Files
mercury/compiler/transform_llds.m
Fergus Henderson 62a15c0da9 Fix a bug with accurate GC. The mapping from code addresses to stack
Estimated hours taken: 4
Branches: main

Fix a bug with accurate GC.  The mapping from code addresses to stack
layouts was not working properly, because GCC was reordering code within
C functions (LLDS modules) so that a label at end of the module did not
necessarily have the highest address.  The solution is to put the end label
in a different C function, i.e. a new LLDS module.

runtime/mercury_goto.h:
	Back out previous attempt to solve this problem, since it didn't work.

compiler/transform_llds.m:
	If accurate GC is enabled, append a module containing a dummy end label
	at the end of the module list.
2003-11-12 17:06:52 +00:00

252 lines
9.1 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1998-2001,2003 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% Module: transform_llds
%
% Main authors: petdr
%
% This module does source to source transformations of the llds data
% structure. This is sometimes necessary to avoid limits in some
% compilers.
%
% This module currently transforms computed gotos into a binary search
% down to smaller computed gotos. This avoids a limitation in the lcc
% compiler.
%
% If accurate GC is enabled, we also append a module containing an end label
% to the list of comp_gen_c_modules.
%
%-----------------------------------------------------------------------------%
:- module ll_backend__transform_llds.
:- interface.
:- import_module ll_backend__llds.
:- import_module io.
:- pred transform_llds(c_file, c_file, io__state, io__state).
:- mode transform_llds(in, out, di, uo) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module hlds__hlds_pred.
:- import_module backend_libs__builtin_ops.
:- import_module backend_libs__proc_label.
:- import_module libs__globals.
:- import_module libs__options.
:- import_module ll_backend__opt_util.
:- import_module parse_tree__prog_data.
:- import_module bool, int, string, list, require, std_util, counter.
transform_llds(LLDS0, LLDS) -->
transform_c_file(LLDS0, LLDS).
%-----------------------------------------------------------------------------%
:- pred transform_c_file(c_file, c_file, io__state, io__state).
:- mode transform_c_file(in, out, di, uo) is det.
transform_c_file(c_file(ModuleName, HeaderInfo, A, B, C, D, Modules0),
c_file(ModuleName, HeaderInfo, A, B, C, D, Modules)) -->
% split up large computed gotos
globals__io_lookup_int_option(max_jump_table_size, MaxJumpTableSize),
( { MaxJumpTableSize = 0 } ->
{ Modules1 = Modules0 }
;
transform_c_module_list(Modules0, Modules1)
),
% append an end label for accurate GC
globals__io_get_gc_method(GC),
{ GC = accurate, Modules1 \= [] ->
list__last_det(Modules1, LastModule),
LastModule = comp_gen_c_module(LastModuleName, _),
Modules = Modules1 ++
[gen_end_label_module(ModuleName, LastModuleName)]
;
Modules = Modules1
}.
%
% For LLDS native GC, we need to add a dummy comp_gen_c_module at the end of
% the list. This dummy module contains only a single dummy procedure which
% in turn contains only a single label, for which there is no stack layout
% structure. The point of this is to ensure that the address of this label
% gets inserted into the entry table, so that we know where the preceding
% procedure finishes when mapping from instruction pointer values to stack
% layout entries.
%
% Without this, we might think that the following C function was
% actually part of the last Mercury procedure in the preceding module,
% and then incorrectly use the stack layout of the Mercury procedure
% if we happened to get a heap overflow signal (SIGSEGV) while in that
% C function.
%
% Note that it is not sufficient to generate a label at end of the module,
% because GCC (e.g. GCC 3.2) sometimes reorders code within a single C
% function, so that a label declared at the end of the module might not
% be actually have highest address. So we generate a new module (which
% corresponds to a new C function). XXX Hopefully GCC won't mess with the
% order of the functions...
%
:- func gen_end_label_module(module_name, string) = comp_gen_c_module.
gen_end_label_module(ModuleName, LastModule) = EndLabelModule :-
Arity = 0,
ProcId = hlds_pred__initial_proc_id,
PredId = hlds_pred__initial_pred_id,
PredName = "ACCURATE_GC_END_LABEL",
ProcLabel = proc(ModuleName, predicate, ModuleName, PredName,
Arity, ProcId),
Instrs = [label(local(ProcLabel)) -
"label to indicate end of previous procedure"],
DummyProc = c_procedure(PredName, Arity, proc(PredId, ProcId),
Instrs, ProcLabel,
counter__init(0), must_not_alter_rtti),
EndLabelModule = comp_gen_c_module(LastModule ++ "_END", [DummyProc]).
%-----------------------------------------------------------------------------%
:- pred transform_c_module_list(list(comp_gen_c_module),
list(comp_gen_c_module), io__state, io__state).
:- mode transform_c_module_list(in, out, di, uo) is det.
transform_c_module_list([], []) --> [].
transform_c_module_list([M0 | M0s], [M | Ms]) -->
transform_c_module(M0, M),
transform_c_module_list(M0s, Ms).
%-----------------------------------------------------------------------------%
:- pred transform_c_module(comp_gen_c_module, comp_gen_c_module,
io__state, io__state).
:- mode transform_c_module(in, out, di, uo) is det.
transform_c_module(comp_gen_c_module(Name, Procedures0),
comp_gen_c_module(Name, Procedures)) -->
transform_c_procedure_list(Procedures0, Procedures).
%-----------------------------------------------------------------------------%
:- pred transform_c_procedure_list(list(c_procedure), list(c_procedure),
io__state, io__state).
:- mode transform_c_procedure_list(in, out, di, uo) is det.
transform_c_procedure_list([], []) --> [].
transform_c_procedure_list([P0 | P0s], [P | Ps]) -->
transform_c_procedure(P0, P),
transform_c_procedure_list(P0s, Ps).
%-----------------------------------------------------------------------------%
:- pred transform_c_procedure(c_procedure, c_procedure, io__state, io__state).
:- mode transform_c_procedure(in, out, di, uo) is det.
transform_c_procedure(Proc0, Proc) -->
{ Proc0 = c_procedure(Name, Arity, PPId, Instrs0,
ProcLabel, C0, Recons) },
{ Proc = c_procedure(Name, Arity, PPId, Instrs,
ProcLabel, C, Recons) },
transform_instructions(Instrs0, ProcLabel, C0, C, Instrs).
%-----------------------------------------------------------------------------%
:- pred transform_instructions(list(instruction), proc_label, counter, counter,
list(instruction), io__state, io__state).
:- mode transform_instructions(in, in, in, out, out, di, uo) is det.
transform_instructions(Instrs0, ProcLabel, C0, C, Instrs) -->
transform_instructions_2(Instrs0, ProcLabel, C0, C, Instrs).
:- pred transform_instructions_2(list(instruction), proc_label,
counter, counter, list(instruction), io__state, io__state).
:- mode transform_instructions_2(in, in, in, out, out, di, uo) is det.
transform_instructions_2([], _, C, C, []) --> [].
transform_instructions_2([Instr0 | Instrs0], ProcLabel, C0, C, Instrs) -->
transform_instruction(Instr0, ProcLabel, C0, InstrsA, C1),
transform_instructions_2(Instrs0, ProcLabel, C1, C, InstrsB),
{ list__append(InstrsA, InstrsB, Instrs) }.
%-----------------------------------------------------------------------------%
:- pred transform_instruction(instruction, proc_label, counter,
list(instruction), counter, io__state, io__state).
:- mode transform_instruction(in, in, in, out, out, di, uo) is det.
transform_instruction(Instr0, ProcLabel, C0, Instrs, C) -->
globals__io_lookup_int_option(max_jump_table_size, Size),
(
{ Size \= 0 },
{ Instr0 = computed_goto(_Rval, Labels) - _},
{ list__length(Labels, L) },
{ L > Size }
->
split_computed_goto(Instr0, Size, L, ProcLabel, C0, Instrs, C)
;
{ Instrs = [Instr0] },
{ C = C0 }
).
%-----------------------------------------------------------------------------%
%
% split_computed_goto(I, S, L, P, N0, Is, N)
%
% If instruction, I, is a computed_goto whose jump_table size is
% greater then S, then split the table in half and insert the
% instructions, Is, to do a binary search down to a jump_table
% whose size is sufficiently small.
%
:- pred split_computed_goto(instruction, int, int, proc_label, counter,
list(instruction), counter, io__state, io__state).
:- mode split_computed_goto(in, in, in, in, in, out, out, di, uo) is det.
split_computed_goto(Instr0, MaxSize, Length, ProcLabel, C0, Instrs, C) -->
(
{ Length =< MaxSize }
->
{ Instrs = [Instr0] },
{ C = C0 }
;
{ Instr0 = computed_goto(Rval, Labels) - _Comment }
->
{ counter__allocate(N, C0, C1) },
{ Mid = Length // 2 },
(
{ list__split_list(Mid, Labels, Start0, End0) }
->
{ Start = Start0, End = End0 }
;
{ error("split_computed_goto: list__split_list") }
),
{ Index = binop((-), Rval, const(int_const(Mid))) },
{ Test = binop((>=), Rval, const(int_const(Mid))) },
{ ElseAddr = label(local(N, ProcLabel)) },
{ ElseLabel = label(local(N, ProcLabel)) - ""},
{ IfInstr = if_val(Test, ElseAddr ) - "Binary search"},
{ ThenInstr = computed_goto(Rval, Start) - "Then section" },
{ ElseInstr = computed_goto(Index, End) - "Else section" },
split_computed_goto(ThenInstr, MaxSize, Mid, ProcLabel, C1,
ThenInstrs, C2),
split_computed_goto(ElseInstr, MaxSize, Length - Mid,
ProcLabel, C2, ElseInstrs, C),
{ list__append(ThenInstrs, [ElseLabel | ElseInstrs], InstrsA) },
{ Instrs = [IfInstr | InstrsA] }
;
{ error("split_computed_goto") }
).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%