context, det_info,
list(hlds_goal), determinism, list(det_msg)).
:- mode det_infer_conj(in, in, in, in, out, out, out) is det.
det_infer_conj([], _InstMap0, _SolnContext, _DetInfo, [], det, []).
det_infer_conj([Goal0 | Goals0], InstMap0, SolnContext, DetInfo,
[Goal | Goals], Detism, Msgs) :-
% We should look to see when we get to a not_reached point
% and optimize away the remaining elements of the conjunction.
% But that optimization is done in the code generation anyway.
% We infer the determinisms right-to-left, so that we can propagate
% the SolnContext properly.
%
% First, process the second and subsequent conjuncts.
%
update_instmap(Goal0, InstMap0, InstMap1),
det_infer_conj(Goals0, InstMap1, SolnContext, DetInfo,
Goals, DetismB, MsgsB),
determinism_components(DetismB, CanFailB, _MaxSolnsB),
%
% Next, work out whether the first conjunct is in a first_soln context
% or not. We obviously need all its solutions if we need all the
% solutions of the conjunction. However, even if we need only the
% first solution of the conjunction, we may need to generate more
% than one solution of the first conjunct if the later conjuncts
% may possibly fail.
%
(
CanFailB = cannot_fail,
SolnContext = first_soln
->
SolnContextA = first_soln
;
SolnContextA = all_solns
),
%
% Process the first conjunct.
%
det_infer_goal(Goal0, InstMap0, SolnContextA, DetInfo,
Goal, DetismA, MsgsA),
%
% Finally combine the results computed above.
%
det_conjunction_detism(DetismA, DetismB, Detism),
list__append(MsgsA, MsgsB, Msgs).
:- pred det_infer_par_conj(list(hlds_goal), instmap, soln_context, det_info,
list(hlds_goal), determinism, list(det_msg)).
:- mode det_infer_par_conj(in, in, in, in, out, out, out) is det.
det_infer_par_conj([], _InstMap0, _SolnContext, _DetInfo, [], det, []).
det_infer_par_conj([Goal0 | Goals0], InstMap0, SolnContext, DetInfo,
[Goal | Goals], Detism, Msgs) :-
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo,
Goal, DetismA, MsgsA),
determinism_components(DetismA, CanFailA, MaxSolnsA),
det_infer_par_conj(Goals0, InstMap0, SolnContext, DetInfo,
Goals, DetismB, MsgsB),
determinism_components(DetismB, CanFailB, MaxSolnsB),
det_conjunction_maxsoln(MaxSolnsA, MaxSolnsB, MaxSolns),
det_conjunction_canfail(CanFailA, CanFailB, CanFail),
determinism_components(Detism, CanFail, MaxSolns),
list__append(MsgsA, MsgsB, Msgs).
:- pred det_infer_disj(list(hlds_goal), instmap, soln_context, det_info,
can_fail, soln_count, list(hlds_goal), determinism, list(det_msg)).
:- mode det_infer_disj(in, in, in, in, in, in, out, out, out) is det.
det_infer_disj([], _InstMap0, _SolnContext, _DetInfo, CanFail, MaxSolns,
[], Detism, []) :-
determinism_components(Detism, CanFail, MaxSolns).
det_infer_disj([Goal0 | Goals0], InstMap0, SolnContext, DetInfo, CanFail0,
MaxSolns0, [Goal | Goals1], Detism, Msgs) :-
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo, Goal, Detism1,
Msgs1),
determinism_components(Detism1, CanFail1, MaxSolns1),
Goal = _ - GoalInfo,
% If a disjunct cannot succeed but is marked with the
% preserve_backtrack_into feature, treat it as being able to succeed
% when computing the max number of solutions of the disjunction as a
% whole, *provided* that some earlier disjuct could succeed. The idea
% is that ( marked failure ; det ) should be treated as det, since all
% backtracking is local within it, while disjunctions of the form
% ( det ; marked failure ) should be treated as multi, since we want
% to be able to backtrack to the second disjunct from *outside*
% the disjunction. This is useful for program transformation that want
% to get control on exits to and redos into model_non procedures.
% Deep profiling is one such transformation.
(
MaxSolns0 \= at_most_zero,
MaxSolns1 = at_most_zero,
goal_info_has_feature(GoalInfo, preserve_backtrack_into)
->
AdjMaxSolns1 = at_most_one
;
AdjMaxSolns1 = MaxSolns1
),
det_disjunction_canfail(CanFail0, CanFail1, CanFail2),
det_disjunction_maxsoln(MaxSolns0, AdjMaxSolns1, MaxSolns2),
% if we're in a single-solution context,
% convert `at_most_many' to `at_most_many_cc'
( SolnContext = first_soln, MaxSolns2 = at_most_many ->
MaxSolns3 = at_most_many_cc
;
MaxSolns3 = MaxSolns2
),
det_infer_disj(Goals0, InstMap0, SolnContext, DetInfo, CanFail2,
MaxSolns3, Goals1, Detism, Msgs2),
list__append(Msgs1, Msgs2, Msgs).
:- pred det_infer_switch(list(case), instmap, soln_context, det_info,
can_fail, soln_count, list(case), determinism, list(det_msg)).
:- mode det_infer_switch(in, in, in, in, in, in, out, out, out) is det.
det_infer_switch([], _InstMap0, _SolnContext, _DetInfo, CanFail, MaxSolns,
[], Detism, []) :-
determinism_components(Detism, CanFail, MaxSolns).
det_infer_switch([Case0 | Cases0], InstMap0, SolnContext, DetInfo, CanFail0,
MaxSolns0, [Case | Cases], Detism, Msgs) :-
% Technically, we should update the instmap to reflect the
% knowledge that the var is bound to this particular
% constructor, but we wouldn't use that information here anyway,
% so we don't bother.
Case0 = case(ConsId, Goal0),
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo,
Goal, Detism1, Msgs1),
Case = case(ConsId, Goal),
determinism_components(Detism1, CanFail1, MaxSolns1),
det_switch_canfail(CanFail0, CanFail1, CanFail2),
det_switch_maxsoln(MaxSolns0, MaxSolns1, MaxSolns2),
det_infer_switch(Cases0, InstMap0, SolnContext, DetInfo, CanFail2,
MaxSolns2, Cases, Detism, Msgs2),
list__append(Msgs1, Msgs2, Msgs).
%-----------------------------------------------------------------------------%
% det_find_matching_non_cc_mode(DetInfo, PredId, ProcId0, ProcId):
% Search for a mode of the given predicate that
% is identical to the mode ProcId0, except that its
% determinism is non-cc whereas ProcId0's detism is cc.
% Let ProcId be the first such mode.
:- pred det_find_matching_non_cc_mode(det_info, pred_id, proc_id, proc_id).
:- mode det_find_matching_non_cc_mode(in, in, in, out) is semidet.
det_find_matching_non_cc_mode(DetInfo, PredId, ProcId0, ProcId) :-
det_info_get_module_info(DetInfo, ModuleInfo),
module_info_preds(ModuleInfo, PredTable),
map__lookup(PredTable, PredId, PredInfo),
pred_info_procedures(PredInfo, ProcTable),
map__to_assoc_list(ProcTable, ProcList),
det_find_matching_non_cc_mode_2(ProcList, ModuleInfo, PredInfo,
ProcId0, ProcId).
:- pred det_find_matching_non_cc_mode_2(assoc_list(proc_id, proc_info),
module_info, pred_info, proc_id, proc_id).
:- mode det_find_matching_non_cc_mode_2(in, in, in, in, out) is semidet.
det_find_matching_non_cc_mode_2([ProcId1 - ProcInfo | Rest],
ModuleInfo, PredInfo, ProcId0, ProcId) :-
(
ProcId1 \= ProcId0,
proc_info_interface_determinism(ProcInfo, Detism),
determinism_components(Detism, _CanFail, MaxSoln),
MaxSoln = at_most_many,
modes_are_identical_bar_cc(ProcId0, ProcId1, PredInfo,
ModuleInfo)
->
ProcId = ProcId1
;
det_find_matching_non_cc_mode_2(Rest, ModuleInfo, PredInfo,
ProcId0, ProcId)
).
%-----------------------------------------------------------------------------%
:- pred det_check_for_noncanonical_type(prog_var, bool, can_fail, soln_context,
hlds_goal_info, cc_unify_context, det_info, list(det_msg),
soln_count, list(det_msg)).
:- mode det_check_for_noncanonical_type(in, in, in, in,
in, in, in, in, out, out) is det.
det_check_for_noncanonical_type(Var, ExaminesRepresentation, CanFail,
SolnContext, GoalInfo, GoalContext, DetInfo, Msgs0,
NumSolns, Msgs) :-
(
%
% check for unifications that attempt to examine
% the representation of a type that does not have
% a single representation for each abstract value
%
ExaminesRepresentation = yes,
det_get_proc_info(DetInfo, ProcInfo),
proc_info_vartypes(ProcInfo, VarTypes),
map__lookup(VarTypes, Var, Type),
det_type_has_user_defined_equality_pred(DetInfo, Type)
->
( CanFail = can_fail ->
proc_info_varset(ProcInfo, VarSet),
Msgs = [cc_unify_can_fail(GoalInfo, Var, Type,
VarSet, GoalContext) | Msgs0]
; SolnContext \= first_soln ->
proc_info_varset(ProcInfo, VarSet),
Msgs = [cc_unify_in_wrong_context(GoalInfo, Var,
Type, VarSet, GoalContext) | Msgs0]
;
Msgs = Msgs0
),
( SolnContext = first_soln ->
NumSolns = at_most_many_cc
;
NumSolns = at_most_many
)
;
NumSolns = at_most_one,
Msgs = Msgs0
).
% return true iff there was a `where equality is <predname>' declaration
% for the specified type.
:- pred det_type_has_user_defined_equality_pred(det_info::in,
(type)::in) is semidet.
det_type_has_user_defined_equality_pred(DetInfo, Type) :-
det_info_get_module_info(DetInfo, ModuleInfo),
type_has_user_defined_equality_pred(ModuleInfo, Type, _).
% return yes iff the results of the specified unification might depend on
% the concrete representation of the abstract values involved.
:- pred det_infer_unify_examines_rep(unification::in, bool::out) is det.
det_infer_unify_examines_rep(assign(_, _), no).
det_infer_unify_examines_rep(construct(_, _, _, _, _, _, _), no).
det_infer_unify_examines_rep(deconstruct(_, _, _, _, _, _), yes).
det_infer_unify_examines_rep(simple_test(_, _), yes).
det_infer_unify_examines_rep(complicated_unify(_, _, _), no).
% Some complicated modes of complicated unifications _do_
% examine the representation...
% but we will catch those by reporting errors in the
% compiler-generated code for the complicated unification.
% Deconstruction unifications cannot fail if the type
% only has one constructor, or if the variable is known to be
% already bound to the appropriate functor.
%
% This is handled (modulo bugs) by modes.m, which sets
% the appropriate field in the deconstruct(...) to can_fail for
% those deconstruction unifications which might fail.
% But switch_detection.m may set it back to cannot_fail again,
% if it moves the functor test into a switch instead.
:- pred det_infer_unify_canfail(unification, can_fail).
:- mode det_infer_unify_canfail(in, out) is det.
det_infer_unify_canfail(deconstruct(_, _, _, _, CanFail, _), CanFail).
det_infer_unify_canfail(assign(_, _), cannot_fail).
det_infer_unify_canfail(construct(_, _, _, _, _, _, _), cannot_fail).
det_infer_unify_canfail(simple_test(_, _), can_fail).
det_infer_unify_canfail(complicated_unify(_, CanFail, _), CanFail).
%-----------------------------------------------------------------------------%
det_get_soln_context(DeclaredDetism, SolnContext) :-
(
determinism_components(DeclaredDetism, _, at_most_many_cc)
->
SolnContext = first_soln
;
SolnContext = all_solns
).
% When figuring out the determinism of a conjunction,
% if the second goal is unreachable, then then the
% determinism of the conjunction is just the determinism
% of the first goal.
det_conjunction_detism(DetismA, DetismB, Detism) :-
determinism_components(DetismA, CanFailA, MaxSolnA),
( MaxSolnA = at_most_zero ->
Detism = DetismA
;
determinism_components(DetismB, CanFailB, MaxSolnB),
det_conjunction_canfail(CanFailA, CanFailB, CanFail),
det_conjunction_maxsoln(MaxSolnA, MaxSolnB, MaxSoln),
determinism_components(Detism, CanFail, MaxSoln)
).
% Figuring out the determinism of a parallel conjunction is much
% easier than for a sequential conjunction, since you simply
% ignore the case where the second goal is unreachable. Just do
% a normal solution count.
det_par_conjunction_detism(DetismA, DetismB, Detism) :-
determinism_components(DetismA, CanFailA, MaxSolnA),
determinism_components(DetismB, CanFailB, MaxSolnB),
det_conjunction_canfail(CanFailA, CanFailB, CanFail),
det_conjunction_maxsoln(MaxSolnA, MaxSolnB, MaxSoln),
determinism_components(Detism, CanFail, MaxSoln).
det_switch_detism(DetismA, DetismB, Detism) :-
determinism_components(DetismA, CanFailA, MaxSolnA),
determinism_components(DetismB, CanFailB, MaxSolnB),
det_switch_canfail(CanFailA, CanFailB, CanFail),
det_switch_maxsoln(MaxSolnA, MaxSolnB, MaxSoln),
determinism_components(Detism, CanFail, MaxSoln).
% For the at_most_zero, at_most_one, at_most_many,
% we're just doing abstract interpretation to count
% the number of solutions. Similarly, for the can_fail
% and cannot_fail components, we're doing abstract
% interpretation to count the possible number of failures.
% If the num_solns is at_most_many_cc, this means that
% the goal might have many logical solutions if there were no
% pruning, but that the goal occurs in a single-solution
% context, so only the first solution will be returned.
:- pred det_conjunction_maxsoln(soln_count, soln_count, soln_count).
:- mode det_conjunction_maxsoln(in, in, out) is det.
det_conjunction_maxsoln(at_most_zero, at_most_zero, at_most_zero).
det_conjunction_maxsoln(at_most_zero, at_most_one, at_most_zero).
det_conjunction_maxsoln(at_most_zero, at_most_many_cc, at_most_zero).
det_conjunction_maxsoln(at_most_zero, at_most_many, at_most_zero).
det_conjunction_maxsoln(at_most_one, at_most_zero, at_most_zero).
det_conjunction_maxsoln(at_most_one, at_most_one, at_most_one).
det_conjunction_maxsoln(at_most_one, at_most_many_cc, at_most_many_cc).
det_conjunction_maxsoln(at_most_one, at_most_many, at_most_many).
det_conjunction_maxsoln(at_most_many_cc, at_most_zero, at_most_zero).
det_conjunction_maxsoln(at_most_many_cc, at_most_one, at_most_many_cc).
det_conjunction_maxsoln(at_most_many_cc, at_most_many_cc, at_most_many_cc).
det_conjunction_maxsoln(at_most_many_cc, at_most_many, _) :-
% if the first conjunct could be cc pruned,
% the second conj ought to have been cc pruned too
error("det_conjunction_maxsoln: many_cc , many").
det_conjunction_maxsoln(at_most_many, at_most_zero, at_most_zero).
det_conjunction_maxsoln(at_most_many, at_most_one, at_most_many).
det_conjunction_maxsoln(at_most_many, at_most_many_cc, at_most_many).
det_conjunction_maxsoln(at_most_many, at_most_many, at_most_many).
:- pred det_conjunction_canfail(can_fail, can_fail, can_fail).
:- mode det_conjunction_canfail(in, in, out) is det.
det_conjunction_canfail(can_fail, can_fail, can_fail).
det_conjunction_canfail(can_fail, cannot_fail, can_fail).
det_conjunction_canfail(cannot_fail, can_fail, can_fail).
det_conjunction_canfail(cannot_fail, cannot_fail, cannot_fail).
det_disjunction_maxsoln(at_most_zero, at_most_zero, at_most_zero).
det_disjunction_maxsoln(at_most_zero, at_most_one, at_most_one).
det_disjunction_maxsoln(at_most_zero, at_most_many_cc, at_most_many_cc).
det_disjunction_maxsoln(at_most_zero, at_most_many, at_most_many).
det_disjunction_maxsoln(at_most_one, at_most_zero, at_most_one).
det_disjunction_maxsoln(at_most_one, at_most_one, at_most_many).
det_disjunction_maxsoln(at_most_one, at_most_many_cc, at_most_many_cc).
det_disjunction_maxsoln(at_most_one, at_most_many, at_most_many).
det_disjunction_maxsoln(at_most_many_cc, at_most_zero, at_most_many_cc).
det_disjunction_maxsoln(at_most_many_cc, at_most_one, at_most_many_cc).
det_disjunction_maxsoln(at_most_many_cc, at_most_many_cc, at_most_many_cc).
det_disjunction_maxsoln(at_most_many_cc, at_most_many, _) :-
% if the first disjunct could be cc pruned,
% the second disjunct ought to have been cc pruned too
error("det_disjunction_maxsoln: cc in first case, not cc in second case").
det_disjunction_maxsoln(at_most_many, at_most_zero, at_most_many).
det_disjunction_maxsoln(at_most_many, at_most_one, at_most_many).
det_disjunction_maxsoln(at_most_many, at_most_many_cc, _) :-
% if the first disjunct could be cc pruned,
% the second disjunct ought to have been cc pruned too
error("det_disjunction_maxsoln: cc in second case, not cc in first case").
det_disjunction_maxsoln(at_most_many, at_most_many, at_most_many).
det_disjunction_canfail(can_fail, can_fail, can_fail).
det_disjunction_canfail(can_fail, cannot_fail, cannot_fail).
det_disjunction_canfail(cannot_fail, can_fail, cannot_fail).
det_disjunction_canfail(cannot_fail, cannot_fail, cannot_fail).
det_switch_maxsoln(at_most_zero, at_most_zero, at_most_zero).
det_switch_maxsoln(at_most_zero, at_most_one, at_most_one).
det_switch_maxsoln(at_most_zero, at_most_many_cc, at_most_many_cc).
det_switch_maxsoln(at_most_zero, at_most_many, at_most_many).
det_switch_maxsoln(at_most_one, at_most_zero, at_most_one).
det_switch_maxsoln(at_most_one, at_most_one, at_most_one).
det_switch_maxsoln(at_most_one, at_most_many_cc, at_most_many_cc).
det_switch_maxsoln(at_most_one, at_most_many, at_most_many).
det_switch_maxsoln(at_most_many_cc, at_most_zero, at_most_many_cc).
det_switch_maxsoln(at_most_many_cc, at_most_one, at_most_many_cc).
det_switch_maxsoln(at_most_many_cc, at_most_many_cc, at_most_many_cc).
det_switch_maxsoln(at_most_many_cc, at_most_many, _) :-
% if the first case could be cc pruned,
% the second case ought to have been cc pruned too
error("det_switch_maxsoln: cc in first case, not cc in second case").
det_switch_maxsoln(at_most_many, at_most_zero, at_most_many).
det_switch_maxsoln(at_most_many, at_most_one, at_most_many).
det_switch_maxsoln(at_most_many, at_most_many_cc, _) :-
% if the first case could be cc pruned,
% the second case ought to have been cc pruned too
error("det_switch_maxsoln: cc in second case, not cc in first case").
det_switch_maxsoln(at_most_many, at_most_many, at_most_many).
det_switch_canfail(can_fail, can_fail, can_fail).
det_switch_canfail(can_fail, cannot_fail, can_fail).
det_switch_canfail(cannot_fail, can_fail, can_fail).
det_switch_canfail(cannot_fail, cannot_fail, cannot_fail).
det_negation_det(det, yes(failure)).
det_negation_det(semidet, yes(semidet)).
det_negation_det(multidet, no).
det_negation_det(nondet, no).
det_negation_det(cc_multidet, no).
det_negation_det(cc_nondet, no).
det_negation_det(erroneous, yes(erroneous)).
det_negation_det(failure, yes(det)).
%-----------------------------------------------------------------------------%
% determinism_declarations takes a module_info as input and
% returns two lists of procedure ids, the first being those
% with determinism declarations, and the second being those without.
:- pred determinism_declarations(module_info, pred_proc_list,
pred_proc_list, pred_proc_list).
:- mode determinism_declarations(in, out, out, out) is det.
determinism_declarations(ModuleInfo, DeclaredProcs,
UndeclaredProcs, NoInferProcs) :-
get_all_pred_procs(ModuleInfo, PredProcs),
segregate_procs(ModuleInfo, PredProcs, DeclaredProcs,
UndeclaredProcs, NoInferProcs).
% get_all_pred_procs takes a module_info and returns a list
% of all the procedures ids for that module (except class methods,
% which do not need to be checked since we generate the code ourselves).
:- pred get_all_pred_procs(module_info, pred_proc_list).
:- mode get_all_pred_procs(in, out) is det.
get_all_pred_procs(ModuleInfo, PredProcs) :-
module_info_predids(ModuleInfo, PredIds),
module_info_preds(ModuleInfo, Preds),
get_all_pred_procs_2(Preds, PredIds, [], PredProcs).
:- pred get_all_pred_procs_2(pred_table, list(pred_id),
pred_proc_list, pred_proc_list).
:- mode get_all_pred_procs_2(in, in, in, out) is det.
get_all_pred_procs_2(_Preds, [], PredProcs, PredProcs).
get_all_pred_procs_2(Preds, [PredId|PredIds], PredProcs0, PredProcs) :-
map__lookup(Preds, PredId, Pred),
pred_info_procids(Pred, ProcIds),
fold_pred_modes(PredId, ProcIds, PredProcs0, PredProcs1),
get_all_pred_procs_2(Preds, PredIds, PredProcs1, PredProcs).
:- pred fold_pred_modes(pred_id, list(proc_id), pred_proc_list, pred_proc_list).
:- mode fold_pred_modes(in, in, in, out) is det.
fold_pred_modes(_PredId, [], PredProcs, PredProcs).
fold_pred_modes(PredId, [ProcId|ProcIds], PredProcs0, PredProcs) :-
fold_pred_modes(PredId, ProcIds, [proc(PredId, ProcId) | PredProcs0],
PredProcs).
% segregate_procs(ModuleInfo, PredProcs, DeclaredProcs, UndeclaredProcs)
% splits the list of procedures PredProcs into DeclaredProcs and
% UndeclaredProcs.
:- pred segregate_procs(module_info, pred_proc_list, pred_proc_list,
pred_proc_list, pred_proc_list).
:- mode segregate_procs(in, in, out, out, out) is det.
segregate_procs(ModuleInfo, PredProcs, DeclaredProcs,
UndeclaredProcs, NoInferProcs) :-
segregate_procs_2(ModuleInfo, PredProcs, [], DeclaredProcs,
[], UndeclaredProcs, [], NoInferProcs).
:- pred segregate_procs_2(module_info, pred_proc_list, pred_proc_list,
pred_proc_list, pred_proc_list, pred_proc_list,
pred_proc_list, pred_proc_list).
:- mode segregate_procs_2(in, in, in, out, in, out, in, out) is det.
segregate_procs_2(_ModuleInfo, [], DeclaredProcs, DeclaredProcs,
UndeclaredProcs, UndeclaredProcs, NoInferProcs, NoInferProcs).
segregate_procs_2(ModuleInfo, [proc(PredId, ProcId) | PredProcs],
DeclaredProcs0, DeclaredProcs,
UndeclaredProcs0, UndeclaredProcs,
NoInferProcs0, NoInferProcs) :-
module_info_preds(ModuleInfo, Preds),
map__lookup(Preds, PredId, Pred),
(
(
pred_info_is_imported(Pred)
;
pred_info_is_pseudo_imported(Pred),
hlds_pred__in_in_unification_proc_id(ProcId)
;
pred_info_get_markers(Pred, Markers),
check_marker(Markers, class_method)
)
->
UndeclaredProcs1 = UndeclaredProcs0,
DeclaredProcs1 = DeclaredProcs0,
NoInferProcs1 = [proc(PredId, ProcId) | NoInferProcs0]
;
pred_info_procedures(Pred, Procs),
map__lookup(Procs, ProcId, Proc),
proc_info_declared_determinism(Proc, MaybeDetism),
(
MaybeDetism = no,
UndeclaredProcs1 =
[proc(PredId, ProcId) | UndeclaredProcs0],
DeclaredProcs1 = DeclaredProcs0
;
MaybeDetism = yes(_),
DeclaredProcs1 =
[proc(PredId, ProcId) | DeclaredProcs0],
UndeclaredProcs1 = UndeclaredProcs0
),
NoInferProcs1 = NoInferProcs0
),
segregate_procs_2(ModuleInfo, PredProcs, DeclaredProcs1, DeclaredProcs,
UndeclaredProcs1, UndeclaredProcs,
NoInferProcs1, NoInferProcs).
% We can't infer a tighter determinism for imported procedures or
% for class methods, so set the inferred determinism to be the
% same as the declared determinism. This can't be done easily in
% make_hlds.m since inter-module optimization means that the
% import_status of procedures isn't determined until after all
% items are processed.
:- pred set_non_inferred_proc_determinism(pred_proc_id,
module_info, module_info).
:- mode set_non_inferred_proc_determinism(in, in, out) is det.
set_non_inferred_proc_determinism(proc(PredId, ProcId),
ModuleInfo0, ModuleInfo) :-
module_info_pred_info(ModuleInfo0, PredId, PredInfo0),
pred_info_procedures(PredInfo0, Procs0),
map__lookup(Procs0, ProcId, ProcInfo0),
proc_info_declared_determinism(ProcInfo0, MaybeDet),
( MaybeDet = yes(Det) ->
proc_info_set_inferred_determinism(ProcInfo0, Det, ProcInfo),
map__det_update(Procs0, ProcId, ProcInfo, Procs),
pred_info_set_procedures(PredInfo0, Procs, PredInfo),
module_info_set_pred_info(ModuleInfo0,
PredId, PredInfo, ModuleInfo)
;
ModuleInfo = ModuleInfo0
).
%-----------------------------------------------------------------------------%