Files
mercury/robdd/test_glb.c
David Overton 75ff9d58c5 Import Peter Schachte's ROBDD package into the Mercury repository as
Estimated hours taken: 0.2

Import Peter Schachte's ROBDD package into the Mercury repository as
`mercury/robdd'.
Vendor tag is `robdd'.  Release tag is `REL_1_0'.
2000-03-10 05:17:23 +00:00

196 lines
4.6 KiB
C

/*****************************************************************
File : test_glb.c
RCS : $Id: test_glb.c,v 1.1 2000-03-10 05:17:22 dmo Exp $
Author : Peter Schachte
Origin : Thu Jul 13 14:25:12 1995
Purpose: Timing test for bryant graph glb code
*****************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include "bryant.h"
#include "timing.h"
#define VARLIMIT 1024
int opcount;
void usage(char *progname)
{
printf("usage: %s size maxvar [repetitions]\n", progname);
printf(" creates all possible pairs of v <-> v1 & v2 & ... & vsize functions and\n");
printf(" computes their glb. Each V and the vi are between 0 and maxvar inclusive.\n");
printf(" If repetitions is >0, this will be done that many times.\n");
}
void init_array(int top, int v0, int array[])
{
int i, val;
for (i=0, val=0; i<top; ++i, ++val) {
if (val==v0) ++val;
array[i] = val;
}
}
int next_array(int n, int varmax, int v0, int array[])
{
int i;
int limit;
int val;
/* Search backward for first cell with "room" to be
* incremented. This is complicated by the need to avoid
* using the value v0.
*/
for (i=n-1, limit=varmax-1;; --i, --limit) {
if (i<0) return 0; /* no more combinations possible */
if (limit==v0) --limit;
if (++array[i]==v0) ++array[i];
if (array[i]<=limit) break;
}
/* Now we've incremented array[i], and must set
* array[i+1..n-1] to successive values (avoiding v0).
*/
for (val=array[i]+1, ++i; i<n; ++i, ++val) {
if (val==v0) ++val;
array[i] = val;
}
return 1;
}
void doit(type *f, type *g)
{
type *result;
#ifdef DEBUGALL
printf("glb("),
printOut(f),
printf(", ");
printOut(g),
printf(") = ");
fflush(stdout);
#endif /* DEBUGALL */
#ifndef OVERHEAD
result = glb(f, g);
#endif /* !OVERHEAD */
#ifdef DEBUGALL
printOut(result);
printf("\n");
#endif /* DEBUGALL */
++opcount;
}
void dont_doit(type *f, type *g)
{
}
void inner_loop(int varmax, int top, type *f)
{
int arrayg[33];
int vg;
type *g;
for (vg=0; vg<varmax; ++vg) {
init_array(top, vg, arrayg);
g = testing_iff_conj_array(vg, top, arrayg);
doit(f, g);
while (next_array(top, varmax, vg, arrayg)) {
g = testing_iff_conj_array(vg, top, arrayg);
doit(f, g);
}
}
}
void dont_inner_loop(int varmax, int top, type *f)
{
int arrayg[33];
int vg;
type *g;
for (vg=0; vg<varmax; ++vg) {
init_array(top, vg, arrayg);
g = testing_iff_conj_array(vg, top, arrayg);
dont_doit(f, g);
while (next_array(top, varmax, vg, arrayg)) {
g = testing_iff_conj_array(vg, top, arrayg);
dont_doit(f, g);
}
}
}
int main(int argc, char **argv)
{
int varmax, size, repetitions;
int arrayf[VARLIMIT];
int reps, vf;
type *f;
millisec clock0, clock1, clock2, clock3;
float runtime, overhead, rate;
int test_nodes, overhead_nodes;
if (argc < 3) {
usage(argv[0]);
return 20;
}
if ((varmax=atoi(argv[2]))<1 || varmax>=VARLIMIT) {
usage(argv[0]);
printf("\n varmax must be between 1 <= varmax < %d\n", VARLIMIT);
return 20;
}
if ((size=atoi(argv[1]))<0 || size>=varmax) {
usage(argv[0]);
printf("\n size must be between 0 <= size < varmax\n");
return 20;
}
repetitions=(argc>3 ? atoi(argv[3]) : 1);
if (repetitions <= 0) repetitions = 1;
opcount = 0;
clock0 = milli_time();
for (reps=repetitions; reps>0; --reps) {
for (vf=0; vf<varmax; ++vf) {
init_array(size, vf, arrayf);
f = testing_iff_conj_array(vf, size, arrayf);
inner_loop(varmax, size, f);
while (next_array(size, varmax, vf, arrayf)) {
f = testing_iff_conj_array(vf, size, arrayf);
inner_loop(varmax, size, f);
}
}
}
clock1 = milli_time();
test_nodes = nodes_in_use();
initRep();
clock2 = milli_time();
for (reps=repetitions; reps>0; --reps) {
for (vf=0; vf<varmax; ++vf) {
init_array(size, vf, arrayf);
f = testing_iff_conj_array(vf, size, arrayf);
dont_inner_loop(varmax, size, f);
while (next_array(size, varmax, vf, arrayf)) {
f = testing_iff_conj_array(vf, size, arrayf);
dont_inner_loop(varmax, size, f);
}
}
}
clock3 = milli_time();
overhead_nodes = nodes_in_use();
runtime = (float)(clock1-clock0)/1000;
overhead = (float)(clock3-clock2)/1000;
rate = ((float)opcount)/(runtime-overhead);
printf("%s %d %d %d: %.3f - %.3f = %.3f secs, %d ops, %d nodes, %.1f ops/sec\n",
argv[0], size, varmax, repetitions,
runtime, overhead, (runtime-overhead), opcount,
test_nodes-overhead_nodes, rate);
return 0;
}