Files
mercury/compiler/prog_io_goal.m
Zoltan Somogyi b39a3d855f This diff makes hlds_module.m and many callers of its predicates easier to read
Estimated hours taken: 6
Branches: main

This diff makes hlds_module.m and many callers of its predicates easier to read
and to maintain, but contains no changes in algorithms whatsoever.

compiler/hlds_module.m:
	Bring (most of) this module into line with our current coding
	standards. Use predmode declarations, functions, and state variable
	syntax when appropriate. (The 'most of' is because I left the part of
	the module dealing with predicate tables alone, not wishing to cause
	a conflict for Pete.)

	Reorder arguments of predicates where necessary for the use of state
	variable syntax, and where this improves readability.

	Replace old-style lambdas with new-style lambdas or with partially
	applied named procedures.

compiler/*.m:
	Conform to the changes in hlds_module.m. This mostly means using the
	new argument orders of predicates exported by hlds_module.m, and
	switching to state variable notation.

	Replace old-style lambdas with new-style lambdas or with partially
	applied named procedures in updated code.

	Replace unnecessary occurrences of four-space indentation with
	standard indentation in updated code.

library/list.m:
library/map.m:
library/tree234.m:
	Add list__foldl4 and map__foldl3, since in some compiler modules,
	state variable notation is more convenient (and the code more
	efficient) if we don't have to bundle up several data structures
	into a tuple just to iterate over them.

	Change the fold predicates to use state variable notation.

NEWS:
	Mention the new library functions.
2003-10-31 03:27:39 +00:00

464 lines
15 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1996-2003 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: prog_io_goal.m.
% Main author: fjh.
%
% This module defines the predicates that parse goals.
:- module parse_tree__prog_io_goal.
:- interface.
:- import_module parse_tree__prog_data.
:- import_module list, term.
% Convert a single term into a goal.
%
:- pred parse_goal(term::in, goal::out, prog_varset::in, prog_varset::out)
is det.
% Convert a term, possibly starting with `some [Vars]', into
% a list of the quantified variables, a list of quantified
% state variables, and a goal. (If the term doesn't start
% with `some [Vars]', we return empty lists of variables.)
%
:- pred parse_some_vars_goal(term::in, list(prog_var)::out,
list(prog_var)::out, goal::out, prog_varset::in, prog_varset::out)
is det.
% parse_lambda_expression/3 converts the first argument to a lambda/2
% expression into a list of arguments, a list of their corresponding
% modes, and a determinism.
% The syntax of a lambda expression is
% `lambda([Var1::Mode1, ..., VarN::ModeN] is Det, Goal)'
% but this predicate just parses the first argument, i.e. the
% `[Var1::Mode1, ..., VarN::ModeN] is Det'
% part.
%
:- pred parse_lambda_expression(term, list(prog_term),
list(mode), determinism).
:- mode parse_lambda_expression(in, out, out, out) is semidet.
% parse_pred_expression/3 converts the first argument to a :-/2
% higher-order pred expression into a list of variables, a list
% of their corresponding modes, and a determinism. This is just
% a variant on parse_lambda_expression with a different syntax:
% `(pred(Var1::Mode1, ..., VarN::ModeN) is Det :- Goal)'.
%
:- pred parse_pred_expression(term, lambda_eval_method, list(prog_term),
list(mode), determinism).
:- mode parse_pred_expression(in, out, out, out, out) is semidet.
% parse_dcg_pred_expression/3 converts the first argument to a -->/2
% higher-order dcg pred expression into a list of arguments, a list
% of their corresponding modes and the two dcg argument modes, and a
% determinism.
% This is a variant of the higher-order pred syntax:
% `(pred(Var1::Mode1, ..., VarN::ModeN, DCG0Mode, DCGMode)
% is Det --> Goal)'.
%
:- pred parse_dcg_pred_expression(term, lambda_eval_method, list(prog_term),
list(mode), determinism).
:- mode parse_dcg_pred_expression(in, out, out, out, out) is semidet.
% parse_func_expression/3 converts the first argument to a :-/2
% higher-order func expression into a list of arguments, a list
% of their corresponding modes, and a determinism. The syntax
% of a higher-order func expression is
% `(func(Var1::Mode1, ..., VarN::ModeN) = (VarN1::ModeN1) is Det
% :- Goal)'
% or
% `(func(Var1, ..., VarN) = (VarN1) is Det :- Goal)'
% where the modes are assumed to be `in' for the
% function arguments and `out' for the result
% or
% `(func(Var1, ..., VarN) = (VarN1) :- Goal)'
% where the modes are assumed as above, and the
% determinism is assumed to be det
% or
% `(func(Var1, ..., VarN) = (VarN1). '
%
:- pred parse_func_expression(term, lambda_eval_method, list(prog_term),
list(mode), determinism).
:- mode parse_func_expression(in, out, out, out, out) is semidet.
% parse_lambda_eval_method/3 extracts the `aditi_bottom_up'
% annotation (if any) from a pred expression and returns the
% rest of the term.
:- pred parse_lambda_eval_method(term(T), lambda_eval_method, term(T)).
:- mode parse_lambda_eval_method(in, out, out) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module check_hlds__mode_util.
:- import_module check_hlds__purity.
:- import_module parse_tree__prog_io.
:- import_module parse_tree__prog_io_util.
:- import_module transform_hlds__term_util.
:- import_module term.
:- import_module int, map, string, std_util.
% Parse a goal.
%
% We could do some error-checking here, but all errors are picked up
% in either the type-checker or parser anyway.
parse_goal(Term, Goal, !VarSet) :-
% first, get the goal context
(
Term = term__functor(_, _, Context)
;
Term = term__variable(_),
term__context_init(Context)
),
% We just check if it matches the appropriate pattern
% for one of the builtins. If it doesn't match any of the
% builtins, then it's just a predicate call.
(
% check for builtins...
Term = term__functor(term__atom(Name), Args, Context),
parse_goal_2(Name, Args, GoalExpr, !VarSet)
->
Goal = GoalExpr - Context
;
% it's not a builtin
term__coerce(Term, ArgsTerm),
(
% check for predicate calls
sym_name_and_args(ArgsTerm, SymName, Args)
->
Goal = call(SymName, Args, pure) - Context
;
% A call to a free variable, or to a number or string.
% Just translate it into a call to call/1 - the
% typechecker will catch calls to numbers and strings.
Goal = call(unqualified("call"), [ArgsTerm], pure)
- Context
)
).
%-----------------------------------------------------------------------------%
:- pred parse_goal_2(string::in, list(term)::in, goal_expr::out,
prog_varset::in, prog_varset::out) is semidet.
% Since (A -> B) has different semantics in standard Prolog
% (A -> B ; fail) than it does in NU-Prolog or Mercury (A -> B ; true),
% for the moment we'll just disallow it.
% For consistency we also disallow if-then without the else.
parse_goal_2("true", [], true, !V).
parse_goal_2("fail", [], fail, !V).
parse_goal_2("=", [A0, B0], unify(A, B, pure), !V) :-
term__coerce(A0, A),
term__coerce(B0, B).
parse_goal_2(",", [A0, B0], (A, B), !V) :-
parse_goal(A0, A, !V),
parse_goal(B0, B, !V).
parse_goal_2("&", [A0, B0], (A & B), !V) :-
parse_goal(A0, A, !V),
parse_goal(B0, B, !V).
parse_goal_2(";", [A0, B0], R, !V) :-
(
A0 = term__functor(term__atom("->"), [X0, Y0], _Context)
->
parse_some_vars_goal(X0, Vars, StateVars, X, !V),
parse_goal(Y0, Y, !V),
parse_goal(B0, B, !V),
R = if_then_else(Vars, StateVars, X, Y, B)
;
parse_goal(A0, A, !V),
parse_goal(B0, B, !V),
R = (A;B)
).
parse_goal_2("else", [
term__functor(term__atom("if"), [
term__functor(term__atom("then"), [A0, B0], _)
], _),
C0
],
if_then_else(Vars, StateVars, A, B, C), !V) :-
parse_some_vars_goal(A0, Vars, StateVars, A, !V),
parse_goal(B0, B, !V),
parse_goal(C0, C, !V).
parse_goal_2("not", [A0], not(A), !V) :-
parse_goal(A0, A, !V).
parse_goal_2("\\+", [A0], not(A), !V) :-
parse_goal(A0, A, !V).
parse_goal_2("all", [QVars, A0], GoalExpr, !V):-
% Extract any state variables in the quantifier.
%
parse_quantifier_vars(QVars, StateVars0, Vars0),
list__map(term__coerce_var, StateVars0, StateVars),
list__map(term__coerce_var, Vars0, Vars),
parse_goal(A0, A @ (GoalExprA - ContextA), !V),
(
Vars = [], StateVars = [],
GoalExpr = GoalExprA
;
Vars = [], StateVars = [_|_],
GoalExpr = all_state_vars(StateVars, A)
;
Vars = [_|_], StateVars = [],
GoalExpr = all(Vars, A)
;
Vars = [_|_], StateVars = [_|_],
GoalExpr = all(Vars, all_state_vars(StateVars, A) - ContextA)
).
% handle implication
parse_goal_2("<=", [A0, B0], implies(B, A), !V):-
parse_goal(A0, A, !V),
parse_goal(B0, B, !V).
parse_goal_2("=>", [A0, B0], implies(A, B), !V):-
parse_goal(A0, A, !V),
parse_goal(B0, B, !V).
% handle equivalence
parse_goal_2("<=>", [A0, B0], equivalent(A, B), !V):-
parse_goal(A0, A, !V),
parse_goal(B0, B, !V).
parse_goal_2("some", [QVars, A0], GoalExpr, !V):-
% Extract any state variables in the quantifier.
%
parse_quantifier_vars(QVars, StateVars0, Vars0),
list__map(term__coerce_var, StateVars0, StateVars),
list__map(term__coerce_var, Vars0, Vars),
parse_goal(A0, A @ (GoalExprA - ContextA), !V),
(
Vars = [], StateVars = [],
GoalExpr = GoalExprA
;
Vars = [], StateVars = [_|_],
GoalExpr = some_state_vars(StateVars, A)
;
Vars = [_|_], StateVars = [],
GoalExpr = some(Vars, A)
;
Vars = [_|_], StateVars = [_|_],
GoalExpr = some(Vars, some_state_vars(StateVars, A) - ContextA)
).
% The following is a temporary hack to handle `is' in
% the parser - we ought to handle it in the code generation -
% but then `is/2' itself is a bit of a hack
%
parse_goal_2("is", [A0, B0], unify(A, B, pure), !V) :-
term__coerce(A0, A),
term__coerce(B0, B).
parse_goal_2("impure", [A0], A, !V) :-
parse_goal_with_purity(A0, (impure), A, !V).
parse_goal_2("semipure", [A0], A, !V) :-
parse_goal_with_purity(A0, (semipure), A, !V).
:- pred parse_goal_with_purity(term::in, purity::in, goal_expr::out,
prog_varset::in, prog_varset::out) is det.
parse_goal_with_purity(A0, Purity, A, !V) :-
parse_goal(A0, A1, !V),
( A1 = call(Pred, Args, pure) - _ ->
A = call(Pred, Args, Purity)
; A1 = unify(ProgTerm1, ProgTerm2, pure) - _ ->
A = unify(ProgTerm1, ProgTerm2, Purity)
;
% Inappropriate placement of an impurity marker, so we treat
% it like a predicate call. typecheck.m prints out something
% descriptive for these errors.
purity_name(Purity, PurityString),
term__coerce(A0, A2),
A = call(unqualified(PurityString), [A2], pure)
).
%-----------------------------------------------------------------------------%
parse_some_vars_goal(A0, Vars, StateVars, A, !VarSet) :-
(
A0 = term__functor(term__atom("some"), [QVars, A1], _Context),
parse_quantifier_vars(QVars, StateVars0, Vars0)
->
list__map(term__coerce_var, StateVars0, StateVars),
list__map(term__coerce_var, Vars0, Vars),
parse_goal(A1, A, !VarSet)
;
Vars = [],
StateVars = [],
parse_goal(A0, A, !VarSet)
).
%-----------------------------------------------------------------------------%
parse_lambda_expression(LambdaExpressionTerm, Args, Modes, Det) :-
LambdaExpressionTerm = term__functor(term__atom("is"),
[LambdaArgsTerm, DetTerm], _),
DetTerm = term__functor(term__atom(DetString), [], _),
standard_det(DetString, Det),
parse_lambda_args(LambdaArgsTerm, Args, Modes),
inst_var_constraints_are_consistent_in_modes(Modes).
:- pred parse_lambda_args(term, list(prog_term), list(mode)).
:- mode parse_lambda_args(in, out, out) is semidet.
parse_lambda_args(Term, Args, Modes) :-
( Term = term__functor(term__atom("[|]"), [Head, Tail], _Context) ->
parse_lambda_arg(Head, Arg, Mode),
Args = [Arg | Args1],
Modes = [Mode | Modes1],
parse_lambda_args(Tail, Args1, Modes1)
; Term = term__functor(term__atom("[]"), [], _) ->
Args = [],
Modes = []
;
Args = [Arg],
Modes = [Mode],
parse_lambda_arg(Term, Arg, Mode)
).
:- pred parse_lambda_arg(term, prog_term, mode).
:- mode parse_lambda_arg(in, out, out) is semidet.
parse_lambda_arg(Term, ArgTerm, Mode) :-
Term = term__functor(term__atom("::"), [ArgTerm0, ModeTerm], _),
term__coerce(ArgTerm0, ArgTerm),
convert_mode(allow_constrained_inst_var, ModeTerm, Mode0),
constrain_inst_vars_in_mode(Mode0, Mode).
%-----------------------------------------------------------------------------%
parse_pred_expression(PredTerm, EvalMethod, Args, Modes, Det) :-
PredTerm = term__functor(term__atom("is"),
[PredEvalArgsTerm, DetTerm], _),
DetTerm = term__functor(term__atom(DetString), [], _),
standard_det(DetString, Det),
parse_lambda_eval_method(PredEvalArgsTerm, EvalMethod, PredArgsTerm),
PredArgsTerm = term__functor(term__atom("pred"), PredArgsList, _),
parse_pred_expr_args(PredArgsList, Args, Modes),
inst_var_constraints_are_consistent_in_modes(Modes).
parse_dcg_pred_expression(PredTerm, EvalMethod, Args, Modes, Det) :-
PredTerm = term__functor(term__atom("is"),
[PredEvalArgsTerm, DetTerm], _),
DetTerm = term__functor(term__atom(DetString), [], _),
standard_det(DetString, Det),
parse_lambda_eval_method(PredEvalArgsTerm, EvalMethod, PredArgsTerm),
PredArgsTerm = term__functor(term__atom("pred"), PredArgsList, _),
parse_dcg_pred_expr_args(PredArgsList, Args, Modes),
inst_var_constraints_are_consistent_in_modes(Modes).
parse_func_expression(FuncTerm, EvalMethod, Args, Modes, Det) :-
%
% parse a func expression with specified modes and determinism
%
FuncTerm = term__functor(term__atom("is"), [EqTerm, DetTerm], _),
EqTerm = term__functor(term__atom("="),
[FuncEvalArgsTerm, RetTerm], _),
DetTerm = term__functor(term__atom(DetString), [], _),
standard_det(DetString, Det),
parse_lambda_eval_method(FuncEvalArgsTerm, EvalMethod, FuncArgsTerm),
FuncArgsTerm = term__functor(term__atom("func"), FuncArgsList, _),
( parse_pred_expr_args(FuncArgsList, Args0, Modes0) ->
parse_lambda_arg(RetTerm, RetArg, RetMode),
list__append(Args0, [RetArg], Args),
list__append(Modes0, [RetMode], Modes),
inst_var_constraints_are_consistent_in_modes(Modes)
;
%
% the argument modes default to `in',
% the return mode defaults to `out'
%
in_mode(InMode),
out_mode(OutMode),
list__length(FuncArgsList, NumArgs),
list__duplicate(NumArgs, InMode, Modes0),
RetMode = OutMode,
list__append(Modes0, [RetMode], Modes),
list__append(FuncArgsList, [RetTerm], Args1),
list__map(term__coerce, Args1, Args)
).
parse_func_expression(FuncTerm, EvalMethod, Args, Modes, Det) :-
%
% parse a func expression with unspecified modes and determinism
%
FuncTerm = term__functor(term__atom("="),
[FuncEvalArgsTerm, RetTerm], _),
parse_lambda_eval_method(FuncEvalArgsTerm, EvalMethod, FuncArgsTerm),
FuncArgsTerm = term__functor(term__atom("func"), Args0, _),
%
% the argument modes default to `in',
% the return mode defaults to `out',
% and the determinism defaults to `det'.
%
in_mode(InMode),
out_mode(OutMode),
list__length(Args0, NumArgs),
list__duplicate(NumArgs, InMode, Modes0),
RetMode = OutMode,
Det = det,
list__append(Modes0, [RetMode], Modes),
inst_var_constraints_are_consistent_in_modes(Modes),
list__append(Args0, [RetTerm], Args1),
list__map(term__coerce, Args1, Args).
parse_lambda_eval_method(Term0, EvalMethod, Term) :-
( Term0 = term__functor(term__atom(MethodStr), [Term1], _) ->
( MethodStr = "aditi_bottom_up" ->
EvalMethod = (aditi_bottom_up),
Term = Term1
;
EvalMethod = normal,
Term = Term0
)
;
EvalMethod = normal,
Term = Term0
).
:- pred parse_pred_expr_args(list(term), list(prog_term), list(mode)).
:- mode parse_pred_expr_args(in, out, out) is semidet.
parse_pred_expr_args([], [], []).
parse_pred_expr_args([Term|Terms], [Arg|Args], [Mode|Modes]) :-
parse_lambda_arg(Term, Arg, Mode),
parse_pred_expr_args(Terms, Args, Modes).
% parse_dcg_pred_expr_args is like parse_pred_expr_args except
% that the last two elements of the list are the modes of the
% two dcg arguments.
:- pred parse_dcg_pred_expr_args(list(term), list(prog_term),
list(mode)).
:- mode parse_dcg_pred_expr_args(in, out, out) is semidet.
parse_dcg_pred_expr_args([DCGModeTermA, DCGModeTermB], [],
[DCGModeA, DCGModeB]) :-
convert_mode(allow_constrained_inst_var, DCGModeTermA, DCGModeA0),
convert_mode(allow_constrained_inst_var, DCGModeTermB, DCGModeB0),
constrain_inst_vars_in_mode(DCGModeA0, DCGModeA),
constrain_inst_vars_in_mode(DCGModeB0, DCGModeB).
parse_dcg_pred_expr_args([Term|Terms], [Arg|Args], [Mode|Modes]) :-
Terms = [_, _|_],
parse_lambda_arg(Term, Arg, Mode),
parse_dcg_pred_expr_args(Terms, Args, Modes).
%-----------------------------------------------------------------------------%