mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-20 16:31:04 +00:00
Estimated hours taken: 12
Branches: main
Replace the some() HLDS goal with a more general scope() goal, which can be
used not just for existential quantification but also for other purposes.
The main such purposes are new goal types that allow the programmer
to annotate arbitrary goals, and not just whole procedure bodies, with the
equivalents of promise_pure/promise_semipure and promise_only_solution:
promise_pure ( <impure/semipure goal> )
promise_semipure ( <impure goal> )
promise_equivalent_solutions [OutVar1, OutVar2] (
<cc_multi/cc_nondet goal that computed OutVar1 & OutVar2>
)
Both are intended to be helpful in writing constraint solvers, as well as in
other situations.
doc/reference_manual.texi:
Document the new constructs.
library/ops.m:
Add the keywords of the new constructs to the list of operators.
Since they work similarly to the "some" operator, they have the same
precedence.
compiler/hlds_goal.m:
Replace the some(Vars, SubGoal) HLDS construct, with its optional
keep_this_commit attribute, with the new scope(Reason, SubGoal)
construct. The Reason argument may say that this scope is an
existential quantification, but it can also say that it represents
a purity promise, the introduction of a single-solution context
with promise_equivalent_solutions, or a decision by a compiler pass.
It can also say that the scope represents a set of goals that all arise
from the unraveling of a unification between a variable and a ground
term. This was intended to speed up mode checking by significantly
reducing the number of delays and wakeups, but the cost of the scopes
themselves turned out to be bigger than the gain in modechecking speed.
Update the goal_path_step type to refer to scope goals instead of just
existential quantification.
compiler/prog_data.m:
Add new function symbols to the type we use to represent goals in items
to stand for the new Mercury constructs.
compiler/prog_io_goal.m:
Add code to read in the new language constructs.
compiler/prog_io_util.m:
Add a utility predicate for use by the new code in prog_io_goal.m.
compiler/make_hlds.m:
Convert the item representation of the new constructs to the HLDS
representation.
Document how the from_ground_term scope reason would work, but do not
enable the code.
compiler/purity.m:
When checking the purity of goals, respect the new promise_pure and
promise_semipure scopes. Generate warnings if such scopes are
redundant.
compiler/det_analysis.m:
Make the insides of promise_equivalent_solutions goals single solution
contexts.
compiler/det_report.m:
Provide mechanisms for reporting inappropriate usage of
promise_equivalent_solutions goals.
compiler/instmap.m:
Add a utility predicate for use by one of the modules above.
compiler/deep_profiling.m:
Use one of the new scope reasons to prevent simplify from optimizing
away commits of goals that have been made impure, instead of the old
keep_this_commit goal feature.
compiler/modes.m:
Handle from_ground_term scopes when present; for now, they won't be
present, since make_hlds isn't creating them.
compiler/options.m:
Add two new compiler options, for use by implementors only, to allow
finer control over the amount of output one gets with --debug-modes.
(I used them when debugging the performance of the from_ground_term
scope reason.) The options are --debug-modes-minimal and
--debug-modes-verbose.
compiler/handle_options.m:
Make the options that are meaningful only in the presence of
--debug-modes imply --debug-modes, since this allows more convenient
(shorter) invocations.
compiler/mode_debug.m:
Respect the new options when deciding how much data to print
when debugging of the mode checking process is enabled.
compiler/switch_detect.m:
Rename a predicate to make it differ from another predicate by more
than just its arity.
compiler/passes_aux.m:
Bring this module up to date with our current style guidelines,
by using state variable syntax where appropriate.
compiler/*.m:
Minor changes to conform to the change in the HLDS and/or parse tree
goal type.
mdbcomp/program_representation.m:
Rename the some goal to the scope goal, and the same for path steps,
to keep them in sync with the HLDS.
browser/declarative_tree.m:
Conform to the change in goal representations.
tests/hard_coded/promise_equivalent_solutions_test.{m,exp}:
A new test case to test the handling of the
promise_equivalent_solutions construct.
tests/hard_coded/Mmakefile:
Enable the new test.
tests/hard_coded/purity/promise_pure_test.{m,exp}:
A new test case to test the handling of the promise_pure and
promise_semipure constructs.
tests/hard_coded/purity/Mmakefile:
Enable the new test.
tests/invalid/promise_equivalent_solutions.{m,err_exp}:
A new test case to test the error messages for improper use of the
promise_pure and promise_semipure constructs.
tests/invalid/Mmakefile:
Enable the new test.
838 lines
30 KiB
Mathematica
838 lines
30 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 2001-2005 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
% File: constraint.m
|
|
% Main author: stayl.
|
|
%
|
|
% The constraint propagation transformation attempts to improve
|
|
% the efficiency of a generate-and-test style program by statically
|
|
% scheduling constraints as early as possible, where a "constraint"
|
|
% is any pure goal which has no outputs, can fail and cannot loop.
|
|
%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- module transform_hlds__constraint.
|
|
|
|
:- interface.
|
|
|
|
:- import_module hlds__hlds_goal.
|
|
:- import_module hlds__hlds_pred.
|
|
:- import_module hlds__hlds_module.
|
|
:- import_module hlds__instmap.
|
|
:- import_module parse_tree__prog_data.
|
|
|
|
:- import_module bool.
|
|
|
|
:- type constraint_info.
|
|
|
|
% propagate_constraints_in_goal pushes constraints
|
|
% left and inward within a single goal. Specialized versions of
|
|
% procedures which are called with constrained outputs are created
|
|
% by deforest.m. Goals which deforest.m should try to propagate
|
|
% into calls are annotated with a `constraint' goal feature.
|
|
:- pred propagate_constraints_in_goal(hlds_goal::in,
|
|
hlds_goal::out, constraint_info::in, constraint_info::out) is det.
|
|
|
|
:- pred constraint_info_init(module_info::in, vartypes::in, prog_varset::in,
|
|
instmap::in, constraint_info::out) is det.
|
|
|
|
:- pred constraint_info_deconstruct(constraint_info::in, module_info::out,
|
|
vartypes::out, prog_varset::out, bool::out) is det.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
:- import_module check_hlds__inst_match.
|
|
:- import_module check_hlds__mode_util.
|
|
:- import_module check_hlds__purity.
|
|
:- import_module hlds__goal_form.
|
|
:- import_module hlds__goal_util.
|
|
:- import_module hlds__hlds_data.
|
|
:- import_module hlds__hlds_module.
|
|
:- import_module hlds__hlds_pred.
|
|
:- import_module hlds__passes_aux.
|
|
:- import_module libs__globals.
|
|
:- import_module libs__options.
|
|
|
|
:- import_module assoc_list.
|
|
:- import_module list.
|
|
:- import_module map.
|
|
:- import_module require.
|
|
:- import_module set.
|
|
:- import_module std_util.
|
|
:- import_module string.
|
|
:- import_module term.
|
|
:- import_module varset.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
propagate_constraints_in_goal(Goal0, Goal, !Info) :-
|
|
% We need to strip off any existing constraint markers first.
|
|
% Constraint markers are meant to indicate where a constraint
|
|
% is meant to be attached to a call, and that deforest.m should
|
|
% consider creating a specialized version for the call.
|
|
% If deforest.m rearranges the goal, the constraints may
|
|
% not remain next to the call.
|
|
Goal1 = strip_constraint_markers(Goal0),
|
|
propagate_goal(Goal1, [], Goal, !Info).
|
|
|
|
:- pred propagate_goal(hlds_goal::in, list(constraint)::in,
|
|
hlds_goal::out, constraint_info::in, constraint_info::out) is det.
|
|
|
|
propagate_goal(Goal0, Constraints, Goal, !Info) :-
|
|
% We need to treat all single goals as conjunctions so that
|
|
% propagate_conj can move the constraints to the left of the goal
|
|
% if that is allowed.
|
|
Goal0 = _ - GoalInfo0,
|
|
goal_info_get_features(GoalInfo0, Features0),
|
|
goal_info_get_context(GoalInfo0, Context),
|
|
goal_to_conj_list(Goal0, Goals0),
|
|
propagate_conj(Goals0, Constraints, Goals, !Info),
|
|
goal_list_nonlocals(Goals, NonLocals),
|
|
goal_list_instmap_delta(Goals, Delta),
|
|
goal_list_determinism(Goals, ConjDetism),
|
|
goal_list_purity(Goals, Purity),
|
|
goal_info_init(NonLocals, Delta, ConjDetism, pure, Context, GoalInfo1),
|
|
goal_info_set_features(GoalInfo1, Features0, GoalInfo2),
|
|
add_goal_info_purity_feature(GoalInfo2, Purity, GoalInfo),
|
|
conj_list_to_goal(Goals, GoalInfo, Goal).
|
|
|
|
:- pred propagate_conj_sub_goal(hlds_goal::in,
|
|
list(constraint)::in, hlds_goals::out,
|
|
constraint_info::in, constraint_info::out) is det.
|
|
|
|
propagate_conj_sub_goal(Goal0, Constraints, Goals, !Info) :-
|
|
Goal0 = GoalExpr0 - _,
|
|
( goal_is_atomic(GoalExpr0) ->
|
|
true
|
|
;
|
|
% If a non-empty list of constraints is pushed into a sub-goal,
|
|
% quantification, instmap_deltas and determinism need to be
|
|
% recomputed.
|
|
constraint_info_update_changed(Constraints, !Info)
|
|
),
|
|
InstMap0 = !.Info ^ instmap,
|
|
propagate_conj_sub_goal_2(Goal0, Constraints, Goals, !Info),
|
|
!:Info = !.Info ^ instmap := InstMap0.
|
|
|
|
:- pred propagate_conj_sub_goal_2(hlds_goal::in, list(constraint)::in,
|
|
list(hlds_goal)::out, constraint_info::in, constraint_info::out)
|
|
is det.
|
|
|
|
propagate_conj_sub_goal_2(conj(Goals0) - Info, Constraints,
|
|
[conj(Goals) - Info], !Info) :-
|
|
propagate_conj(Goals0, Constraints, Goals, !Info).
|
|
|
|
propagate_conj_sub_goal_2(disj(Goals0) - Info, Constraints,
|
|
[disj(Goals) - Info], !Info) :-
|
|
propagate_disj(Goals0, Constraints, Goals, !Info).
|
|
|
|
propagate_conj_sub_goal_2(switch(Var, CanFail, Cases0) - Info,
|
|
Constraints, [switch(Var, CanFail, Cases) - Info], !Info) :-
|
|
propagate_cases(Var, Constraints, Cases0, Cases, !Info).
|
|
|
|
propagate_conj_sub_goal_2(
|
|
if_then_else(Vars, Cond0, Then0, Else0) - Info,
|
|
Constraints,
|
|
[if_then_else(Vars, Cond, Then, Else) - Info], !Info) :-
|
|
InstMap0 = !.Info ^ instmap,
|
|
|
|
% We can't safely propagate constraints into
|
|
% the condition of an if-then-else, because that
|
|
% would change the answers generated by the procedure.
|
|
propagate_goal(Cond0, [], Cond, !Info),
|
|
constraint_info_update_goal(Cond, !Info),
|
|
propagate_goal(Then0, Constraints, Then, !Info),
|
|
!:Info = !.Info ^ instmap := InstMap0,
|
|
propagate_goal(Else0, Constraints, Else, !Info).
|
|
|
|
% XXX propagate constraints into par_conjs -- this isn't
|
|
% possible at the moment because par_conj goals must have
|
|
% determinism det.
|
|
propagate_conj_sub_goal_2(par_conj(Goals0) - GoalInfo,
|
|
Constraints0,
|
|
[par_conj(Goals) - GoalInfo | Constraints], !Info) :-
|
|
% Propagate constraints within the goals of the conjunction.
|
|
% propagate_disj treats its list of goals as
|
|
% independent rather than specifically disjoint, so we can
|
|
% use it to process a list of independent parallel conjuncts.
|
|
propagate_disj(Goals0, [], Goals, !Info),
|
|
flatten_constraints(Constraints0, Constraints).
|
|
|
|
propagate_conj_sub_goal_2(scope(Reason, Goal0) - GoalInfo, Constraints,
|
|
[scope(Reason, Goal) - GoalInfo], !Info) :-
|
|
propagate_goal(Goal0, Constraints, Goal, !Info).
|
|
|
|
propagate_conj_sub_goal_2(not(NegGoal0) - GoalInfo, Constraints0,
|
|
[not(NegGoal) - GoalInfo | Constraints], !Info) :-
|
|
% We can't safely propagate constraints into a negation,
|
|
% because that would change the answers computed by the
|
|
% procedure.
|
|
propagate_goal(NegGoal0, [], NegGoal, !Info),
|
|
flatten_constraints(Constraints0, Constraints).
|
|
|
|
propagate_conj_sub_goal_2(Goal, Constraints0,
|
|
[Goal | Constraints], !Info) :-
|
|
% propagate_conj will move the constraints
|
|
% to the left of the call if that is possible, so nothing
|
|
% needs to be done here.
|
|
Goal = call(_, _, _, _, _, _) - _,
|
|
flatten_constraints(Constraints0, Constraints).
|
|
|
|
propagate_conj_sub_goal_2(Goal, Constraints0,
|
|
[Goal | Constraints], !Info) :-
|
|
Goal = generic_call(_, _, _, _) - _,
|
|
flatten_constraints(Constraints0, Constraints).
|
|
|
|
propagate_conj_sub_goal_2(Goal, Constraints0,
|
|
[Goal | Constraints], !Info) :-
|
|
Goal = foreign_proc(_, _, _, _, _, _) - _,
|
|
flatten_constraints(Constraints0, Constraints).
|
|
|
|
propagate_conj_sub_goal_2(Goal, _, _, !Info) :-
|
|
Goal = shorthand(_) - _,
|
|
error("propagate_conj_sub_goal_2: shorthand").
|
|
|
|
propagate_conj_sub_goal_2(Goal, Constraints0,
|
|
[Goal | Constraints], !Info) :-
|
|
Goal = unify(_, _, _, _, _) - _,
|
|
flatten_constraints(Constraints0, Constraints).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Put the constant constructions in front of the constraint.
|
|
:- pred flatten_constraints(list(constraint)::in,
|
|
list(hlds_goal)::out) is det.
|
|
|
|
flatten_constraints(Constraints0, Goals) :-
|
|
list__map((pred(Constraint::in, Lists::out) is det :-
|
|
Constraint = constraint(Goal, _, _, Constructs),
|
|
Lists = [Constructs, [Goal]]
|
|
), Constraints0, GoalLists0),
|
|
list__condense(GoalLists0, GoalLists),
|
|
list__condense(GoalLists, Goals).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred propagate_disj(list(hlds_goal)::in, list(constraint)::in,
|
|
list(hlds_goal)::out, constraint_info::in, constraint_info::out)
|
|
is det.
|
|
|
|
propagate_disj([], _, [], !Info).
|
|
propagate_disj([Goal0 | Goals0], Constraints, [Goal | Goals], !Info) :-
|
|
InstMap0 = !.Info ^ instmap,
|
|
propagate_goal(Goal0, Constraints, Goal, !Info),
|
|
!:Info = !.Info ^ instmap := InstMap0,
|
|
propagate_disj(Goals0, Constraints, Goals, !Info).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred propagate_cases(prog_var::in, list(constraint)::in,
|
|
list(case)::in, list(case)::out,
|
|
constraint_info::in, constraint_info::out) is det.
|
|
|
|
propagate_cases(_, _, [], [], !Info).
|
|
propagate_cases(Var, Constraints, [case(ConsId, Goal0) | Cases0],
|
|
[case(ConsId, Goal) | Cases], !Info) :-
|
|
InstMap0 = !.Info ^ instmap,
|
|
constraint_info_bind_var_to_functor(Var, ConsId, !Info),
|
|
propagate_goal(Goal0, Constraints, Goal, !Info),
|
|
!:Info = !.Info ^ instmap := InstMap0,
|
|
propagate_cases(Var, Constraints, Cases0, Cases, !Info).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% propagate_conj detects the constraints in
|
|
% a conjunction and moves them to as early as possible
|
|
% in the list. Some effort is made to keep the constraints
|
|
% in the same order as they are encountered to increase
|
|
% the likelihood of folding recursive calls.
|
|
:- pred propagate_conj(list(hlds_goal)::in, list(constraint)::in,
|
|
list(hlds_goal)::out, constraint_info::in, constraint_info::out)
|
|
is det.
|
|
|
|
propagate_conj(Goals0, Constraints, Goals, !Info) :-
|
|
constraint_info_update_changed(Constraints, !Info),
|
|
( Goals0 = [] ->
|
|
flatten_constraints(Constraints, Goals)
|
|
; Goals0 = [Goal0], Constraints = [] ->
|
|
propagate_conj_sub_goal(Goal0, [], Goals, !Info)
|
|
;
|
|
InstMap0 = !.Info ^ instmap,
|
|
ModuleInfo = !.Info ^ module_info,
|
|
VarTypes = !.Info ^ vartypes,
|
|
annotate_conj_output_vars(Goals0, ModuleInfo,
|
|
VarTypes, InstMap0, [], RevGoals1),
|
|
annotate_conj_constraints(ModuleInfo, RevGoals1,
|
|
Constraints, [], Goals2, !Info),
|
|
propagate_conj_constraints(Goals2, [], Goals, !Info)
|
|
).
|
|
|
|
% Annotate each conjunct with the variables it produces.
|
|
:- pred annotate_conj_output_vars(list(hlds_goal)::in, module_info::in,
|
|
vartypes::in, instmap::in, annotated_conj::in, annotated_conj::out)
|
|
is det.
|
|
|
|
annotate_conj_output_vars([], _, _, _, !RevGoals).
|
|
annotate_conj_output_vars([Goal | Goals], ModuleInfo, VarTypes, InstMap0,
|
|
!RevGoals) :-
|
|
Goal = _ - GoalInfo,
|
|
goal_info_get_instmap_delta(GoalInfo, InstMapDelta),
|
|
|
|
instmap__apply_instmap_delta(InstMap0, InstMapDelta, InstMap),
|
|
instmap_changed_vars(InstMap0, InstMap, VarTypes,
|
|
ModuleInfo, ChangedVars0),
|
|
|
|
instmap__vars_list(InstMap, InstMapVars),
|
|
|
|
% Restrict the set of changed variables down to the set
|
|
% for which the new inst is not an acceptable subsitute
|
|
% for the old. This is done to allow reordering of a goal which
|
|
% uses a variable with inst `ground(shared, no)' with
|
|
% a constraint which just adds information, changing the inst
|
|
% to `bound(shared, ...)'.
|
|
InCompatible = (pred(Var::in) is semidet :-
|
|
instmap__lookup_var(InstMap0, Var, InstBefore),
|
|
instmap_delta_search_var(InstMapDelta, Var, InstAfter),
|
|
\+ inst_matches_initial(InstAfter, InstBefore,
|
|
map__lookup(VarTypes, Var), ModuleInfo)
|
|
),
|
|
IncompatibleInstVars = set__list_to_set(
|
|
list__filter(InCompatible, InstMapVars)),
|
|
|
|
%
|
|
% This will consider variables with inst `any' to be bound by
|
|
% the goal, so goals which have non-locals with inst `any' will
|
|
% not be considered to be constraints. XXX This is too conservative.
|
|
%
|
|
Bound = (pred(Var::in) is semidet :-
|
|
instmap__lookup_var(InstMap0, Var, InstBefore),
|
|
instmap_delta_search_var(InstMapDelta, Var, InstAfter),
|
|
\+ inst_matches_binding(InstAfter, InstBefore,
|
|
map__lookup(VarTypes, Var), ModuleInfo)
|
|
),
|
|
BoundVars = set__list_to_set(list__filter(Bound, InstMapVars)),
|
|
|
|
%
|
|
% Make sure that variables with inst `any' are placed in
|
|
% the changed vars set. XXX This is too conservative, but
|
|
% avoids unexpected reorderings.
|
|
%
|
|
set__union(ChangedVars0, BoundVars, ChangedVars),
|
|
|
|
AnnotatedConjunct = annotated_conjunct(Goal, ChangedVars, BoundVars,
|
|
IncompatibleInstVars),
|
|
annotate_conj_output_vars(Goals, ModuleInfo, VarTypes,
|
|
InstMap, [AnnotatedConjunct | !.RevGoals], !:RevGoals).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Conjunction annotated with the variables each conjunct
|
|
% changes the instantiatedness of.
|
|
:- type annotated_conj == list(annotated_conjunct).
|
|
|
|
:- type annotated_conjunct
|
|
---> annotated_conjunct(
|
|
hlds_goal,
|
|
|
|
% All variables returned by instmap_changed_vars.
|
|
set(prog_var),
|
|
|
|
% All variables returned by instmap_changed_vars for
|
|
% which inst_matches_binding(NewInst, OldInst) fails.
|
|
set(prog_var),
|
|
|
|
% Variables returned by instmap_changed_vars
|
|
% for which the new inst cannot be substituted
|
|
% for the old as an input to a goal
|
|
% (inst_matches_initial(NewInst, OldInst) fails).
|
|
set(prog_var)
|
|
).
|
|
|
|
% A constraint is a goal with no outputs which can fail and
|
|
% always terminates.
|
|
:- type constraint
|
|
---> constraint(
|
|
% The constraint itself.
|
|
hlds_goal,
|
|
|
|
% All variables returned by instmap_changed_vars.
|
|
set(prog_var),
|
|
|
|
% Variables returned by instmap_changed_vars
|
|
% for which the new inst cannot be substituted
|
|
% for the old as an input to a goal
|
|
% (inst_matches_initial(NewInst, OldInst) fails).
|
|
set(prog_var),
|
|
|
|
% Goals to construct constants used by the constraint.
|
|
% (as in X = 2, Y < X). These need to be propagated
|
|
% with the constraint.
|
|
list(hlds_goal)
|
|
).
|
|
|
|
% Conjunction annotated with constraining goals.
|
|
:- type constrained_conj == assoc_list(hlds_goal, list(constraint)).
|
|
|
|
% Pass backwards over the conjunction, annotating each conjunct
|
|
% with the constraints that should be pushed into it.
|
|
:- pred annotate_conj_constraints(module_info::in, annotated_conj::in,
|
|
list(constraint)::in, constrained_conj::in, constrained_conj::out,
|
|
constraint_info::in, constraint_info::out) is det.
|
|
|
|
annotate_conj_constraints(_, [], Constraints0, Goals0, Goals, !Info) :-
|
|
flatten_constraints(Constraints0, Constraints1),
|
|
list__map((pred(Goal::in, CnstrGoal::out) is det :-
|
|
CnstrGoal = Goal - []
|
|
), Constraints1, Constraints),
|
|
list__append(Constraints, Goals0, Goals).
|
|
annotate_conj_constraints(ModuleInfo,
|
|
[Conjunct | RevConjuncts0],
|
|
Constraints0, Goals0, Goals, !Info) :-
|
|
Conjunct = annotated_conjunct(Goal, ChangedVars, OutputVars,
|
|
IncompatibleInstVars),
|
|
Goal = GoalExpr - GoalInfo,
|
|
goal_info_get_nonlocals(GoalInfo, NonLocals),
|
|
(
|
|
% Propagate goals with no output variables which can fail.
|
|
% Propagating cc_nondet goals would be tricky, because we
|
|
% would need to be careful about reordering the constraints
|
|
% (the cc_nondet goal can't be moved before any goals
|
|
% which can fail).
|
|
%
|
|
goal_info_get_determinism(GoalInfo, Detism),
|
|
( Detism = semidet
|
|
; Detism = failure
|
|
),
|
|
|
|
%
|
|
% XXX This is probably a bit too conservative. For
|
|
% example, `any->any' moded non-locals are considered
|
|
% to be outputs.
|
|
%
|
|
set__empty(OutputVars),
|
|
|
|
% Don't propagate impure goals.
|
|
goal_info_is_pure(GoalInfo),
|
|
|
|
% Don't propagate goals that can loop.
|
|
goal_cannot_loop_or_throw(ModuleInfo, Goal)
|
|
->
|
|
% It's a constraint, add it to the list of constraints
|
|
% to be attached to goals earlier in the conjunction.
|
|
Goals1 = Goals0,
|
|
Constraint = constraint(GoalExpr - GoalInfo, ChangedVars,
|
|
IncompatibleInstVars, []),
|
|
Constraints1 = [Constraint | Constraints0]
|
|
;
|
|
%
|
|
% Look for a simple goal which some constraint depends
|
|
% on which can be propagated backwards. This handles
|
|
% cases like X = 2, Y < X. This should only be done for
|
|
% goals which result in no execution at runtime, such
|
|
% as construction of static constants. Currently we only
|
|
% allow constructions of zero arity constants.
|
|
%
|
|
% Make a renamed copy of the goal, renaming within
|
|
% the constraint as well, so that a copy of the constant
|
|
% doesn't need to be kept on the stack.
|
|
%
|
|
Goal = unify(_, _, _, Unify, _) - _,
|
|
Unify = construct(ConstructVar, _, [], _, _, _, _)
|
|
->
|
|
Goals1 = [Goal - [] | Goals0],
|
|
add_constant_construction(ConstructVar, Goal,
|
|
Constraints0, Constraints1, !Info),
|
|
|
|
% If the constraint was the only use of the constant,
|
|
% the old goal can be removed. We need to rerun
|
|
% quantification to work that out.
|
|
!:Info = !.Info ^ changed := yes
|
|
;
|
|
% Prune away the constraints after a goal
|
|
% which cannot succeed -- they can never be
|
|
% executed.
|
|
goal_info_get_determinism(GoalInfo, Detism),
|
|
determinism_components(Detism, _, at_most_zero)
|
|
->
|
|
constraint_info_update_changed(Constraints0, !Info),
|
|
Constraints1 = [],
|
|
Goals1 = [Goal - [] | Goals0]
|
|
;
|
|
% Don't propagate constraints into or past impure goals.
|
|
Goal = _ - GoalInfo,
|
|
goal_info_is_impure(GoalInfo)
|
|
->
|
|
Constraints1 = [],
|
|
flatten_constraints(Constraints0,
|
|
ConstraintGoals),
|
|
list__map(add_empty_constraints, [Goal | ConstraintGoals],
|
|
GoalsAndConstraints),
|
|
list__append(GoalsAndConstraints, Goals0, Goals1)
|
|
;
|
|
% Don't move goals which can fail before a goal which
|
|
% can loop if `--fully-strict' is set.
|
|
\+ goal_cannot_loop_or_throw(ModuleInfo, Goal),
|
|
module_info_globals(ModuleInfo, Globals),
|
|
globals__lookup_bool_option(Globals, fully_strict, yes)
|
|
->
|
|
filter_dependent_constraints(NonLocals,
|
|
ChangedVars, Constraints0, DependentConstraints,
|
|
IndependentConstraints),
|
|
flatten_constraints(IndependentConstraints,
|
|
IndependentConstraintGoals),
|
|
list__map(add_empty_constraints, IndependentConstraintGoals,
|
|
GoalsAndConstraints),
|
|
Goals1 = [attach_constraints(Goal, DependentConstraints)
|
|
| GoalsAndConstraints] ++ Goals0,
|
|
Constraints1 = []
|
|
;
|
|
filter_dependent_constraints(NonLocals,
|
|
OutputVars, Constraints0, DependentConstraints,
|
|
IndependentConstraints),
|
|
Constraints1 = IndependentConstraints,
|
|
Goals1 = [attach_constraints(Goal, DependentConstraints)
|
|
| Goals0]
|
|
),
|
|
annotate_conj_constraints(ModuleInfo, RevConjuncts0,
|
|
Constraints1, Goals1, Goals, !Info).
|
|
|
|
:- pred add_empty_constraints(hlds_goal::in,
|
|
pair(hlds_goal, list(constraint))::out) is det.
|
|
|
|
add_empty_constraints(Goal, Goal - []).
|
|
|
|
:- func attach_constraints(hlds_goal, list(constraint)) =
|
|
pair(hlds_goal, list(constraint)).
|
|
|
|
attach_constraints(Goal, Constraints0) = Goal - Constraints :-
|
|
( Goal = call(_, _, _, _, _, _) - _ ->
|
|
Constraints = list__map(
|
|
(func(constraint(Goal0, B, C, Constructs0)) =
|
|
constraint(add_constraint_feature(Goal0), B, C,
|
|
list__map(add_constraint_feature, Constructs0))
|
|
), Constraints0)
|
|
;
|
|
Constraints = Constraints0
|
|
).
|
|
|
|
:- func add_constraint_feature(hlds_goal) = hlds_goal.
|
|
|
|
add_constraint_feature(Goal - GoalInfo0) = Goal - GoalInfo :-
|
|
goal_info_add_feature(GoalInfo0, constraint, GoalInfo).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
|
|
:- pred add_constant_construction(prog_var::in, hlds_goal::in,
|
|
list(constraint)::in, list(constraint)::out,
|
|
constraint_info::in, constraint_info::out) is det.
|
|
|
|
add_constant_construction(_, _, [], [], !Info).
|
|
add_constant_construction(ConstructVar, Construct0,
|
|
[Constraint0 | Constraints0],
|
|
[Constraint | Constraints], !Info) :-
|
|
Constraint0 = constraint(ConstraintGoal0, ChangedVars,
|
|
IncompatibleInstVars, Constructs0),
|
|
(
|
|
ConstraintGoal0 = _ - ConstraintInfo,
|
|
goal_info_get_nonlocals(ConstraintInfo,
|
|
ConstraintNonLocals),
|
|
set__member(ConstructVar, ConstraintNonLocals)
|
|
->
|
|
VarSet0 = !.Info ^ varset,
|
|
VarTypes0 = !.Info ^ vartypes,
|
|
varset__new_var(VarSet0, NewVar, VarSet),
|
|
map__lookup(VarTypes0, ConstructVar, VarType),
|
|
map__det_insert(VarTypes0, NewVar, VarType, VarTypes),
|
|
!:Info = !.Info ^ varset := VarSet,
|
|
!:Info = !.Info ^ vartypes := VarTypes,
|
|
map__from_assoc_list([ConstructVar - NewVar], Subn),
|
|
goal_util__rename_vars_in_goal(Construct0, Subn, Construct),
|
|
Constructs = [Construct | Constructs0],
|
|
goal_util__rename_vars_in_goal(ConstraintGoal0, Subn,
|
|
ConstraintGoal),
|
|
Constraint = constraint(ConstraintGoal, ChangedVars,
|
|
IncompatibleInstVars, Constructs)
|
|
;
|
|
Constraint = Constraint0
|
|
),
|
|
add_constant_construction(ConstructVar, Construct0,
|
|
Constraints0, Constraints, !Info).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% constraints__filter_dependent_constraints(GoalNonLocals,
|
|
% GoalOutputVars, Constraints, DependentConstraints,
|
|
% IndependentConstraints)
|
|
%
|
|
% Find all constraints which depend on the output variables
|
|
% of the current goal in the conjunction being processed.
|
|
% The DependentConstraints should be pushed into the current goal.
|
|
% The IndependentConstraints should be moved to the left of
|
|
% the current goal, if the purity and termination properties
|
|
% of the current goal allow that.
|
|
:- pred filter_dependent_constraints(set(prog_var)::in, set(prog_var)::in,
|
|
list(constraint)::in, list(constraint)::out, list(constraint)::out)
|
|
is det.
|
|
|
|
filter_dependent_constraints(NonLocals, GoalOutputVars, Constraints,
|
|
Dependent, Independent) :-
|
|
filter_dependent_constraints(NonLocals, GoalOutputVars, Constraints,
|
|
[], RevDependent, [], RevIndependent),
|
|
list__reverse(RevDependent, Dependent),
|
|
list__reverse(RevIndependent, Independent).
|
|
|
|
:- pred filter_dependent_constraints(set(prog_var)::in, set(prog_var)::in,
|
|
list(constraint)::in,
|
|
list(constraint)::in, list(constraint)::out,
|
|
list(constraint)::in, list(constraint)::out) is det.
|
|
|
|
filter_dependent_constraints(_NonLocals, _OutputVars, [],
|
|
!RevDependent, !RevIndependent).
|
|
filter_dependent_constraints(NonLocals, GoalOutputVars,
|
|
[Constraint | Constraints], !RevDependent, !RevIndependent) :-
|
|
Constraint = constraint(ConstraintGoal, _, IncompatibleInstVars, _),
|
|
ConstraintGoal = _ - ConstraintGoalInfo,
|
|
goal_info_get_nonlocals(ConstraintGoalInfo, ConstraintNonLocals),
|
|
|
|
(
|
|
(
|
|
%
|
|
% A constraint is not independent of a goal
|
|
% if it uses any of the output variables
|
|
% of that goal.
|
|
%
|
|
set__intersect(ConstraintNonLocals, GoalOutputVars,
|
|
OutputVarsUsedByConstraint),
|
|
\+ set__empty(OutputVarsUsedByConstraint)
|
|
;
|
|
%
|
|
% A constraint is not independent of a goal
|
|
% if it changes the inst of a non-local of the goal
|
|
% in such a way that the new inst is incompatible
|
|
% with the old inst (e.g. by losing uniqueness),
|
|
%
|
|
set__intersect(NonLocals, IncompatibleInstVars,
|
|
IncompatibleInstVarsUsedByGoal),
|
|
\+ set__empty(IncompatibleInstVarsUsedByGoal)
|
|
;
|
|
%
|
|
% A constraint is not independent of a goal if
|
|
% it uses any variables whose instantiatedness is
|
|
% changed by any the of the constraints already
|
|
% attached to the goal (the dependent constraints
|
|
% will be attached to the goal to be pushed into
|
|
% it by propagate_conj_sub_goal).
|
|
%
|
|
list__member(EarlierConstraint, !.RevDependent),
|
|
\+ can_reorder_constraints(EarlierConstraint,
|
|
Constraint)
|
|
)
|
|
->
|
|
!:RevDependent = [Constraint | !.RevDependent]
|
|
;
|
|
!:RevIndependent = [Constraint | !.RevIndependent]
|
|
),
|
|
filter_dependent_constraints(NonLocals, GoalOutputVars, Constraints,
|
|
!RevDependent, !RevIndependent).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred can_reorder_constraints(constraint::in, constraint::in) is semidet.
|
|
|
|
can_reorder_constraints(EarlierConstraint, Constraint) :-
|
|
EarlierConstraint = constraint(_, EarlierChangedVars, _, _),
|
|
Constraint = constraint(ConstraintGoal, _, _, _),
|
|
ConstraintGoal = _ - ConstraintGoalInfo,
|
|
goal_info_get_nonlocals(ConstraintGoalInfo, ConstraintNonLocals),
|
|
set__intersect(EarlierChangedVars, ConstraintNonLocals,
|
|
EarlierConstraintIntersection),
|
|
set__empty(EarlierConstraintIntersection).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Push the constraints into each conjunct.
|
|
:- pred propagate_conj_constraints(constrained_conj::in,
|
|
list(hlds_goal)::in, list(hlds_goal)::out,
|
|
constraint_info::in, constraint_info::out) is det.
|
|
|
|
propagate_conj_constraints([], RevGoals, Goals, !Info) :-
|
|
list__reverse(RevGoals, Goals).
|
|
propagate_conj_constraints([Goal0 - Constraints0 | Goals0],
|
|
RevGoals0, RevGoals, !Info) :-
|
|
filter_complex_constraints(Constraints0,
|
|
SimpleConstraints, ComplexConstraints0),
|
|
propagate_conj_sub_goal(Goal0, SimpleConstraints, GoalList1, !Info),
|
|
flatten_constraints(ComplexConstraints0, ComplexConstraints),
|
|
list__reverse(ComplexConstraints, RevComplexConstraints),
|
|
list__reverse(GoalList1, RevGoalList1),
|
|
list__condense([RevComplexConstraints, RevGoalList1, RevGoals0],
|
|
RevGoals1),
|
|
constraint_info_update_goal(Goal0, !Info),
|
|
propagate_conj_constraints(Goals0, RevGoals1, RevGoals, !Info).
|
|
|
|
:- pred filter_complex_constraints(list(constraint)::in,
|
|
list(constraint)::out, list(constraint)::out) is det.
|
|
|
|
filter_complex_constraints(Constraints,
|
|
SimpleConstraints, ComplexConstraints) :-
|
|
filter_complex_constraints(Constraints,
|
|
[], RevSimpleConstraints, [], RevComplexConstraints),
|
|
SimpleConstraints = list__reverse(RevSimpleConstraints),
|
|
ComplexConstraints = list__reverse(RevComplexConstraints).
|
|
|
|
% Don't attempt to push branched goals into other goals.
|
|
:- pred filter_complex_constraints(list(constraint)::in,
|
|
list(constraint)::in, list(constraint)::out,
|
|
list(constraint)::in, list(constraint)::out) is det.
|
|
|
|
filter_complex_constraints([], !RevSimpleConstraints, !RevComplexConstraints).
|
|
filter_complex_constraints([Constraint | Constraints],
|
|
!RevSimpleConstraints, !RevComplexConstraints) :-
|
|
Constraint = constraint(ConstraintGoal, _, _, _),
|
|
(
|
|
goal_is_simple(ConstraintGoal),
|
|
|
|
%
|
|
% Check whether this simple constraint can be reordered
|
|
% with the complex constraints we've already found.
|
|
%
|
|
\+ (
|
|
list__member(ComplexConstraint,
|
|
!.RevComplexConstraints),
|
|
\+ can_reorder_constraints(ComplexConstraint,
|
|
Constraint)
|
|
)
|
|
->
|
|
!:RevSimpleConstraints =
|
|
[Constraint | !.RevSimpleConstraints]
|
|
;
|
|
!:RevComplexConstraints =
|
|
[Constraint | !.RevComplexConstraints]
|
|
),
|
|
filter_complex_constraints(Constraints, !RevSimpleConstraints,
|
|
!RevComplexConstraints).
|
|
|
|
:- pred goal_is_simple(hlds_goal::in) is semidet.
|
|
|
|
goal_is_simple(Goal) :-
|
|
Goal = GoalExpr - _,
|
|
(
|
|
goal_is_atomic(GoalExpr)
|
|
;
|
|
( GoalExpr = scope(_, SubGoal)
|
|
; GoalExpr = not(SubGoal)
|
|
),
|
|
goal_is_simple(SubGoal)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- type constraint_info
|
|
---> constraint_info(
|
|
module_info :: module_info,
|
|
vartypes :: vartypes,
|
|
varset :: prog_varset,
|
|
instmap :: instmap,
|
|
changed :: bool % has anything changed.
|
|
).
|
|
|
|
constraint_info_init(ModuleInfo, VarTypes, VarSet, InstMap, ConstraintInfo) :-
|
|
ConstraintInfo = constraint_info(ModuleInfo, VarTypes, VarSet,
|
|
InstMap, no).
|
|
|
|
constraint_info_deconstruct(ConstraintInfo, ModuleInfo,
|
|
VarTypes, VarSet, Changed) :-
|
|
ConstraintInfo = constraint_info(ModuleInfo, VarTypes, VarSet,
|
|
_, Changed).
|
|
|
|
:- pred constraint_info_update_goal(hlds_goal::in,
|
|
constraint_info::in, constraint_info::out) is det.
|
|
|
|
constraint_info_update_goal(_ - GoalInfo, !Info) :-
|
|
InstMap0 = !.Info ^ instmap,
|
|
goal_info_get_instmap_delta(GoalInfo, InstMapDelta),
|
|
instmap__apply_instmap_delta(InstMap0, InstMapDelta, InstMap),
|
|
!:Info = !.Info ^ instmap := InstMap.
|
|
|
|
:- pred constraint_info_bind_var_to_functor(prog_var::in, cons_id::in,
|
|
constraint_info::in, constraint_info::out) is det.
|
|
|
|
constraint_info_bind_var_to_functor(Var, ConsId, !Info) :-
|
|
InstMap0 = !.Info ^ instmap,
|
|
ModuleInfo0 = !.Info ^ module_info,
|
|
VarTypes = !.Info ^ vartypes,
|
|
map__lookup(VarTypes, Var, Type),
|
|
instmap__bind_var_to_functor(Var, Type, ConsId, InstMap0, InstMap,
|
|
ModuleInfo0, ModuleInfo),
|
|
!:Info = !.Info ^ instmap := InstMap,
|
|
!:Info = !.Info ^ module_info := ModuleInfo.
|
|
|
|
% If a non-empty list of constraints is pushed into a sub-goal,
|
|
% quantification, instmap_deltas and determinism need to be
|
|
% recomputed.
|
|
:- pred constraint_info_update_changed(list(constraint)::in,
|
|
constraint_info::in, constraint_info::out) is det.
|
|
|
|
constraint_info_update_changed(Constraints, !Info) :-
|
|
( Constraints = [] ->
|
|
true
|
|
;
|
|
!:Info = !.Info ^ changed := yes
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Remove all `constraint' goal features from the goal_infos
|
|
% of all sub-goals of the given goal.
|
|
:- func strip_constraint_markers(hlds_goal) = hlds_goal.
|
|
|
|
strip_constraint_markers(Goal - GoalInfo0) =
|
|
strip_constraint_markers_expr(Goal) - GoalInfo :-
|
|
( goal_info_has_feature(GoalInfo0, constraint) ->
|
|
goal_info_remove_feature(GoalInfo0, constraint, GoalInfo)
|
|
;
|
|
GoalInfo = GoalInfo0
|
|
).
|
|
|
|
:- func strip_constraint_markers_expr(hlds_goal_expr) = hlds_goal_expr.
|
|
|
|
strip_constraint_markers_expr(conj(Goals)) =
|
|
conj(list__map(strip_constraint_markers, Goals)).
|
|
strip_constraint_markers_expr(disj(Goals)) =
|
|
disj(list__map(strip_constraint_markers, Goals)).
|
|
strip_constraint_markers_expr(switch(Var, CanFail, Cases0)) =
|
|
switch(Var, CanFail, Cases) :-
|
|
Cases = list__map(
|
|
(func(case(ConsId, Goal)) =
|
|
case(ConsId, strip_constraint_markers(Goal))
|
|
), Cases0).
|
|
strip_constraint_markers_expr(not(Goal)) =
|
|
not(strip_constraint_markers(Goal)).
|
|
strip_constraint_markers_expr(scope(Reason, Goal)) =
|
|
scope(Reason, strip_constraint_markers(Goal)).
|
|
strip_constraint_markers_expr(if_then_else(Vars, If, Then, Else)) =
|
|
if_then_else(Vars, strip_constraint_markers(If),
|
|
strip_constraint_markers(Then),
|
|
strip_constraint_markers(Else)).
|
|
strip_constraint_markers_expr(par_conj(Goals)) =
|
|
par_conj(list__map(strip_constraint_markers, Goals)).
|
|
strip_constraint_markers_expr(Goal) = Goal :-
|
|
Goal = foreign_proc(_, _, _, _, _, _).
|
|
strip_constraint_markers_expr(Goal) = Goal :-
|
|
Goal = generic_call(_, _, _, _).
|
|
strip_constraint_markers_expr(Goal) = Goal :-
|
|
Goal = call(_, _, _, _, _, _).
|
|
strip_constraint_markers_expr(Goal) = Goal :-
|
|
Goal = unify(_, _, _, _, _).
|
|
strip_constraint_markers_expr(Goal) = Goal :-
|
|
Goal = shorthand(_).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|