Files
mercury/compiler/term_errors.m
Zoltan Somogyi a2bf36e49a This diff contains no changes in algorithms whatsoever.
Estimated hours taken: 4
Branches: main

This diff contains no changes in algorithms whatsoever.

browser/*.m:
compiler/*.m:
library/*.m:
	Replace old-style lambdas with new-style lambdas or with named
	procedures.
2003-11-05 03:17:49 +00:00

489 lines
17 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1997-2000, 2003 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% term_errors.m
% Main author: crs.
%
% This module prints out the various error messages that are produced by
% the various modules of termination analysis.
%
%-----------------------------------------------------------------------------%
:- module transform_hlds__term_errors.
:- interface.
:- import_module hlds__hlds_module.
:- import_module hlds__hlds_pred.
:- import_module parse_tree__prog_data.
:- import_module io, bag, std_util, list, assoc_list.
:- type termination_error
---> pragma_foreign_code
% The analysis result depends on the change constant
% of a piece of pragma foreign code, (which cannot be
% obtained without analyzing the foreign code, which is
% something we cannot do).
% Valid in both passes.
; imported_pred
% The SCC contains some imported procedures,
% whose code is not accessible.
; can_loop_proc_called(pred_proc_id, pred_proc_id)
% can_loop_proc_called(Caller, Callee, Context)
% The call from Caller to Callee at the associated
% context is to a procedure (Callee) whose termination
% info is set to can_loop.
% Although this error does not prevent us from
% producing argument size information, it would
% prevent us from proving termination.
% We look for this error in pass 1; if we find it,
% we do not perform pass 2.
; horder_args(pred_proc_id, pred_proc_id)
% horder_args(Caller, Callee, Context)
% The call from Caller to Callee at the associated
% context has some arguments of a higher order type.
% Valid in both passes.
; horder_call
% horder_call
% There is a higher order call at the associated
% context.
% Valid in both passes.
; inf_termination_const(pred_proc_id, pred_proc_id)
% inf_termination_const(Caller, Callee, Context)
% The call from Caller to Callee at the associated
% context is to a procedure (Callee) whose arg size
% info is set to infinite.
% Valid in both passes.
; not_subset(pred_proc_id, bag(prog_var), bag(prog_var))
% not_subset(Proc, SupplierVariables, InHeadVariables)
% This error occurs when the bag of active variables
% is not a subset of the input head variables.
% Valid error only in pass 1.
; inf_call(pred_proc_id, pred_proc_id)
% inf_call(Caller, Callee)
% The call from Caller to Callee at the associated
% context has infinite weight.
% Valid error only in pass 2.
; cycle(pred_proc_id, assoc_list(pred_proc_id, prog_context))
% cycle(StartPPId, CallSites)
% In the cycle of calls starting at StartPPId and
% going through the named call sites may be an
% infinite loop.
% Valid error only in pass 2.
; no_eqns
% There are no equations in this SCC.
% This has 2 possible causes. (1) If the predicate has
% no output arguments, no equations will be created
% for them. The change constant of the predicate is
% undefined, but it will also never be used.
% (2) If the procedure is a builtin predicate, with
% an empty body, traversal cannot create any equations.
% Valid error only in pass 1.
; too_many_paths
% There are too many distinct paths to be analyzed.
% Valid in both passes (which analyze different sets
% of paths).
; solver_failed
% The solver could not find finite termination
% constants for the procedures in the SCC.
% Valid only in pass 1.
; is_builtin(pred_id)
% The termination constant of the given builtin is
% set to infinity; this happens when the type of at
% least one output argument permits a norm greater
% than zero.
; does_not_term_pragma(pred_id)
% The given procedure has a does_not_terminate pragma.
; inconsistent_annotations.
% The pragma terminates/does_not_terminate declarations
% for the procedures in this SCC are inconsistent.
:- type term_errors__error == pair(prog_context, termination_error).
:- pred term_errors__report_term_errors(list(pred_proc_id)::in,
list(term_errors__error)::in, module_info::in,
io__state::di, io__state::uo) is det.
% An error is considered an indirect error if it is due either to a
% language feature we cannot analyze or due to an error in another part
% of the code. By default, we do not issue warnings about indirect errors,
% since in the first case, the programmer cannot do anything about it,
% and in the second case, the piece of code that the programmer *can* do
% something about is not this piece.
:- pred indirect_error(term_errors__termination_error).
:- mode indirect_error(in) is semidet.
:- implementation.
:- import_module hlds__error_util.
:- import_module hlds__hlds_out.
:- import_module hlds__passes_aux.
:- import_module libs__globals.
:- import_module libs__options.
:- import_module parse_tree__mercury_to_mercury.
:- import_module parse_tree__prog_out.
:- import_module term.
:- import_module transform_hlds__term_util.
:- import_module varset.
:- import_module bool, int, string, map, bag, require.
indirect_error(horder_call).
indirect_error(pragma_foreign_code).
indirect_error(imported_pred).
indirect_error(can_loop_proc_called(_, _)).
indirect_error(horder_args(_, _)).
indirect_error(does_not_term_pragma(_)).
term_errors__report_term_errors(SCC, Errors, Module) -->
{ get_context_from_scc(SCC, Module, Context) },
( { SCC = [PPId] } ->
{ Pieces0 = [words("Termination of")] },
{ error_util__describe_one_proc_name(Module, PPId, PredName) },
{ list__append(Pieces0, [fixed(PredName)], Pieces1) },
{ Single = yes(PPId) }
;
{ Pieces0 = [words("Termination of the mutually recursive procedures")] },
{ error_util__describe_several_proc_names(Module, SCC,
ProcNamePieces) },
{ list__append(Pieces0, ProcNamePieces, Pieces1) },
{ Single = no }
),
(
{ Errors = [] },
% XXX this should never happen
% XXX but for some reason, it often does
% { error("empty list of errors") }
{ Pieces2 = [words("not proven, for unknown reason(s).")] },
{ list__append(Pieces1, Pieces2, Pieces) },
write_error_pieces(Context, 0, Pieces)
;
{ Errors = [Error] },
{ Pieces2 = [words("not proven for the following reason:")] },
{ list__append(Pieces1, Pieces2, Pieces) },
write_error_pieces(Context, 0, Pieces),
term_errors__output_error(Error, Single, no, 0, Module)
;
{ Errors = [_, _ | _] },
{ Pieces2 = [words("not proven for the following reasons:")] },
{ list__append(Pieces1, Pieces2, Pieces) },
write_error_pieces(Context, 0, Pieces),
term_errors__output_errors(Errors, Single, 1, 0, Module)
).
:- pred term_errors__report_arg_size_errors(list(pred_proc_id)::in,
list(term_errors__error)::in, module_info::in,
io__state::di, io__state::uo) is det.
term_errors__report_arg_size_errors(SCC, Errors, Module) -->
{ get_context_from_scc(SCC, Module, Context) },
( { SCC = [PPId] } ->
{ Pieces0 = [words("Termination constant of")] },
{ error_util__describe_one_proc_name(Module, PPId, ProcName) },
{ list__append(Pieces0, [fixed(ProcName)], Pieces1) },
{ Single = yes(PPId) }
;
{ Pieces0 = [words("Termination constants"),
words("of the mutually recursive procedures")] },
{ error_util__describe_several_proc_names(Module, SCC,
ProcNamePieces) },
{ list__append(Pieces0, ProcNamePieces, Pieces1) },
{ Single = no }
),
{ Piece2 = words("set to infinity for the following") },
(
{ Errors = [] },
{ error("empty list of errors") }
;
{ Errors = [Error] },
{ Piece3 = words("reason:") },
{ list__append(Pieces1, [Piece2, Piece3], Pieces) },
write_error_pieces(Context, 0, Pieces),
term_errors__output_error(Error, Single, no, 0, Module)
;
{ Errors = [_, _ | _] },
{ Piece3 = words("reasons:") },
{ list__append(Pieces1, [Piece2, Piece3], Pieces) },
write_error_pieces(Context, 0, Pieces),
term_errors__output_errors(Errors, Single, 1, 0, Module)
).
:- pred term_errors__output_errors(list(term_errors__error)::in,
maybe(pred_proc_id)::in, int::in, int::in, module_info::in,
io__state::di, io__state::uo) is det.
term_errors__output_errors([], _, _, _, _) --> [].
term_errors__output_errors([Error | Errors], Single, ErrNum0, Indent, Module)
-->
term_errors__output_error(Error, Single, yes(ErrNum0), Indent, Module),
{ ErrNum1 = ErrNum0 + 1 },
term_errors__output_errors(Errors, Single, ErrNum1, Indent, Module).
:- pred term_errors__output_error(term_errors__error::in,
maybe(pred_proc_id)::in, maybe(int)::in, int::in, module_info::in,
io__state::di, io__state::uo) is det.
term_errors__output_error(Context - Error, Single, ErrorNum, Indent, Module) -->
{ term_errors__description(Error, Single, Module, Pieces0, Reason) },
{ ErrorNum = yes(N) ->
string__int_to_string(N, Nstr),
string__append_list(["Reason ", Nstr, ":"], Preamble),
Pieces = [fixed(Preamble) | Pieces0]
;
Pieces = Pieces0
},
write_error_pieces(Context, Indent, Pieces),
( { Reason = yes(InfArgSizePPId) } ->
{ lookup_proc_arg_size_info(Module, InfArgSizePPId, ArgSize) },
( { ArgSize = yes(infinite(ArgSizeErrors)) } ->
% XXX the next line is cheating
{ ArgSizePPIdSCC = [InfArgSizePPId] },
term_errors__report_arg_size_errors(ArgSizePPIdSCC,
ArgSizeErrors, Module)
;
{ error("inf arg size procedure does not have inf arg size") }
)
;
[]
).
:- pred term_errors__description(termination_error::in,
maybe(pred_proc_id)::in, module_info::in, list(format_component)::out,
maybe(pred_proc_id)::out) is det.
term_errors__description(horder_call, _, _, Pieces, no) :-
Pieces = [words("It contains a higher order call.")].
term_errors__description(pragma_foreign_code, _, _, Pieces, no) :-
Pieces = [words("It depends on the properties of"),
words("foreign language code included via a"),
fixed("`:- pragma c_code'"),
words("or"),
fixed("`:- pragma foreign'"),
words("declaration.")].
term_errors__description(inf_call(CallerPPId, CalleePPId),
Single, Module, Pieces, no) :-
(
Single = yes(PPId),
require(unify(PPId, CallerPPId), "caller outside this SCC"),
Piece1 = words("It")
;
Single = no,
error_util__describe_one_proc_name(Module, CallerPPId,
ProcName),
Piece1 = fixed(ProcName)
),
Piece2 = words("calls"),
error_util__describe_one_proc_name(Module, CalleePPId, CalleePiece),
Pieces3 = [words("with an unbounded increase"),
words("in the size of the input arguments.")],
Pieces = [Piece1, Piece2, fixed(CalleePiece) | Pieces3].
term_errors__description(can_loop_proc_called(CallerPPId, CalleePPId),
Single, Module, Pieces, no) :-
(
Single = yes(PPId),
require(unify(PPId, CallerPPId), "caller outside this SCC"),
Piece1 = words("It")
;
Single = no,
error_util__describe_one_proc_name(Module, CallerPPId,
ProcName),
Piece1 = fixed(ProcName)
),
Piece2 = words("calls"),
error_util__describe_one_proc_name(Module, CalleePPId, CalleePiece),
Pieces3 = [words("which could not be proven to terminate.")],
Pieces = [Piece1, Piece2, fixed(CalleePiece) | Pieces3].
term_errors__description(imported_pred, _, _, Pieces, no) :-
Pieces = [words("It contains one or more"),
words("predicates and/or functions"),
words("imported from another module.")].
term_errors__description(horder_args(CallerPPId, CalleePPId), Single, Module,
Pieces, no) :-
(
Single = yes(PPId),
require(unify(PPId, CallerPPId), "caller outside this SCC"),
Piece1 = words("It")
;
Single = no,
error_util__describe_one_proc_name(Module, CallerPPId,
ProcName),
Piece1 = fixed(ProcName)
),
Piece2 = words("calls"),
error_util__describe_one_proc_name(Module, CalleePPId, CalleePiece),
Pieces3 = [words("with one or more higher order arguments.")],
Pieces = [Piece1, Piece2, fixed(CalleePiece) | Pieces3].
term_errors__description(inf_termination_const(CallerPPId, CalleePPId),
Single, Module, Pieces, yes(CalleePPId)) :-
(
Single = yes(PPId),
require(unify(PPId, CallerPPId), "caller outside this SCC"),
Piece1 = words("It")
;
Single = no,
error_util__describe_one_proc_name(Module, CallerPPId,
ProcName),
Piece1 = fixed(ProcName)
),
Piece2 = words("calls"),
error_util__describe_one_proc_name(Module, CalleePPId, CalleePiece),
Pieces3 = [words("which has a termination constant of infinity.")],
Pieces = [Piece1, Piece2, fixed(CalleePiece) | Pieces3].
term_errors__description(not_subset(ProcPPId, OutputSuppliers, HeadVars),
Single, Module, Pieces, no) :-
(
Single = yes(PPId),
( PPId = ProcPPId ->
Pieces1 = [words("The set of"),
words("its output supplier variables")]
;
% XXX this should never happen (but it does)
% error("not_subset outside this SCC"),
error_util__describe_one_proc_name(Module, ProcPPId,
PPIdPiece),
Pieces1 = [words("The set of"),
words("output supplier variables of"),
fixed(PPIdPiece)]
)
;
Single = no,
error_util__describe_one_proc_name(Module, ProcPPId,
PPIdPiece),
Pieces1 = [words("The set of output supplier variables of"),
fixed(PPIdPiece)]
),
ProcPPId = proc(PredId, ProcId),
module_info_pred_proc_info(Module, PredId, ProcId, _, ProcInfo),
proc_info_varset(ProcInfo, Varset),
term_errors_var_bag_description(OutputSuppliers, Varset,
OutputSuppliersNames),
list__map((pred(OS::in, FOS::out) is det :- FOS = fixed(OS)),
OutputSuppliersNames, OutputSuppliersPieces),
Pieces3 = [words("is not a subset of the head variables")],
term_errors_var_bag_description(HeadVars, Varset, HeadVarsNames),
list__map((pred(HV::in, FHV::out) is det :- FHV = fixed(HV)),
HeadVarsNames, HeadVarsPieces),
list__condense([Pieces1, OutputSuppliersPieces, Pieces3,
HeadVarsPieces], Pieces).
term_errors__description(cycle(_StartPPId, CallSites), _, Module, Pieces, no) :-
( CallSites = [DirectCall] ->
error_util__describe_one_call_site(Module, DirectCall, Site),
Pieces = [words("At the recursive call to"),
fixed(Site),
words("the arguments are"),
words("not guaranteed to decrease in size.")]
;
Pieces1 = [words("In the recursive cycle"),
words("through the calls to")],
error_util__describe_several_call_sites(Module, CallSites,
SitePieces),
Pieces2 = [words("the arguments are"),
words("not guaranteed to decrease in size.")],
list__condense([Pieces1, SitePieces, Pieces2], Pieces)
).
term_errors__description(too_many_paths, _, _, Pieces, no) :-
Pieces = [words("There are too many execution paths"),
words("for the analysis to process.")].
term_errors__description(no_eqns, _, _, Pieces, no) :-
Pieces = [words("The analysis was unable to form any constraints"),
words("between the arguments of this group of procedures.")].
term_errors__description(solver_failed, _, _, Pieces, no) :-
Pieces = [words("The solver found the constraints produced"),
words("by the analysis to be infeasible.")].
term_errors__description(is_builtin(_PredId), _Single, _, Pieces, no) :-
% XXX require(unify(Single, yes(_)), "builtin not alone in SCC"),
Pieces = [words("It is a builtin predicate.")].
term_errors__description(does_not_term_pragma(PredId), Single, Module,
Pieces, no) :-
Pieces1 = [words(
"There is a `:- pragma does_not_terminate' declaration for")],
(
Single = yes(PPId),
PPId = proc(SCCPredId, _),
require(unify(PredId, SCCPredId), "does not terminate pragma outside this SCC"),
Piece2 = words("it.")
;
Single = no,
error_util__describe_one_pred_name(Module, PredId,
Piece2Nodot),
string__append(Piece2Nodot, ".", Piece2Str),
Piece2 = fixed(Piece2Str)
),
list__append(Pieces1, [Piece2], Pieces).
term_errors__description(inconsistent_annotations, _, _, Pieces, no) :-
Pieces = [words("The termination pragmas are inconsistent.")].
%----------------------------------------------------------------------------%
:- pred term_errors_var_bag_description(bag(prog_var)::in, prog_varset::in,
list(string)::out) is det.
term_errors_var_bag_description(HeadVars, Varset, Pieces) :-
bag__to_assoc_list(HeadVars, HeadVarCountList),
term_errors_var_bag_description_2(HeadVarCountList, Varset, yes,
Pieces).
:- pred term_errors_var_bag_description_2(assoc_list(prog_var, int)::in,
prog_varset::in, bool::in, list(string)::out) is det.
term_errors_var_bag_description_2([], _, _, ["{}"]).
term_errors_var_bag_description_2([Var - Count | VarCounts], Varset, First,
[Piece | Pieces]) :-
varset__lookup_name(Varset, Var, VarName),
( Count > 1 ->
string__append(VarName, "*", VarCountPiece0),
string__int_to_string(Count, CountStr),
string__append(VarCountPiece0, CountStr, VarCountPiece)
;
VarCountPiece = VarName
),
( First = yes ->
string__append("{", VarCountPiece, Piece0)
;
Piece0 = VarCountPiece
),
( VarCounts = [] ->
string__append(Piece0, "}.", Piece),
Pieces = []
;
Piece = Piece0,
term_errors_var_bag_description_2(VarCounts, Varset, First,
Pieces)
).
%----------------------------------------------------------------------------%
%----------------------------------------------------------------------------%