Files
mercury/compiler/add_heap_ops.m
Zoltan Somogyi 8693e293a2 This diff makes hlds_pred.m and many callers of its predicates easier to read
Estimated hours taken: 4
Branches: main

This diff makes hlds_pred.m and many callers of its predicates easier to read
and to maintain, but contains no changes in algorithms whatsoever.

compiler/hlds_pred.m:
	Bring this module into line with our current coding standards.
	Use predmode declarations, functions, and state variable syntax
	when appropriate.

	Reorder arguments of predicates where necessary for the use of state
	variable syntax, and where this improves readability.

	Replace old-style lambdas with new-style lambdas or with partially
	applied named procedures.

	Standardize indentation.

compiler/*.m:
	Conform to the changes in hlds_pred.m. This mostly means using the
	new argument orders of predicates exported by hlds_pred.m. Where this
	is now conveniently possible, change predicates to use state
	variable notation.

	In some modules, using state variable notation required changing the
	orders of arguments in the module's top predicate.

compiler/passes_aux.m:
	Change the order of arguments in the calls this module makes to
	allow the callees to use state variable notation.

	Convert this module to state variable notation too.
2003-10-24 06:17:51 +00:00

359 lines
13 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 2000-2003 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% Author: fjh.
%
% This module is an HLDS-to-HLDS transformation that inserts code to
% handle heap reclamation on backtracking, by saving and restoring
% the values of the heap pointer.
% The transformation involves adding calls to impure
% predicates defined in library/private_builtin.m, which in turn call
% the MR_mark_hp() and MR_restore_hp() macros defined in
% runtime/mercury_heap.h.
%
% This pass is currently only used for the MLDS back-end.
% For some reason (perhaps efficiency?? or more likely just historical?),
% the LLDS back-end inserts the heap operations as it is generating
% LLDS code, rather than via an HLDS to HLDS transformation.
%
% This module is very similar to add_trail_ops.m.
%
%-----------------------------------------------------------------------------%
% XXX check goal_infos for correctness
%-----------------------------------------------------------------------------%
:- module ml_backend__add_heap_ops.
:- interface.
:- import_module hlds__hlds_module.
:- import_module hlds__hlds_pred.
:- pred add_heap_ops(module_info::in, proc_info::in, proc_info::out) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module backend_libs__code_model.
:- import_module check_hlds__type_util.
:- import_module hlds__goal_form.
:- import_module hlds__goal_util.
:- import_module hlds__hlds_data.
:- import_module hlds__hlds_goal.
:- import_module hlds__instmap.
:- import_module hlds__quantification.
:- import_module parse_tree__inst.
:- import_module parse_tree__modules.
:- import_module parse_tree__prog_data.
:- import_module parse_tree__prog_util.
:- import_module bool, string.
:- import_module assoc_list, list, map, set, varset, std_util, require, term.
%
% As we traverse the goal, we add new variables to hold the
% saved values of the heap pointer.
% So we need to thread a varset and a vartypes mapping through,
% to record the names and types of the new variables.
%
% We also keep the module_info around, so that we can use
% the predicate table that it contains to lookup the pred_ids
% for the builtin procedures that we insert calls to.
% We do not update the module_info as we're traversing the goal.
%
:- type heap_ops_info --->
heap_ops_info(
varset :: prog_varset,
var_types :: vartypes,
module_info :: module_info
).
add_heap_ops(ModuleInfo0, !Proc) :-
proc_info_goal(!.Proc, Goal0),
proc_info_varset(!.Proc, VarSet0),
proc_info_vartypes(!.Proc, VarTypes0),
TrailOpsInfo0 = heap_ops_info(VarSet0, VarTypes0, ModuleInfo0),
goal_add_heap_ops(Goal0, Goal, TrailOpsInfo0, TrailOpsInfo),
TrailOpsInfo = heap_ops_info(VarSet, VarTypes, _),
proc_info_set_goal(Goal, !Proc),
proc_info_set_varset(VarSet, !Proc),
proc_info_set_vartypes(VarTypes, !Proc),
% The code below does not maintain the non-local variables,
% so we need to requantify.
% XXX it would be more efficient to maintain them
% rather than recomputing them every time.
requantify_proc(!Proc).
:- pred goal_add_heap_ops(hlds_goal::in, hlds_goal::out,
heap_ops_info::in, heap_ops_info::out) is det.
goal_add_heap_ops(GoalExpr0 - GoalInfo, Goal) -->
goal_expr_add_heap_ops(GoalExpr0, GoalInfo, Goal).
:- pred goal_expr_add_heap_ops(hlds_goal_expr::in, hlds_goal_info::in,
hlds_goal::out,
heap_ops_info::in, heap_ops_info::out) is det.
goal_expr_add_heap_ops(conj(Goals0), GI, conj(Goals) - GI) -->
conj_add_heap_ops(Goals0, Goals).
goal_expr_add_heap_ops(par_conj(Goals0), GI, par_conj(Goals) - GI) -->
conj_add_heap_ops(Goals0, Goals).
goal_expr_add_heap_ops(disj([]), GI, disj([]) - GI) --> [].
goal_expr_add_heap_ops(disj(Goals0), GoalInfo, Goal - GoalInfo) -->
{ Goals0 = [FirstDisjunct | _] },
{ goal_info_get_context(GoalInfo, Context) },
{ goal_info_get_code_model(GoalInfo, CodeModel) },
%
% If necessary, save the heap pointer so that we can
% restore it on back-tracking.
% We don't need to do this here if it is a model_det or model_semi
% disjunction and the first disjunct won't allocate any heap --
% in that case, we delay saving the heap pointer until just before
% the first disjunct that might allocate heap.
%
(
{ CodeModel = model_non
; goal_may_allocate_heap(FirstDisjunct)
}
->
new_saved_hp_var(SavedHeapPointerVar),
gen_mark_hp(SavedHeapPointerVar, Context, MarkHeapPointerGoal),
disj_add_heap_ops(Goals0, yes, yes(SavedHeapPointerVar),
GoalInfo, Goals),
{ Goal = conj([MarkHeapPointerGoal, disj(Goals) - GoalInfo]) }
;
disj_add_heap_ops(Goals0, yes, no, GoalInfo, Goals),
{ Goal = disj(Goals) }
).
goal_expr_add_heap_ops(switch(A, B, Cases0), GI, switch(A, B, Cases) - GI) -->
cases_add_heap_ops(Cases0, Cases).
goal_expr_add_heap_ops(not(InnerGoal), OuterGoalInfo, Goal) -->
%
% We handle negations by converting them into if-then-elses:
% not(G) ===> (if G then fail else true)
%
{ goal_info_get_context(OuterGoalInfo, Context) },
{ InnerGoal = _ - InnerGoalInfo },
{ goal_info_get_determinism(InnerGoalInfo, Determinism) },
{ determinism_components(Determinism, _CanFail, NumSolns) },
{ true_goal(Context, True) },
{ fail_goal(Context, Fail) },
ModuleInfo =^ module_info,
{ NumSolns = at_most_zero ->
% The "then" part of the if-then-else will be unreachable,
% but to preserve the invariants that the MLDS back-end
% relies on, we need to make sure that it can't fail.
% So we use a call to `private_builtin__unused' (which
% will call error/1) rather than `fail' for the "then" part.
generate_call("unused", [], det, no, [], ModuleInfo, Context,
ThenGoal)
;
ThenGoal = Fail
},
{ NewOuterGoal = if_then_else([], InnerGoal, ThenGoal, True) },
goal_expr_add_heap_ops(NewOuterGoal, OuterGoalInfo, Goal).
goal_expr_add_heap_ops(some(A, B, Goal0), GoalInfo,
some(A, B, Goal) - GoalInfo) -->
goal_add_heap_ops(Goal0, Goal).
goal_expr_add_heap_ops(if_then_else(A, Cond0, Then0, Else0), GoalInfo,
Goal - GoalInfo) -->
goal_add_heap_ops(Cond0, Cond),
goal_add_heap_ops(Then0, Then),
goal_add_heap_ops(Else0, Else1),
%
% If the condition can allocate heap space,
% save the heap pointer so that we can
% restore it if the condition fails.
%
( { goal_may_allocate_heap(Cond0) } ->
new_saved_hp_var(SavedHeapPointerVar),
{ goal_info_get_context(GoalInfo, Context) },
gen_mark_hp(SavedHeapPointerVar, Context, MarkHeapPointerGoal),
%
% Generate code to restore the heap pointer,
% and insert that code at the start of the Else branch.
%
gen_restore_hp(SavedHeapPointerVar, Context,
RestoreHeapPointerGoal),
{ Else1 = _ - Else1GoalInfo },
{ Else = conj([RestoreHeapPointerGoal, Else1]) -
Else1GoalInfo },
{ IfThenElse = if_then_else(A, Cond, Then, Else) - GoalInfo },
{ Goal = conj([MarkHeapPointerGoal, IfThenElse]) }
;
{ Goal = if_then_else(A, Cond, Then, Else1) }
).
goal_expr_add_heap_ops(call(A,B,C,D,E,F), GI, call(A,B,C,D,E,F) - GI) --> [].
goal_expr_add_heap_ops(generic_call(A,B,C,D), GI, generic_call(A,B,C,D) - GI)
--> [].
goal_expr_add_heap_ops(unify(A,B,C,D,E), GI, unify(A,B,C,D,E) - GI) --> [].
goal_expr_add_heap_ops(PragmaForeign, GoalInfo, Goal) -->
{ PragmaForeign = foreign_proc(_,_,_,_,_,_,Impl) },
( { Impl = nondet(_,_,_,_,_,_,_,_,_) } ->
% XXX Implementing heap reclamation for nondet pragma
% foreign_code via transformation is difficult,
% because there's nowhere in the HLDS pragma_foreign_code
% goal where we can insert the heap reclamation operations.
% For now, we don't support this.
% Instead, we just generate a call to a procedure which
% will at runtime call error/1 with an appropriate
% "Sorry, not implemented" error message.
ModuleInfo =^ module_info,
{ goal_info_get_context(GoalInfo, Context) },
{ generate_call("reclaim_heap_nondet_pragma_foreign_code",
[], erroneous, no, [], ModuleInfo, Context,
SorryNotImplementedCode) },
{ Goal = SorryNotImplementedCode }
;
{ Goal = PragmaForeign - GoalInfo }
).
goal_expr_add_heap_ops(shorthand(_), _, _) -->
% these should have been expanded out by now
{ error("goal_expr_add_heap_ops: unexpected shorthand") }.
:- pred conj_add_heap_ops(hlds_goals::in, hlds_goals::out,
heap_ops_info::in, heap_ops_info::out) is det.
conj_add_heap_ops(Goals0, Goals) -->
list__map_foldl(goal_add_heap_ops, Goals0, Goals).
:- pred disj_add_heap_ops(hlds_goals::in, bool::in, maybe(prog_var)::in,
hlds_goal_info::in, hlds_goals::out,
heap_ops_info::in, heap_ops_info::out) is det.
disj_add_heap_ops([], _, _, _, []) --> [].
disj_add_heap_ops([Goal0 | Goals0], IsFirstBranch, MaybeSavedHeapPointerVar,
DisjGoalInfo, DisjGoals) -->
goal_add_heap_ops(Goal0, Goal1),
{ Goal1 = _ - GoalInfo },
{ goal_info_get_context(GoalInfo, Context) },
%
% If needed, reset the heap pointer before executing the goal,
% to reclaim heap space allocated in earlier branches.
%
(
{ IsFirstBranch = no },
{ MaybeSavedHeapPointerVar = yes(SavedHeapPointerVar0) }
->
gen_restore_hp(SavedHeapPointerVar0, Context,
RestoreHeapPointerGoal),
{ conj_list_to_goal([RestoreHeapPointerGoal, Goal1], GoalInfo,
Goal) }
;
{ Goal = Goal1 }
),
%
% Save the heap pointer, if we haven't already done so,
% and if this disjunct might allocate heap space.
%
(
{ MaybeSavedHeapPointerVar = no },
{ goal_may_allocate_heap(Goal) }
->
% Generate code to save the heap pointer
new_saved_hp_var(SavedHeapPointerVar),
gen_mark_hp(SavedHeapPointerVar, Context, MarkHeapPointerGoal),
% Recursively handle the remaining disjuncts
disj_add_heap_ops(Goals0, no, yes(SavedHeapPointerVar),
DisjGoalInfo, Goals1),
% Put this disjunct and the remaining disjuncts in a
% nested disjunction, so that the heap pointer variable
% can scope over these disjuncts
{ Disj = disj([Goal | Goals1]) - DisjGoalInfo },
{ DisjGoals = [conj([MarkHeapPointerGoal, Disj]) -
DisjGoalInfo] }
;
% Just recursively handle the remaining disjuncts
disj_add_heap_ops(Goals0, no, MaybeSavedHeapPointerVar,
DisjGoalInfo, Goals),
{ DisjGoals = [Goal | Goals] }
).
:- pred cases_add_heap_ops(list(case)::in, list(case)::out,
heap_ops_info::in, heap_ops_info::out) is det.
cases_add_heap_ops([], []) --> [].
cases_add_heap_ops([Case0 | Cases0], [Case | Cases]) -->
{ Case0 = case(ConsId, Goal0) },
{ Case = case(ConsId, Goal) },
goal_add_heap_ops(Goal0, Goal),
cases_add_heap_ops(Cases0, Cases).
%-----------------------------------------------------------------------------%
:- pred gen_mark_hp(prog_var::in, prog_context::in, hlds_goal::out,
heap_ops_info::in, heap_ops_info::out) is det.
gen_mark_hp(SavedHeapPointerVar, Context, MarkHeapPointerGoal) -->
ModuleInfo =^ module_info,
{ generate_call("mark_hp", [SavedHeapPointerVar],
det, yes(impure),
[SavedHeapPointerVar - ground_inst],
ModuleInfo, Context, MarkHeapPointerGoal) }.
:- pred gen_restore_hp(prog_var::in, prog_context::in, hlds_goal::out,
heap_ops_info::in, heap_ops_info::out) is det.
gen_restore_hp(SavedHeapPointerVar, Context, RestoreHeapPointerGoal) -->
ModuleInfo =^ module_info,
{ generate_call("restore_hp", [SavedHeapPointerVar],
det, yes(impure), [],
ModuleInfo, Context, RestoreHeapPointerGoal) }.
:- func ground_inst = (inst).
ground_inst = ground(unique, none).
%-----------------------------------------------------------------------------%
:- pred new_saved_hp_var(prog_var::out,
heap_ops_info::in, heap_ops_info::out) is det.
new_saved_hp_var(Var) -->
new_var("HeapPointer", heap_pointer_type, Var).
:- pred new_var(string::in, (type)::in, prog_var::out,
heap_ops_info::in, heap_ops_info::out) is det.
new_var(Name, Type, Var, TOI0, TOI) :-
VarSet0 = TOI0 ^ varset,
VarTypes0 = TOI0 ^ var_types,
varset__new_named_var(VarSet0, Name, Var, VarSet),
map__det_insert(VarTypes0, Var, Type, VarTypes),
TOI = ((TOI0 ^ varset := VarSet)
^ var_types := VarTypes).
%-----------------------------------------------------------------------------%
:- pred generate_call(string::in, list(prog_var)::in, determinism::in,
maybe(goal_feature)::in, assoc_list(prog_var, inst)::in,
module_info::in, term__context::in, hlds_goal::out) is det.
generate_call(PredName, Args, Detism, MaybeFeature, InstMap, Module, Context,
CallGoal) :-
mercury_private_builtin_module(BuiltinModule),
goal_util__generate_simple_call(BuiltinModule, PredName, predicate,
Args, only_mode, Detism, MaybeFeature, InstMap, Module,
Context, CallGoal).
%-----------------------------------------------------------------------------%