Files
mercury/compiler/builtin_ops.m
Peter Wang 59d2d4a573 This adds a module mdbcomp__trace_counts that reads in the
Estimated hours taken: 17
Branches: main

This adds a module mdbcomp__trace_counts that reads in the
.mercury_trace_counts files produced by the compiler's trace mechanism.
The format of said files was slightly changed.

As the new module is to be used by the compiler and the debugger, it is
placed in the mdbcomp module.  This required bringing some types from the
compiler into a new module within mdbcomp.

browser/trace_counts.m:
	New module for reading execution trace summaries.

browser/prim_data.m:
	New module holding types and predicates moved in from the compiler.
	Types:
		pred_or_func, sym_name, module_name, proc_label,
		special_pred_id, trace_port
	Predicates:
		string_to_sym_name, insert_module_qualifier

	The mode field of proc_label is now an int instead of a proc_id
	to avoid pulling proc_id into mdbcomp.

browser/mdbcomp.m:
	Add trace_counts and prim_data to the mdbcomp module.

browser/declarative_execution.m:
	Renamed mdb's definition of module_name to flat_module_name
	to avoid conflicts with the definition in mdbcomp__prim_data.

runtime/mercury_trace_base.c:
	In the format of .mercury_trace_counts, write module and predicate
	names now use quoted atom syntax so that names with spaces and
	non-printable characters can be machine-parsed.

browser/:
compiler/:
	Many changes to account for movement of types, and the change to
	proc_label.
2005-01-19 03:11:22 +00:00

249 lines
8.6 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1999-2001, 2003-2005 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% builtin_ops.m -- defines the builtin operator types.
% Main author: fjh.
%
% This module defines various types which enumerate the different builtin
% operators. Several of the different back-ends -- the bytecode back-end,
% the LLDS, and the MLDS -- all use the same set of builtin operators.
% These operators are defined here.
%-----------------------------------------------------------------------------%
:- module backend_libs__builtin_ops.
:- interface.
:- import_module hlds__hlds_pred.
:- import_module mdbcomp__prim_data.
:- import_module list.
:- type unary_op
---> mktag
; tag
; unmktag
; strip_tag
; mkbody
; unmkbody
; hash_string
; bitwise_complement
; (not).
:- type binary_op
---> (+) % integer arithmetic
; (-)
; (*)
; (/) % integer division
% assumed to truncate toward zero
; (mod) % remainder (w.r.t. truncating integer division)
% XXX `mod' should be renamed `rem'
; (<<) % unchecked left shift
; (>>) % unchecked right shift
; (&) % bitwise and
; ('|') % bitwise or
; (^) % bitwise xor
; (and) % logical and
; (or) % logical or
; eq % ==
; ne % !=
; body
; array_index(array_elem_type)
; str_eq % string comparisons
; str_ne
; str_lt
; str_gt
; str_le
; str_ge
; (<) % signed integer comparions
; (>)
; (<=)
; (>=)
; unsigned_le % unsigned integer comparison
% Note that the arguments to `unsigned_le' are just ordinary
% (signed) Mercury ints, but it does the comparison as
% if they were first cast to an unsigned type, so e.g.
% binary(unsigned_le, int_const(1), int_const(-1) returns true,
% since (MR_Unsigned) 1 <= (MR_Unsigned) -1).
; float_plus
; float_minus
; float_times
; float_divide
; float_eq
; float_ne
; float_lt
; float_gt
; float_le
; float_ge.
% For the MLDS back-end, we need to know the element type for each
% array_index operation.
%
% Currently array index operations are only generated in limited
% circumstances. Using a simple representation for them here,
% rather than just putting the MLDS type here, avoids the need
% for this module to depend on back-end specific stuff like MLDS types.
:- type array_elem_type
---> elem_type_string % ml_string_type
; elem_type_int % mlds__native_int_type
; elem_type_generic. % mlds__generic_type
% translate_builtin:
%
% Given a module name, a predicate name, a proc_id and a list of
% the arguments, find out if that procedure of that predicate
% is an inline builtin. If so, return code which can be used
% to evaluate that call: either an assignment (if the builtin is det)
% or a test (if the builtin is semidet).
%
% There are some further guarantees on the form of the expressions
% in the code returned -- see below for details.
% (bytecode_gen.m depends on these guarantees.)
%
:- pred translate_builtin(module_name::in, string::in, proc_id::in,
list(T)::in, simple_code(T)::out(simple_code)) is semidet.
:- type simple_code(T)
---> assign(T, simple_expr(T))
; test(simple_expr(T)).
:- type simple_expr(T)
---> leaf(T)
; int_const(int)
; float_const(float)
; unary(unary_op, simple_expr(T))
; binary(binary_op, simple_expr(T), simple_expr(T)).
% Each test expression returned is guaranteed to be either a unary
% or binary operator, applied to arguments that are either variables
% (from the argument list) or constants.
%
% Each to be assigned expression is guaranteed to be either in a form
% acceptable for a test rval, or in the form of a variable.
:- inst simple_code
---> assign(ground, simple_assign_expr)
; test(simple_test_expr).
:- inst simple_arg_expr
---> leaf(ground)
; int_const(ground)
; float_const(ground).
:- inst simple_test_expr
---> unary(ground, simple_arg_expr)
; binary(ground, simple_arg_expr, simple_arg_expr).
:- inst simple_assign_expr
---> unary(ground, simple_arg_expr)
; binary(ground, simple_arg_expr, simple_arg_expr)
; leaf(ground).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
%-----------------------------------------------------------------------------%
translate_builtin(FullyQualifiedModule, PredName, ProcId, Args, Code) :-
proc_id_to_int(ProcId, ProcInt),
% -- not yet:
% FullyQualifiedModule = qualified(unqualified("std"), ModuleName),
FullyQualifiedModule = unqualified(ModuleName),
builtin_translation(ModuleName, PredName, ProcInt, Args, Code).
:- pred builtin_translation(string::in, string::in, int::in, list(T)::in,
simple_code(T)::out) is semidet.
% Note that the code we generate for unsafe_type_cast is not
% type-correct. Back-ends that require type-correct intermediate
% code (e.g. the MLDS back-end) must handle unsafe_type_cast
% separately, rather than by calling builtin_translation.
builtin_translation("private_builtin", "unsafe_type_cast", 0, [X, Y],
assign(Y, leaf(X))).
builtin_translation("builtin", "unsafe_promise_unique", 0, [X, Y],
assign(Y, leaf(X))).
builtin_translation("private_builtin", "builtin_int_gt", 0, [X, Y],
test(binary((>), leaf(X), leaf(Y)))).
builtin_translation("private_builtin", "builtin_int_lt", 0, [X, Y],
test(binary((<), leaf(X), leaf(Y)))).
builtin_translation("term_size_prof_builtin", "term_size_plus", 0, [X, Y, Z],
assign(Z, binary((+), leaf(X), leaf(Y)))).
builtin_translation("int", "+", 0, [X, Y, Z],
assign(Z, binary((+), leaf(X), leaf(Y)))).
builtin_translation("int", "+", 1, [X, Y, Z],
assign(X, binary((-), leaf(Z), leaf(Y)))).
builtin_translation("int", "+", 2, [X, Y, Z],
assign(Y, binary((-), leaf(Z), leaf(X)))).
builtin_translation("int", "-", 0, [X, Y, Z],
assign(Z, binary((-), leaf(X), leaf(Y)))).
builtin_translation("int", "-", 1, [X, Y, Z],
assign(X, binary((+), leaf(Y), leaf(Z)))).
builtin_translation("int", "-", 2, [X, Y, Z],
assign(Y, binary((-), leaf(X), leaf(Z)))).
builtin_translation("int", "*", 0, [X, Y, Z],
assign(Z, binary((*), leaf(X), leaf(Y)))).
builtin_translation("int", "unchecked_quotient", 0, [X, Y, Z],
assign(Z, binary((/), leaf(X), leaf(Y)))).
builtin_translation("int", "unchecked_rem", 0, [X, Y, Z],
assign(Z, binary((mod), leaf(X), leaf(Y)))).
builtin_translation("int", "unchecked_left_shift", 0, [X, Y, Z],
assign(Z, binary((<<), leaf(X), leaf(Y)))).
builtin_translation("int", "unchecked_right_shift", 0, [X, Y, Z],
assign(Z, binary((>>), leaf(X), leaf(Y)))).
builtin_translation("int", "/\\", 0, [X, Y, Z],
assign(Z, binary((&), leaf(X), leaf(Y)))).
builtin_translation("int", "\\/", 0, [X, Y, Z],
assign(Z, binary(('|'), leaf(X), leaf(Y)))).
builtin_translation("int", "xor", 0, [X, Y, Z],
assign(Z, binary((^), leaf(X), leaf(Y)))).
builtin_translation("int", "xor", 1, [X, Y, Z],
assign(Y, binary((^), leaf(X), leaf(Z)))).
builtin_translation("int", "xor", 2, [X, Y, Z],
assign(X, binary((^), leaf(Y), leaf(Z)))).
builtin_translation("int", "+", 0, [X, Y],
assign(Y, leaf(X))).
builtin_translation("int", "-", 0, [X, Y],
assign(Y, binary((-), int_const(0), leaf(X)))).
builtin_translation("int", "\\", 0, [X, Y],
assign(Y, unary(bitwise_complement, leaf(X)))).
builtin_translation("int", ">", 0, [X, Y],
test(binary((>), leaf(X), leaf(Y)))).
builtin_translation("int", "<", 0, [X, Y],
test(binary((<), leaf(X), leaf(Y)))).
builtin_translation("int", ">=", 0, [X, Y],
test(binary((>=), leaf(X), leaf(Y)))).
builtin_translation("int", "=<", 0, [X, Y],
test(binary((<=), leaf(X), leaf(Y)))).
builtin_translation("float", "+", 0, [X, Y, Z],
assign(Z, binary(float_plus, leaf(X), leaf(Y)))).
builtin_translation("float", "-", 0, [X, Y, Z],
assign(Z, binary(float_minus, leaf(X), leaf(Y)))).
builtin_translation("float", "*", 0, [X, Y, Z],
assign(Z, binary(float_times, leaf(X), leaf(Y)))).
builtin_translation("float", "unchecked_quotient", 0, [X, Y, Z],
assign(Z, binary(float_divide, leaf(X), leaf(Y)))).
builtin_translation("float", "+", 0, [X, Y],
assign(Y, leaf(X))).
builtin_translation("float", "-", 0, [X, Y],
assign(Y, binary(float_minus, float_const(0.0), leaf(X)))).
builtin_translation("float", ">", 0, [X, Y],
test(binary(float_gt, leaf(X), leaf(Y)))).
builtin_translation("float", "<", 0, [X, Y],
test(binary(float_lt, leaf(X), leaf(Y)))).
builtin_translation("float", ">=", 0, [X, Y],
test(binary(float_ge, leaf(X), leaf(Y)))).
builtin_translation("float", "=<", 0, [X, Y],
test(binary(float_le, leaf(X), leaf(Y)))).