Files
mercury/compiler/use_local_vars.m
Zoltan Somogyi 5e25af41f7 This diff changes the LLDS backend to make it easier to read and to maintain,
Estimated hours taken: 6
Branches: main

This diff changes the LLDS backend to make it easier to read and to maintain,
but contains no changes in algorithms whatsoever.

compiler/basic_block.m:
compiler/dupelim.m:
compiler/frameopt.m:
compiler/jumpopt.m:
compiler/layout_out.m:
compiler/livemap.m:
compiler/peephole.m:
compiler/reassign.m:
compiler/rtti_out.m:
compiler/use_local_vars.m:
	Convert these modules to our current coding standards. Use state
	variable notation when appropriate, reordering arguments as necessary.

compiler/llds_out.m:
	Convert these modules to our current coding standards. Use state
	variable notation when appropriate, reordering arguments as necessary.

	Delete predicates which are just specialized forms of foldl, using
	foldl (or foldl2 etc) directly instead.

	Factor out some common code.

compiler/livemap.m:
	Convert these modules to our current coding standards. Use state
	variable notation when appropriate, reordering arguments as necessary.

	Remove some special case handling that used to be required by the value
	numbering pass.

library/bintree_set.m:
	Provide a function version of the initialization predicate.
2003-11-11 03:35:13 +00:00

489 lines
16 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 2001-2003 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: use_local_vars.m
%
% Author: zs.
%
% This module implements an LLDS->LLDS transformation that optimizes the
% sequence of instructions in a procedure body by replacing references to
% relatively expensive locations: fake registers (Mercury abstract machine
% registers that are not mapped to machine registers) or stack slots with
% references to cheaper locations: local variables in C blocks, which should
% be mapped to machine registers by the C compiler. The C blocks should be
% introduced later by wrap_blocks.m, possibly after the LLDS code has been
% transformed further. Wrap_blocks will know what local variables to declare
% in each block by looking for the temp(_, _) lvals that represent those local
% variables.
%
% This module looks for three patterns. The first is
%
% <instruction that defines a fake register>
% <instructions that use and possibly define the fake register>
% <end of basic block, at which the fake register is not live>
%
% When it finds an occurrence of that pattern, it replaces all references to
% the fake register with a local variable.
%
% If the basic block jumps to a code address which is not a label (e.g.
% do_redo, do_fail), we consider all registers to be live at the end of the
% basic block. This is because livemap.m, which computes liveness information
% for us, does not know about liveness requirements introduced by backtracking.
% This is a conservative approximation. The union of the livenesses of all the
% labels that represent resume points is a better approximation, but it would
% be tedious to compute and is unlikely to yield significantly better code.
%
% The second pattern we look for is simply an instruction that defines a fake
% register or stack slot, followed by some uses of that register or stack slot
% before code that redefines the register or stack slot. When we find this
% pattern, we again replace all references to the fake register or stack slot
% with a local variable, but since this time we cannot be sure that the
% original lval will not be referred to, we assign the local variable to the
% lval as well. This is a win because the cost of the assignment is less than
% the savings from replacing the fake register or stack slot references with
% local variable references.
%
% The third pattern we look for consists of a sequence of instructions in which
% a false register or stack slot is used several times, including at least once
% in the first instruction as a part of a path to a memory location, before
% being redefined or maybe aliased. This typically occurs when the code
% generator fills in the fields of a structure or extracts the fields of a
% structure. Again, we replace the false register or stack slot with a
% temporary after assigning the value in the false register or stack slot to
% the temporary.
%-----------------------------------------------------------------------------%
:- module ll_backend__use_local_vars.
:- interface.
:- import_module backend_libs__proc_label.
:- import_module ll_backend__llds.
:- import_module list, counter.
:- pred use_local_vars__main(list(instruction)::in, list(instruction)::out,
proc_label::in, int::in, int::in, counter::in, counter::out) is det.
:- implementation.
:- import_module ll_backend__basic_block.
:- import_module ll_backend__code_util.
:- import_module ll_backend__exprn_aux.
:- import_module ll_backend__livemap.
:- import_module ll_backend__opt_util.
:- import_module int, set, map, std_util, require.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
use_local_vars__main(Instrs0, Instrs, ProcLabel, NumRealRRegs, AccessThreshold,
!C) :-
create_basic_blocks(Instrs0, Comments, ProcLabel, !C,
LabelSeq, BlockMap0),
flatten_basic_blocks(LabelSeq, BlockMap0, TentativeInstrs),
livemap__build(TentativeInstrs, MaybeLiveMap),
(
% Instrs0 must have contained C code which cannot be analyzed
MaybeLiveMap = no,
Instrs = Instrs0
;
MaybeLiveMap = yes(LiveMap),
list__foldl(use_local_vars_block(LiveMap, NumRealRRegs,
AccessThreshold), LabelSeq, BlockMap0, BlockMap),
flatten_basic_blocks(LabelSeq, BlockMap, Instrs1),
list__append(Comments, Instrs1, Instrs)
).
:- pred use_local_vars_block(livemap::in, int::in, int::in, label::in,
block_map::in, block_map::out) is det.
use_local_vars_block(LiveMap, NumRealRRegs, AccessThreshold, Label,
!BlockMap) :-
map__lookup(!.BlockMap, Label, BlockInfo0),
BlockInfo0 = block_info(BlockLabel, LabelInstr, RestInstrs0,
JumpLabels, MaybeFallThrough),
( can_branch_to_unknown_label(RestInstrs0) ->
MaybeEndLiveLvals = no
;
(
MaybeFallThrough = yes(FallThrough),
EndLabels = [FallThrough | JumpLabels]
;
MaybeFallThrough = no,
EndLabels = JumpLabels
),
list__foldl(find_live_lvals_at_end_labels(LiveMap), EndLabels,
set__init, EndLiveLvals0),
list__foldl(find_live_lvals_in_annotations, RestInstrs0,
EndLiveLvals0, EndLiveLvals),
MaybeEndLiveLvals = yes(EndLiveLvals)
),
counter__init(1, TempCounter0),
use_local_vars_instrs(RestInstrs0, RestInstrs,
TempCounter0, TempCounter, NumRealRRegs, AccessThreshold,
MaybeEndLiveLvals),
( TempCounter = TempCounter0 ->
true
;
BlockInfo = block_info(BlockLabel, LabelInstr,
RestInstrs, JumpLabels, MaybeFallThrough),
map__det_update(!.BlockMap, Label, BlockInfo, !:BlockMap)
).
:- pred can_branch_to_unknown_label(list(instruction)::in) is semidet.
can_branch_to_unknown_label([Uinstr - _ | Instrs]) :-
(
opt_util__instr_labels(Uinstr, _, CodeAddrs),
some_code_addr_is_not_label(CodeAddrs)
;
can_branch_to_unknown_label(Instrs)
).
:- pred some_code_addr_is_not_label(list(code_addr)::in) is semidet.
some_code_addr_is_not_label([CodeAddr | CodeAddrs]) :-
(
CodeAddr \= label(_Label)
;
some_code_addr_is_not_label(CodeAddrs)
).
:- pred find_live_lvals_at_end_labels(livemap::in, label::in,
lvalset::in, lvalset::out) is det.
find_live_lvals_at_end_labels(LiveMap, Label, !LiveLvals) :-
( map__search(LiveMap, Label, LabelLiveLvals) ->
set__union(LabelLiveLvals, !LiveLvals)
; Label = local(_, _) ->
error("find_live_lvals_at_end_labels: local label not found")
;
% Non-local labels can be found only through call instructions,
% which must be preceded by livevals instructions. The
% variables live at the label will be included when we process
% the livevals instruction.
true
).
:- pred find_live_lvals_in_annotations(instruction::in,
lvalset::in, lvalset::out) is det.
find_live_lvals_in_annotations(Uinstr - _, !LiveLvals) :-
( Uinstr = livevals(InstrLiveLvals) ->
set__union(InstrLiveLvals, !LiveLvals)
;
true
).
%-----------------------------------------------------------------------------%
:- pred use_local_vars_instrs(list(instruction)::in, list(instruction)::out,
counter::in, counter::out, int::in, int::in, maybe(lvalset)::in)
is det.
use_local_vars_instrs(!RestInstrs, !TempCounter,
NumRealRRegs, AccessThreshold, MaybeEndLiveLvals) :-
opt_assign(!RestInstrs, !TempCounter, NumRealRRegs, MaybeEndLiveLvals),
( AccessThreshold >= 1 ->
opt_access(!RestInstrs, !TempCounter, NumRealRRegs,
set__init, AccessThreshold)
;
true
).
%-----------------------------------------------------------------------------%
:- pred opt_assign(list(instruction)::in, list(instruction)::out,
counter::in, counter::out, int::in, maybe(lvalset)::in) is det.
opt_assign([], [], !TempCounter, _, _).
opt_assign([Instr0 | TailInstrs0], Instrs, !TempCounter, NumRealRRegs,
MaybeEndLiveLvals) :-
Instr0 = Uinstr0 - _Comment0,
(
( Uinstr0 = assign(ToLval, _FromRval)
; Uinstr0 = incr_hp(ToLval, _MaybeTag, _SizeRval, _MO, _Type)
),
base_lval_worth_replacing(NumRealRRegs, ToLval)
->
counter__allocate(TempNum, !TempCounter),
NewLval = temp(r, TempNum),
(
ToLval = reg(_, _),
MaybeEndLiveLvals = yes(EndLiveLvals),
not set__member(ToLval, EndLiveLvals)
->
substitute_lval_in_defn(ToLval, NewLval,
Instr0, Instr),
list__map_foldl(exprn_aux__substitute_lval_in_instr(
ToLval, NewLval),
TailInstrs0, TailInstrs1, 0, _),
opt_assign(TailInstrs1, TailInstrs, !TempCounter,
NumRealRRegs, MaybeEndLiveLvals),
Instrs = [Instr | TailInstrs]
;
substitute_lval_in_instr_until_defn(ToLval, NewLval,
TailInstrs0, TailInstrs1, 0, NumSubst),
NumSubst > 1
->
substitute_lval_in_defn(ToLval, NewLval,
Instr0, Instr),
CopyInstr = assign(ToLval, lval(NewLval)) - "",
opt_assign(TailInstrs1, TailInstrs, !TempCounter,
NumRealRRegs, MaybeEndLiveLvals),
Instrs = [Instr, CopyInstr | TailInstrs]
;
opt_assign(TailInstrs0, TailInstrs, !TempCounter,
NumRealRRegs, MaybeEndLiveLvals),
Instrs = [Instr0 | TailInstrs]
)
;
opt_assign(TailInstrs0, TailInstrs, !TempCounter,
NumRealRRegs, MaybeEndLiveLvals),
Instrs = [Instr0 | TailInstrs]
).
%-----------------------------------------------------------------------------%
:- pred opt_access(list(instruction)::in, list(instruction)::out,
counter::in, counter::out, int::in, lvalset::in, int::in) is det.
opt_access([], [], !TempCounter, _, _, _).
opt_access([Instr0 | TailInstrs0], Instrs, !TempCounter, NumRealRRegs,
AlreadyTried0, AccessThreshold) :-
Instr0 = Uinstr0 - _Comment0,
(
Uinstr0 = assign(ToLval, FromRval),
lvals_in_lval(ToLval, ToSubLvals),
lvals_in_rval(FromRval, FromSubLvals),
list__append(ToSubLvals, FromSubLvals, SubLvals),
list__filter(
base_lval_worth_replacing_not_tried(
AlreadyTried0, NumRealRRegs),
SubLvals, ReplaceableSubLvals),
ReplaceableSubLvals = [ChosenLval | ChooseableRvals]
->
counter__allocate(TempNum, !TempCounter),
TempLval = temp(r, TempNum),
lvals_in_lval(ChosenLval, SubChosenLvals),
require(unify(SubChosenLvals, []),
"opt_access: nonempty SubChosenLvals"),
substitute_lval_in_instr_until_defn(ChosenLval, TempLval,
[Instr0 | TailInstrs0], Instrs1, 0, NumReplacements),
set__insert(AlreadyTried0, ChosenLval, AlreadyTried1),
( NumReplacements >= AccessThreshold ->
TempAssign = assign(TempLval, lval(ChosenLval))
- "factor out common sub lval",
Instrs2 = [TempAssign | Instrs1],
opt_access(Instrs2, Instrs, !TempCounter,
NumRealRRegs, AlreadyTried1, AccessThreshold)
; ChooseableRvals = [_ | _] ->
opt_access([Instr0 | TailInstrs0], Instrs,
!TempCounter, NumRealRRegs, AlreadyTried1,
AccessThreshold)
;
opt_access(TailInstrs0, TailInstrs, !TempCounter,
NumRealRRegs, set__init, AccessThreshold),
Instrs = [Instr0 | TailInstrs]
)
;
opt_access(TailInstrs0, TailInstrs, !TempCounter,
NumRealRRegs, set__init, AccessThreshold),
Instrs = [Instr0 | TailInstrs]
).
%-----------------------------------------------------------------------------%
:- pred base_lval_worth_replacing(int::in, lval::in) is semidet.
base_lval_worth_replacing(NumRealRRegs, Lval) :-
(
Lval = reg(r, RegNum),
RegNum > NumRealRRegs
;
Lval = stackvar(_)
;
Lval = framevar(_)
).
:- pred base_lval_worth_replacing_not_tried(lvalset::in, int::in, lval::in)
is semidet.
base_lval_worth_replacing_not_tried(AlreadyTried, NumRealRRegs, Lval) :-
\+ set__member(Lval, AlreadyTried),
base_lval_worth_replacing(NumRealRRegs, Lval).
%-----------------------------------------------------------------------------%
% When processing substituting e.g. tempr1 for e.g. r2
% in the instruction that defines r2, we must be careful
% to leave intact the value being assigned. Given the instruction
%
% r2 = field(0, r2, 5)
%
% we must generate
%
% tempr1 = field(0, r2, 5)
%
% Generating
%
% tempr1 = field(0, tempr1, 5)
%
% would introduce a bug, since the right hand side now refers to
% an as yet undefined variable.
:- pred substitute_lval_in_defn(lval::in, lval::in,
instruction::in, instruction::out) is det.
substitute_lval_in_defn(OldLval, NewLval, Instr0, Instr) :-
Instr0 = Uinstr0 - Comment,
( Uinstr0 = assign(ToLval, FromRval) ->
require(unify(ToLval, OldLval),
"substitute_lval_in_defn: mismatch in assign"),
Uinstr = assign(NewLval, FromRval)
; Uinstr0 = incr_hp(ToLval, MaybeTag, SizeRval, MO, Type) ->
require(unify(ToLval, OldLval),
"substitute_lval_in_defn: mismatch in incr_hp"),
Uinstr = incr_hp(NewLval, MaybeTag, SizeRval, MO, Type)
;
error("substitute_lval_in_defn: unexpected instruction")
),
Instr = Uinstr - Comment.
% Substitute NewLval for OldLval in an instruction sequence
% until we come an instruction that may define OldLval.
% We don't worry about instructions that define a variable that
% occurs in the access path to OldLval (and which therefore indirectly
% modifies the value that OldLval refers to), because our caller will
% call us only with OldLvals (and NewLvals for that matter) that have
% no lvals in their access path. The NewLvals will be temporaries,
% representing local variables in C blocks.
%
% When control leaves this instruction sequence via a if_val, goto or
% call, the local variables of the block in which this instruction
% sequence will go out of scope, so we must stop using them. At points
% at which control can enter this instruction sequence, i.e. at labels,
% the C block ends, so again we must stop using its local variables.
% (Livevals pseudo-instructions occur only immediately before
% instructions that cause control transfer, so we stop at them too.)
%
% Our caller ensures that we can also so stop at any point. By doing so
% we may fail to exploit an optimization opportunity, but the code we
% generate will still be correct. At the moment we stop at instructions
% whose correct handling would be non-trivial and which rarely if ever
% appear between the definition and a use of a location we want to
% substitute. These include instructions that manipulate stack frames,
% the heap, the trail and synchronization data.
:- pred substitute_lval_in_instr_until_defn(lval::in, lval::in,
list(instruction)::in, list(instruction)::out, int::in, int::out)
is det.
substitute_lval_in_instr_until_defn(_, _, [], [], !N).
substitute_lval_in_instr_until_defn(OldLval, NewLval,
[Instr0 | Instrs0], [Instr | Instrs], !N) :-
substitute_lval_in_instr_until_defn_2(OldLval, NewLval,
Instr0, Instr, Instrs0, Instrs, !N).
:- pred substitute_lval_in_instr_until_defn_2(lval::in, lval::in,
instruction::in, instruction::out,
list(instruction)::in, list(instruction)::out,
int::in, int::out) is det.
substitute_lval_in_instr_until_defn_2(OldLval, NewLval, !Instr, !Instrs, !N) :-
!.Instr = Uinstr0 - _,
(
Uinstr0 = comment(_),
substitute_lval_in_instr_until_defn(OldLval, NewLval,
!Instrs, !N)
;
Uinstr0 = livevals(_)
;
Uinstr0 = block(_, _, _),
error("substitute_lval_in_instr_until_defn: found block")
;
Uinstr0 = assign(Lval, _),
( Lval = OldLval ->
% If we alter any lval that occurs in OldLval,
% we must stop the substitutions. At the
% moment, the only lval OldLval contains is
% itself.
true
;
exprn_aux__substitute_lval_in_instr(OldLval, NewLval,
!Instr, !N),
substitute_lval_in_instr_until_defn(OldLval, NewLval,
!Instrs, !N)
)
;
Uinstr0 = call(_, _, _, _, _, _)
;
Uinstr0 = mkframe(_, _)
;
Uinstr0 = label(_)
;
Uinstr0 = goto(_)
;
Uinstr0 = computed_goto(_, _),
exprn_aux__substitute_lval_in_instr(OldLval, NewLval,
!Instr, !N)
;
Uinstr0 = if_val(_, _),
exprn_aux__substitute_lval_in_instr(OldLval, NewLval,
!Instr, !N)
;
Uinstr0 = incr_hp(Lval, _, _, _, _),
( Lval = OldLval ->
% If we alter any lval that occurs in OldLval,
% we must stop the substitutions. At the
% moment, the only lval OldLval contains is
% itself.
true
;
exprn_aux__substitute_lval_in_instr(OldLval, NewLval,
!Instr, !N),
substitute_lval_in_instr_until_defn(OldLval, NewLval,
!Instrs, !N)
)
;
Uinstr0 = mark_hp(_)
;
Uinstr0 = restore_hp(_)
;
Uinstr0 = free_heap(_)
;
Uinstr0 = store_ticket(_)
;
Uinstr0 = reset_ticket(_, _)
;
Uinstr0 = discard_ticket
;
Uinstr0 = prune_ticket
;
Uinstr0 = mark_ticket_stack(_)
;
Uinstr0 = prune_tickets_to(_)
;
Uinstr0 = incr_sp(_, _)
;
Uinstr0 = decr_sp(_)
;
Uinstr0 = init_sync_term(_, _)
;
Uinstr0 = fork(_, _, _)
;
Uinstr0 = join_and_terminate(_)
;
Uinstr0 = join_and_continue(_, _)
;
Uinstr0 = c_code(_, _)
;
Uinstr0 = pragma_c(_, _, _, _, _, _, _, _)
).