Files
mercury/compiler/type_util.m
Fergus Henderson ec86c88404 Merge in the changes from the existential_types_2 branch.
Estimated hours taken: 4

Merge in the changes from the existential_types_2 branch.

This change adds support for mode re-ordering of code involving
existential types.  The change required modifying the order of the
compiler passes so that polymorphism comes before mode analysis,
so that mode analysis can check the modes of the `type_info' or
`typeclass_info' variables that polymorphism introduces, so that
it can thus re-order the code accordingly.

This change also includes some more steps towards making existential data
types work.  In particular, you should be able to declare existentially
typed data types, the compiler will generate appropriate unification
and compare/3 routines for them, and deconstruction unifications for them
should work OK.  However, currently there's no way to construct them
except via `pragam c_code', and we don't generate correct RTTI for them,
so you can't use `io__write' etc. on them.

library/private_builtin.m:
compiler/accumulator.m:
compiler/bytecode_gen.m:
compiler/check_typeclass.m:
compiler/clause_to_proc.m:
compiler/code_util.m:
compiler/common.m:
compiler/dead_proc_elim.m:
compiler/dependency_graph.m:
compiler/det_analysis.m:
compiler/det_report.m:
compiler/follow_code.m:
compiler/follow_vars.m:
compiler/goal_util.m:
compiler/higher_order.m:
compiler/hlds_goal.m:
compiler/hlds_out.m:
compiler/hlds_pred.m:
compiler/intermod.m:
compiler/lambda.m:
compiler/live_vars.m:
compiler/magic.m:
compiler/make_hlds.m:
compiler/mercury_compile.m:
compiler/mercury_to_c.m:
compiler/mode_errors.m:
compiler/mode_info.m:
compiler/mode_util.m:
compiler/modecheck_call.m:
compiler/modecheck_unify.m:
compiler/modes.m:
compiler/pd_cost.m:
compiler/polymorphism.m:
compiler/post_typecheck.m:
compiler/purity.m:
compiler/quantification.m:
compiler/rl_exprn.m:
compiler/rl_key.m:
compiler/simplify.m:
compiler/table_gen.m:
compiler/term_traversal.m:
compiler/type_util.m:
compiler/typecheck.m:
compiler/unify_gen.m:
compiler/unify_proc.m:
compiler/unique_modes.m:
compiler/unused_args.m:
compiler/notes/compiler_design.html:
doc/reference_manual.texi:
tests/hard_coded/typeclasses/Mmakefile:
tests/hard_coded/typeclasses/existential_data_types.m:
tests/hard_coded/typeclasses/existential_data_types.exp:
tests/warnings/simple_code.exp:
tests/hard_coded/Mmakefile:
tests/term/arit_exp.trans_opt_exp:
tests/term/associative.trans_opt_exp:
tests/term/pl5_2_2.trans_opt_exp:
tests/term/vangelder.trans_opt_exp:
tests/term/arit_exp.trans_opt_exp:
tests/term/associative.trans_opt_exp:
tests/term/pl5_2_2.trans_opt_exp:
tests/term/vangelder.trans_opt_exp:
tests/invalid/errors2.err_exp2:
tests/invalid/prog_io_erroneous.err_exp2:
tests/invalid/type_inf_loop.err_exp2:
tests/invalid/types.err_exp2:
tests/invalid/polymorphic_unification.err_exp:
tests/invalid/Mmakefile:
tests/warnings/simple_code.exp:
tests/debugger/queens.exp:
tests/hard_coded/Mmakefile:
tests/hard_coded/existential_reordering.m:
tests/hard_coded/existential_reordering.exp:
	Merge in the changes from the existential_types_2 branch.
1999-06-30 17:13:53 +00:00

1026 lines
35 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1994-1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% File: type_util.m.
% Main author: fjh.
% This file provides some utility predicates which operate on types.
% It is used by various stages of the compilation after type-checking,
% include the mode checker and the code generator.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- module type_util.
:- interface.
:- import_module hlds_module, hlds_pred, hlds_data, prog_data.
:- import_module term.
:- import_module list, map.
%-----------------------------------------------------------------------------%
% Succeed iff type is an "atomic" type - one which can be
% unified using a simple_test rather than a complicated_unify.
:- pred type_is_atomic(type, module_info).
:- mode type_is_atomic(in, in) is semidet.
% type_is_higher_order(Type, PredOrFunc, ArgTypes) succeeds iff
% Type is a higher-order predicate or function type with the specified
% argument types (for functions, the return type is appended to the
% end of the argument types).
:- pred type_is_higher_order(type, pred_or_func, list(type)).
:- mode type_is_higher_order(in, out, out) is semidet.
% type_id_is_higher_order(TypeId, PredOrFunc) succeeds iff
% TypeId is a higher-order predicate or function type.
:- pred type_id_is_higher_order(type_id, pred_or_func).
:- mode type_id_is_higher_order(in, out) is semidet.
:- pred type_is_aditi_state(type).
:- mode type_is_aditi_state(in) is semidet.
% A test for types that are defined by hand (not including
% the builtin types). Don't generate type_ctor_*
% for these types.
:- pred type_id_is_hand_defined(type_id).
:- mode type_id_is_hand_defined(in) is semidet.
% A test for type_info-related types that are introduced by
% polymorphism.m. Mode inference never infers unique modes
% for these types, since it would not be useful, and since we
% want to minimize the number of different modes that we infer.
:- pred is_introduced_type_info_type(type).
:- mode is_introduced_type_info_type(in) is semidet.
% Given a type, determine what sort of type it is.
:- pred classify_type(type, module_info, builtin_type).
:- mode classify_type(in, in, out) is det.
:- type builtin_type ---> int_type
; char_type
; str_type
; float_type
; pred_type
; enum_type
; polymorphic_type
; user_type.
% Given a non-variable type, return its type-id and argument types.
:- pred type_to_type_id(type, type_id, list(type)).
:- mode type_to_type_id(in, out, out) is semidet.
% Given a variable type, return its type variable.
:- pred type_util__var(type, tvar).
:- mode type_util__var(in, out) is semidet.
:- mode type_util__var(out, in) is det.
% Given a type_id, a list of argument types and maybe a context,
% construct a type.
:- pred construct_type(type_id, list(type), (type)).
:- mode construct_type(in, in, out) is det.
:- pred construct_type(type_id, list(type), prog_context, (type)).
:- mode construct_type(in, in, in, out) is det.
% Construct builtin types.
:- func int_type = (type).
:- func string_type = (type).
:- func float_type = (type).
:- func char_type = (type).
% Given a constant and an arity, return a type_id.
% Fails if the constant is not an atom.
:- pred make_type_id(const, int, type_id).
:- mode make_type_id(in, in, out) is semidet.
% Given a type_id, look up its module/name/arity
:- pred type_util__type_id_module(module_info, type_id, module_name).
:- mode type_util__type_id_module(in, in, out) is det.
:- pred type_util__type_id_name(module_info, type_id, string).
:- mode type_util__type_id_name(in, in, out) is det.
:- pred type_util__type_id_arity(module_info, type_id, arity).
:- mode type_util__type_id_arity(in, in, out) is det.
% If the type is a du type, return the list of its constructors.
:- pred type_constructors(type, module_info, list(constructor)).
:- mode type_constructors(in, in, out) is semidet.
% Work out the types of the arguments of a functor.
:- pred type_util__get_cons_id_arg_types(module_info::in, (type)::in,
cons_id::in, list(type)::out) is det.
% Given a type and a cons_id, look up the definition of that
% constructor; if it is existentially typed, return its definition,
% otherwise fail.
:- pred type_util__get_existq_cons_defn(module_info::in,
(type)::in, cons_id::in, ctor_defn::out) is semidet.
% This type is used to return information about a constructor
% definition, extracted from the hlds_type_defn and hlds_cons_defn
% data types.
:- type ctor_defn
---> ctor_defn(
tvarset,
existq_tvars,
list(class_constraint), % existential constraints
list(type), % functor argument types
(type) % functor result type
).
% Given a list of constructors for a type,
% check whether that type is a no_tag type
% (i.e. one with only one constructor, and
% whose one constructor has only one argument,
% and which is not private_builtin:type_info/1),
% and if so, return its constructor symbol and argument type.
:- pred type_is_no_tag_type(list(constructor), sym_name, type).
:- mode type_is_no_tag_type(in, out, out) is semidet.
% Unify (with occurs check) two types with respect to a type
% substitution and update the type bindings.
% The third argument is a list of type variables which cannot
% be bound (i.e. head type variables).
:- pred type_unify(type, type, list(tvar), tsubst, tsubst).
:- mode type_unify(in, in, in, in, out) is semidet.
:- pred type_unify_list(list(type), list(type), list(tvar), tsubst, tsubst).
:- mode type_unify_list(in, in, in, in, out) is semidet.
% Return a list of the type variables of a type.
:- pred type_util__vars(type, list(tvar)).
:- mode type_util__vars(in, out) is det.
% type_list_subsumes(TypesA, TypesB, Subst) succeeds iff the list
% TypesA subsumes (is more general than) TypesB, producing a
% type substitution which when applied to TypesA will give TypesB.
:- pred type_list_subsumes(list(type), list(type), tsubst).
:- mode type_list_subsumes(in, in, out) is semidet.
% apply a type substitution (i.e. map from tvar -> type)
% to all the types in a variable typing (i.e. map from var -> type).
:- pred apply_substitution_to_type_map(map(prog_var, type), tsubst,
map(prog_var, type)).
:- mode apply_substitution_to_type_map(in, in, out) is det.
% same thing as above, except for a recursive substitution
% (i.e. we keep applying the substitution recursively until
% there are no more changes).
:- pred apply_rec_substitution_to_type_map(map(prog_var, type), tsubst,
map(prog_var, type)).
:- mode apply_rec_substitution_to_type_map(in, in, out) is det.
% Update a map from tvar to type_info_locn, using the type renaming
% and substitution to rename tvars and a variable substitution to
% rename vars. The type renaming is applied before the type
% substitution.
%
% If tvar maps to a another type variable, we keep the new
% variable, if it maps to a type, we remove it from the map.
:- pred apply_substitutions_to_var_map(map(tvar, type_info_locn), tsubst,
map(tvar, type), map(prog_var, prog_var), map(tvar, type_info_locn)).
:- mode apply_substitutions_to_var_map(in, in, in, in, out) is det.
% Update a map from class_constraint to var, using the type renaming
% and substitution to rename tvars and a variable substition to
% rename vars. The type renaming is applied before the type
% substitution.
:- pred apply_substitutions_to_typeclass_var_map(
map(class_constraint, prog_var), tsubst, map(tvar, type),
map(prog_var, prog_var), map(class_constraint, prog_var)).
:- mode apply_substitutions_to_typeclass_var_map(in, in, in, in, out) is det.
:- pred apply_rec_subst_to_constraints(tsubst, class_constraints,
class_constraints).
:- mode apply_rec_subst_to_constraints(in, in, out) is det.
:- pred apply_rec_subst_to_constraint_list(tsubst,
list(class_constraint), list(class_constraint)).
:- mode apply_rec_subst_to_constraint_list(in, in, out) is det.
:- pred apply_rec_subst_to_constraint(tsubst, class_constraint,
class_constraint).
:- mode apply_rec_subst_to_constraint(in, in, out) is det.
:- pred apply_subst_to_constraints(tsubst, class_constraints,
class_constraints).
:- mode apply_subst_to_constraints(in, in, out) is det.
:- pred apply_subst_to_constraint_list(tsubst, list(class_constraint),
list(class_constraint)).
:- mode apply_subst_to_constraint_list(in, in, out) is det.
:- pred apply_subst_to_constraint(tsubst, class_constraint,
class_constraint).
:- mode apply_subst_to_constraint(in, in, out) is det.
:- pred apply_subst_to_constraint_proofs(tsubst,
map(class_constraint, constraint_proof),
map(class_constraint, constraint_proof)).
:- mode apply_subst_to_constraint_proofs(in, in, out) is det.
:- pred apply_rec_subst_to_constraint_proofs(tsubst,
map(class_constraint, constraint_proof),
map(class_constraint, constraint_proof)).
:- mode apply_rec_subst_to_constraint_proofs(in, in, out) is det.
:- pred apply_variable_renaming_to_constraints(map(tvar, tvar),
class_constraints, class_constraints).
:- mode apply_variable_renaming_to_constraints(in, in, out) is det.
:- pred apply_variable_renaming_to_constraint_list(map(tvar, tvar),
list(class_constraint), list(class_constraint)).
:- mode apply_variable_renaming_to_constraint_list(in, in, out) is det.
:- pred apply_variable_renaming_to_constraint(map(tvar, tvar),
class_constraint, class_constraint).
:- mode apply_variable_renaming_to_constraint(in, in, out) is det.
% Apply a renaming (partial map) to a list.
% Useful for applying a variable renaming to a list of variables.
:- pred apply_partial_map_to_list(list(T), map(T, T), list(T)).
:- mode apply_partial_map_to_list(in, in, out) is det.
% strip out the prog_context fields, replacing them with empty
% prog_context (as obtained by term__context_init/1)
% in a type or list of types
:- pred strip_prog_contexts(list(term(T))::in, list(term(T))::out) is det.
:- pred strip_prog_context(term(T)::in, term(T)::out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module bool, require, std_util.
:- import_module prog_io, prog_io_goal, prog_util.
type_util__type_id_module(_ModuleInfo, TypeName - _Arity, ModuleName) :-
sym_name_get_module_name(TypeName, unqualified(""), ModuleName).
type_util__type_id_name(_ModuleInfo, Name0 - _Arity, Name) :-
unqualify_name(Name0, Name).
type_util__type_id_arity(_ModuleInfo, _Name - Arity, Arity).
type_is_atomic(Type, ModuleInfo) :-
classify_type(Type, ModuleInfo, BuiltinType),
BuiltinType \= polymorphic_type,
BuiltinType \= pred_type,
BuiltinType \= user_type.
type_util__var(term__variable(Var), Var).
type_id_is_hand_defined(qualified(unqualified("builtin"), "c_pointer") - 0).
type_id_is_hand_defined(qualified(unqualified("std_util"), "univ") - 0).
type_id_is_hand_defined(qualified(unqualified("array"), "array") - 1).
type_id_is_hand_defined(qualified(PrivateBuiltin, "type_info") - 1) :-
mercury_private_builtin_module(PrivateBuiltin).
type_id_is_hand_defined(qualified(PrivateBuiltin, "type_ctor_info") - 1) :-
mercury_private_builtin_module(PrivateBuiltin).
type_id_is_hand_defined(qualified(PrivateBuiltin, "typeclass_info") - 1) :-
mercury_private_builtin_module(PrivateBuiltin).
type_id_is_hand_defined(qualified(PrivateBuiltin, "base_typeclass_info") - 1) :-
mercury_private_builtin_module(PrivateBuiltin).
is_introduced_type_info_type(Type) :-
sym_name_and_args(Type, TypeName, _),
TypeName = qualified(PrivateBuiltin, Name),
( Name = "type_info"
; Name = "type_ctor_info"
; Name = "typeclass_info"
; Name = "base_typeclass_info"
),
mercury_private_builtin_module(PrivateBuiltin).
%-----------------------------------------------------------------------------%
% Given a type, determine what sort of type it is.
classify_type(VarType, ModuleInfo, Type) :-
( type_to_type_id(VarType, TypeId, _) ->
( TypeId = unqualified("character") - 0 ->
Type = char_type
; TypeId = unqualified("int") - 0 ->
Type = int_type
; TypeId = unqualified("float") - 0 ->
Type = float_type
; TypeId = unqualified("string") - 0 ->
Type = str_type
; type_id_is_higher_order(TypeId, _) ->
Type = pred_type
; type_id_is_enumeration(TypeId, ModuleInfo) ->
Type = enum_type
;
Type = user_type
)
;
Type = polymorphic_type
).
type_is_higher_order(Type, PredOrFunc, PredArgTypes) :-
(
Type = term__functor(term__atom("pred"),
PredArgTypes, _),
PredOrFunc = predicate
;
Type = term__functor(term__atom("="),
[term__functor(term__atom("func"),
FuncArgTypes, _),
FuncRetType], _),
list__append(FuncArgTypes, [FuncRetType], PredArgTypes),
PredOrFunc = function
).
type_id_is_higher_order(SymName - Arity, PredOrFunc) :-
unqualify_name(SymName, TypeName),
(
TypeName = "pred",
PredOrFunc = predicate
;
TypeName = "=",
Arity = 2,
PredOrFunc = function
).
type_is_aditi_state(Type) :-
type_to_type_id(Type,
qualified(unqualified("aditi"), "state") - 0, []).
:- pred type_id_is_enumeration(type_id, module_info).
:- mode type_id_is_enumeration(in, in) is semidet.
type_id_is_enumeration(TypeId, ModuleInfo) :-
module_info_types(ModuleInfo, TypeDefnTable),
map__search(TypeDefnTable, TypeId, TypeDefn),
hlds_data__get_type_defn_body(TypeDefn, TypeBody),
TypeBody = du_type(_, _, IsEnum, _),
IsEnum = yes.
type_to_type_id(Type, SymName - Arity, Args) :-
sym_name_and_args(Type, SymName, Args1),
% `private_builtin:constraint' is introduced by polymorphism, and
% should only appear as the argument of a `typeclass:info/1' type.
% It behaves sort of like a type variable, so according to the
% specification of `type_to_type_id', it should cause failure.
% There isn't a definition in the type table.
mercury_private_builtin_module(PrivateBuiltin),
SymName \= qualified(PrivateBuiltin, "constraint"),
% higher order types may have representations where
% their arguments don't directly correspond to the
% arguments of the term.
(
type_is_higher_order(Type, _, PredArgTypes)
->
Args = PredArgTypes,
list__length(Args1, Arity) % functions have arity 2,
% (they are =/2)
;
Args = Args1,
list__length(Args, Arity)
).
construct_type(TypeId, Args, Type) :-
term__context_init(Context),
construct_type(TypeId, Args, Context, Type).
construct_type(TypeId, Args, Context, Type) :-
(
type_id_is_higher_order(TypeId, PredOrFunc)
->
(
PredOrFunc = predicate,
NewArgs = Args
;
PredOrFunc = function,
pred_args_to_func_args(Args, FuncArgTypes, FuncRetType),
NewArgs = [term__functor(term__atom("func"),
FuncArgTypes, Context),
FuncRetType]
)
;
NewArgs = Args
),
TypeId = SymName - _,
construct_qualified_term(SymName, NewArgs, Context, Type).
int_type = Type :- construct_type(unqualified("int") - 0, [], Type).
string_type = Type :- construct_type(unqualified("string") - 0, [], Type).
float_type = Type :- construct_type(unqualified("float") - 0, [], Type).
char_type = Type :- construct_type(unqualified("character") - 0, [], Type).
%-----------------------------------------------------------------------------%
% Given a constant and an arity, return a type_id.
% This really ought to take a name and an arity -
% use of integers/floats/strings as type names should
% be rejected by the parser in prog_io.m, not in module_qual.m.
make_type_id(term__atom(Name), Arity, unqualified(Name) - Arity).
%-----------------------------------------------------------------------------%
% If the type is a du type, return the list of its constructors.
type_constructors(Type, ModuleInfo, Constructors) :-
type_to_type_id(Type, TypeId, TypeArgs),
module_info_types(ModuleInfo, TypeTable),
map__search(TypeTable, TypeId, TypeDefn),
hlds_data__get_type_defn_tparams(TypeDefn, TypeParams),
hlds_data__get_type_defn_body(TypeDefn, TypeBody),
TypeBody = du_type(Constructors0, _, _, _),
substitute_type_args(TypeParams, TypeArgs, Constructors0,
Constructors).
%-----------------------------------------------------------------------------%
type_util__get_cons_id_arg_types(ModuleInfo, VarType, ConsId, ArgTypes) :-
(
type_to_type_id(VarType, TypeId, TypeArgs),
module_info_ctors(ModuleInfo, Ctors),
% will fail for builtin cons_ids.
map__search(Ctors, ConsId, ConsDefns),
CorrectCons = lambda([ConsDefn::in] is semidet, (
ConsDefn = hlds_cons_defn(_, _, _, TypeId, _)
)),
list__filter(CorrectCons, ConsDefns,
[hlds_cons_defn(_ExistQVars0, _Constraints0, ArgTypes0,
_, _)]),
ArgTypes0 \= []
->
module_info_types(ModuleInfo, Types),
map__lookup(Types, TypeId, TypeDefn),
hlds_data__get_type_defn_tparams(TypeDefn, TypeDefnParams),
term__term_list_to_var_list(TypeDefnParams, TypeDefnVars),
% XXX handle ExistQVars
map__from_corresponding_lists(TypeDefnVars, TypeArgs, TSubst),
term__apply_substitution_to_list(ArgTypes0, TSubst, ArgTypes)
;
ArgTypes = []
).
% Given a type and a cons_id, look up the definition of that
% constructor; if it is existentially typed, return its definition,
% otherwise fail.
type_util__get_existq_cons_defn(ModuleInfo, VarType, ConsId, CtorDefn) :-
type_to_type_id(VarType, TypeId, _TypeArgs),
module_info_ctors(ModuleInfo, Ctors),
% will fail for builtin cons_ids.
map__search(Ctors, ConsId, ConsDefns),
MatchingCons = lambda([ConsDefn::in] is semidet, (
ConsDefn = hlds_cons_defn(_, _, _, TypeId, _)
)),
list__filter(MatchingCons, ConsDefns,
[hlds_cons_defn(ExistQVars, Constraints, ArgTypes, _, _)]),
ExistQVars \= [],
module_info_types(ModuleInfo, Types),
map__lookup(Types, TypeId, TypeDefn),
hlds_data__get_type_defn_tvarset(TypeDefn, TypeVarSet),
hlds_data__get_type_defn_tparams(TypeDefn, TypeDefnParams),
construct_type(TypeId, TypeDefnParams, RetType),
CtorDefn = ctor_defn(TypeVarSet, ExistQVars, Constraints,
ArgTypes, RetType).
%-----------------------------------------------------------------------------%
% The checks for type_info and type_ctor_info
% are needed because those types lie about their
% arity; it might be cleaner to change that in
% private_builtin.m, but that would cause some
% bootstrapping difficulties.
% It might be slightly better to check for private_builtin:type_info
% etc. rather than just checking the unqualified type name,
% but I found it difficult to verify that the constructors
% would always be fully module-qualified at points where
% type_is_no_tag_type/3 is called.
type_is_no_tag_type(Ctors, Ctor, Type) :-
Ctors = [SingleCtor],
SingleCtor = ctor(ExistQVars, _Constraints, Ctor, [_FieldName - Type]),
ExistQVars = [],
unqualify_name(Ctor, Name),
Name \= "type_info",
Name \= "type_ctor_info",
Name \= "typeclass_info",
Name \= "base_typeclass_info".
%-----------------------------------------------------------------------------%
% Substitute the actual values of the type parameters
% in list of constructors, for a particular instance of
% a polymorphic type.
:- pred substitute_type_args(list(type_param), list(type),
list(constructor), list(constructor)).
:- mode substitute_type_args(in, in, in, out) is det.
substitute_type_args(TypeParams0, TypeArgs, Constructors0, Constructors) :-
( TypeParams0 = [] ->
Constructors = Constructors0
;
term__term_list_to_var_list(TypeParams0, TypeParams),
map__from_corresponding_lists(TypeParams, TypeArgs, Subst),
substitute_type_args_2(Constructors0, Subst, Constructors)
).
:- pred substitute_type_args_2(list(constructor), tsubst,
list(constructor)).
:- mode substitute_type_args_2(in, in, out) is det.
substitute_type_args_2([], _, []).
substitute_type_args_2([Ctor0| Ctors0], Subst, [Ctor | Ctors]) :-
% Note: prog_io.m ensures that the existentially quantified
% variables, if any, are distinct from the parameters,
% and that the (existential) constraints can only contain
% existentially quantified variables, so there's
% no need to worry about applying the substitution to
% ExistQVars or Constraints
Ctor0 = ctor(ExistQVars, Constraints, Name, Args0),
Ctor = ctor(ExistQVars, Constraints, Name, Args),
substitute_type_args_3(Args0, Subst, Args),
substitute_type_args_2(Ctors0, Subst, Ctors).
:- pred substitute_type_args_3(list(constructor_arg), tsubst,
list(constructor_arg)).
:- mode substitute_type_args_3(in, in, out) is det.
substitute_type_args_3([], _, []).
substitute_type_args_3([Name - Arg0 | Args0], Subst, [Name - Arg | Args]) :-
term__apply_substitution(Arg0, Subst, Arg),
substitute_type_args_3(Args0, Subst, Args).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% Check whether TypesA subsumes TypesB, and if so return
% a type substitution that will map from TypesA to TypesB.
type_list_subsumes(TypesA, TypesB, TypeSubst) :-
%
% TypesA subsumes TypesB iff TypesA can be unified with TypesB
% without binding any of the type variables in TypesB.
%
term__vars_list(TypesB, TypesBVars),
map__init(TypeSubst0),
type_unify_list(TypesA, TypesB, TypesBVars, TypeSubst0, TypeSubst).
%-----------------------------------------------------------------------------%
% Types are represented as terms, but we can't just use term__unify
% because we need to avoid binding any of the "head type params"
% (the type variables that occur in the head of the clause),
% and because one day we might want to handle equivalent types.
type_unify(term__variable(X), term__variable(Y), HeadTypeParams,
Bindings0, Bindings) :-
( list__member(Y, HeadTypeParams) ->
type_unify_head_type_param(X, Y, HeadTypeParams,
Bindings0, Bindings)
; list__member(X, HeadTypeParams) ->
type_unify_head_type_param(Y, X, HeadTypeParams,
Bindings0, Bindings)
; map__search(Bindings0, X, BindingOfX) ->
( map__search(Bindings0, Y, BindingOfY) ->
% both X and Y already have bindings - just
% unify the types they are bound to
type_unify(BindingOfX, BindingOfY, HeadTypeParams,
Bindings0, Bindings)
;
term__apply_rec_substitution(BindingOfX,
Bindings0, SubstBindingOfX),
% Y is a type variable which hasn't been bound yet
( SubstBindingOfX = term__variable(Y) ->
Bindings = Bindings0
;
\+ term__occurs(SubstBindingOfX, Y,
Bindings0),
map__det_insert(Bindings0, Y, SubstBindingOfX,
Bindings)
)
)
;
( map__search(Bindings0, Y, BindingOfY) ->
term__apply_rec_substitution(BindingOfY,
Bindings0, SubstBindingOfY),
% X is a type variable which hasn't been bound yet
( SubstBindingOfY = term__variable(X) ->
Bindings = Bindings0
;
\+ term__occurs(SubstBindingOfY, X,
Bindings0),
map__det_insert(Bindings0, X, SubstBindingOfY,
Bindings)
)
;
% both X and Y are unbound type variables -
% bind one to the other
( X = Y ->
Bindings = Bindings0
;
map__det_insert(Bindings0, X,
term__variable(Y), Bindings)
)
)
).
type_unify(term__variable(X), term__functor(F, As, C), HeadTypeParams,
Bindings0, Bindings) :-
(
map__search(Bindings0, X, BindingOfX)
->
type_unify(BindingOfX, term__functor(F, As, C),
HeadTypeParams, Bindings0, Bindings)
;
\+ term__occurs_list(As, X, Bindings0),
\+ list__member(X, HeadTypeParams),
map__det_insert(Bindings0, X, term__functor(F, As, C),
Bindings)
).
type_unify(term__functor(F, As, C), term__variable(X), HeadTypeParams,
Bindings0, Bindings) :-
(
map__search(Bindings0, X, BindingOfX)
->
type_unify(term__functor(F, As, C), BindingOfX,
HeadTypeParams, Bindings0, Bindings)
;
\+ term__occurs_list(As, X, Bindings0),
\+ list__member(X, HeadTypeParams),
map__det_insert(Bindings0, X, term__functor(F, As, C),
Bindings)
).
type_unify(term__functor(FX, AsX, _CX), term__functor(FY, AsY, _CY),
HeadTypeParams, Bindings0, Bindings) :-
list__length(AsX, ArityX),
list__length(AsY, ArityY),
(
FX = FY,
ArityX = ArityY
->
type_unify_list(AsX, AsY, HeadTypeParams, Bindings0, Bindings)
;
fail
).
% XXX Instead of just failing if the functors' name/arity is different,
% we should check here if these types have been defined
% to be equivalent using equivalence types. But this
% is difficult because (1) it causes typevarset synchronization
% problems, and (2) the relevant variables TypeInfo, TVarSet0, TVarSet
% haven't been passed in to here.
/*******
...
;
replace_eqv_type(FX, ArityX, AsX, EqvType)
->
type_unify(EqvType, term__functor(FY, AsY, CY),
HeadTypeParams, Bindings0, Bindings)
;
replace_eqv_type(FY, ArityY, AsY, EqvType)
->
type_unify(term__functor(FX, AsX, CX), EqvType,
HeadTypeParams, Bindings0, Bindings)
;
fail
).
:- pred replace_eqv_type(const, int, list(type), type).
:- mode replace_eqv_type(in, in, in, out) is semidet.
replace_eqv_type(Functor, Arity, Args, EqvType) :-
% XXX magically_obtain(TypeTable, TVarSet0, TVarSet)
make_type_id(Functor, Arity, TypeId),
map__search(TypeTable, TypeId, TypeDefn),
TypeDefn = hlds_type_defn(TypeVarSet, TypeParams0,
eqv_type(EqvType0), _Condition, Context, _Status),
varset__merge(TVarSet0, TypeVarSet, [EqvType0 | TypeParams0],
TVarSet, [EqvType1, TypeParams1]),
type_param_to_var_list(TypeParams1, TypeParams),
term__substitute_corresponding(EqvType1, TypeParams, AsX,
EqvType).
******/
type_unify_list([], [], _) --> [].
type_unify_list([X | Xs], [Y | Ys], HeadTypeParams) -->
type_unify(X, Y, HeadTypeParams),
type_unify_list(Xs, Ys, HeadTypeParams).
:- pred type_unify_head_type_param(tvar, tvar, list(tvar), tsubst, tsubst).
:- mode type_unify_head_type_param(in, in, in, in, out) is semidet.
type_unify_head_type_param(Var, HeadVar, HeadTypeParams, Bindings0,
Bindings) :-
( map__search(Bindings0, Var, BindingOfVar) ->
BindingOfVar = term__variable(Var2),
type_unify_head_type_param(Var2, HeadVar, HeadTypeParams,
Bindings0, Bindings)
;
( Var = HeadVar ->
Bindings = Bindings0
;
\+ list__member(Var, HeadTypeParams),
map__det_insert(Bindings0, Var,
term__variable(HeadVar), Bindings)
)
).
%-----------------------------------------------------------------------------%
type_util__vars(Type, Tvars) :-
term__vars(Type, Tvars).
%-----------------------------------------------------------------------------%
apply_substitution_to_type_map(VarTypes0, Subst, VarTypes) :-
% optimize the common case of an empty type substitution
( map__is_empty(Subst) ->
VarTypes = VarTypes0
;
map__keys(VarTypes0, Vars),
apply_substitution_to_type_map_2(Vars, VarTypes0, Subst,
VarTypes)
).
:- pred apply_substitution_to_type_map_2(list(prog_var)::in,
map(prog_var, type)::in, tsubst::in, map(prog_var, type)::out)
is det.
apply_substitution_to_type_map_2([], VarTypes, _Subst, VarTypes).
apply_substitution_to_type_map_2([Var | Vars], VarTypes0, Subst,
VarTypes) :-
map__lookup(VarTypes0, Var, VarType0),
term__apply_substitution(VarType0, Subst, VarType),
map__det_update(VarTypes0, Var, VarType, VarTypes1),
apply_substitution_to_type_map_2(Vars, VarTypes1, Subst, VarTypes).
%-----------------------------------------------------------------------------%
apply_rec_substitution_to_type_map(VarTypes0, Subst, VarTypes) :-
% optimize the common case of an empty type substitution
( map__is_empty(Subst) ->
VarTypes = VarTypes0
;
map__keys(VarTypes0, Vars),
apply_rec_substitution_to_type_map_2(Vars, VarTypes0, Subst,
VarTypes)
).
:- pred apply_rec_substitution_to_type_map_2(list(prog_var)::in,
map(prog_var, type)::in, tsubst::in, map(prog_var, type)::out)
is det.
apply_rec_substitution_to_type_map_2([], VarTypes, _Subst, VarTypes).
apply_rec_substitution_to_type_map_2([Var | Vars], VarTypes0, Subst,
VarTypes) :-
map__lookup(VarTypes0, Var, VarType0),
term__apply_rec_substitution(VarType0, Subst, VarType),
map__det_update(VarTypes0, Var, VarType, VarTypes1),
apply_rec_substitution_to_type_map_2(Vars, VarTypes1, Subst, VarTypes).
%-----------------------------------------------------------------------------%
apply_substitutions_to_var_map(VarMap0, TRenaming, TSubst, Subst, VarMap) :-
% optimize the common case of empty substitutions
(
map__is_empty(Subst),
map__is_empty(TSubst),
map__is_empty(TRenaming)
->
VarMap = VarMap0
;
map__keys(VarMap0, TVars),
map__init(NewVarMap),
apply_substitutions_to_var_map_2(TVars, VarMap0,
TRenaming, TSubst, Subst, NewVarMap, VarMap)
).
:- pred apply_substitutions_to_var_map_2(list(tvar)::in, map(tvar,
type_info_locn)::in, tsubst::in, map(tvar, type)::in,
map(prog_var, prog_var)::in, map(tvar, type_info_locn)::in,
map(tvar, type_info_locn)::out) is det.
apply_substitutions_to_var_map_2([], _VarMap0, _, _, _, NewVarMap, NewVarMap).
apply_substitutions_to_var_map_2([TVar | TVars], VarMap0, TRenaming,
TSubst, VarSubst, NewVarMap0, NewVarMap) :-
map__lookup(VarMap0, TVar, Locn),
type_info_locn_var(Locn, Var),
% find the new var, if there is one
( map__search(VarSubst, Var, NewVar0) ->
NewVar = NewVar0
;
NewVar = Var
),
type_info_locn_set_var(Locn, NewVar, NewLocn),
% find the new tvar, if there is one, otherwise just
% create the old var as a type variable.
(
map__search(TRenaming, TVar, NewTVar0)
->
( NewTVar0 = term__variable(NewTVar1) ->
NewTVar2 = NewTVar1
;
% varset__merge_subst only returns var->var mappings,
% never var->term.
error(
"apply_substitution_to_var_map_2: weird type renaming")
)
;
% The variable wasn't renamed.
NewTVar2 = TVar
),
term__apply_rec_substitution(term__variable(NewTVar2),
TSubst, NewType),
% if the tvar is still a variable, insert it into the
% map with the new var.
( type_util__var(NewType, NewTVar) ->
% Don't abort if two old type variables
% map to the same new type variable.
map__set(NewVarMap0, NewTVar, NewLocn, NewVarMap1)
;
NewVarMap1 = NewVarMap0
),
apply_substitutions_to_var_map_2(TVars, VarMap0, TRenaming,
TSubst, VarSubst, NewVarMap1, NewVarMap).
%-----------------------------------------------------------------------------%
apply_substitutions_to_typeclass_var_map(VarMap0,
TRenaming, TSubst, Subst, VarMap) :-
map__to_assoc_list(VarMap0, VarAL0),
list__map(apply_substitutions_to_typeclass_var_map_2(TRenaming,
TSubst, Subst), VarAL0, VarAL),
map__from_assoc_list(VarAL, VarMap).
:- pred apply_substitutions_to_typeclass_var_map_2(tsubst, map(tvar, type),
map(prog_var, prog_var), pair(class_constraint, prog_var),
pair(class_constraint, prog_var)).
:- mode apply_substitutions_to_typeclass_var_map_2(in, in,
in, in, out) is det.
apply_substitutions_to_typeclass_var_map_2(TRenaming, TSubst, VarRenaming,
Constraint0 - Var0, Constraint - Var) :-
apply_subst_to_constraint(TRenaming, Constraint0, Constraint1),
apply_rec_subst_to_constraint(TSubst, Constraint1, Constraint),
( map__search(VarRenaming, Var0, Var1) ->
Var = Var1
;
Var = Var0
).
%-----------------------------------------------------------------------------%
apply_rec_subst_to_constraints(Subst, Constraints0, Constraints) :-
Constraints0 = constraints(UnivCs0, ExistCs0),
apply_rec_subst_to_constraint_list(Subst, UnivCs0, UnivCs),
apply_rec_subst_to_constraint_list(Subst, ExistCs0, ExistCs),
Constraints = constraints(UnivCs, ExistCs).
apply_rec_subst_to_constraint_list(Subst, Constraints0, Constraints) :-
list__map(apply_rec_subst_to_constraint(Subst), Constraints0,
Constraints).
apply_rec_subst_to_constraint(Subst, Constraint0, Constraint) :-
Constraint0 = constraint(ClassName, Types0),
term__apply_rec_substitution_to_list(Types0, Subst, Types1),
% we need to maintain the invariant that types in class constraints
% do not have any information in their prog_context fields
strip_prog_contexts(Types1, Types),
Constraint = constraint(ClassName, Types).
apply_subst_to_constraints(Subst,
constraints(UniversalCs0, ExistentialCs0),
constraints(UniversalCs, ExistentialCs)) :-
apply_subst_to_constraint_list(Subst, UniversalCs0, UniversalCs),
apply_subst_to_constraint_list(Subst, ExistentialCs0, ExistentialCs).
apply_subst_to_constraint_list(Subst, Constraints0, Constraints) :-
list__map(apply_subst_to_constraint(Subst), Constraints0, Constraints).
apply_subst_to_constraint(Subst, Constraint0, Constraint) :-
Constraint0 = constraint(ClassName, Types0),
term__apply_substitution_to_list(Types0, Subst, Types),
Constraint = constraint(ClassName, Types).
apply_subst_to_constraint_proofs(Subst, Proofs0, Proofs) :-
map__init(Empty),
map__foldl(
lambda([Constraint0::in, Proof0::in, Map0::in, Map::out] is det,
(
apply_subst_to_constraint(Subst, Constraint0,
Constraint),
(
Proof0 = apply_instance(_),
Proof = Proof0
;
Proof0 = superclass(Super0),
apply_subst_to_constraint(Subst, Super0,
Super),
Proof = superclass(Super)
),
map__set(Map0, Constraint, Proof, Map)
)),
Proofs0, Empty, Proofs).
apply_rec_subst_to_constraint_proofs(Subst, Proofs0, Proofs) :-
map__init(Empty),
map__foldl(
lambda([Constraint0::in, Proof0::in, Map0::in, Map::out] is det,
(
apply_rec_subst_to_constraint(Subst, Constraint0,
Constraint),
(
Proof0 = apply_instance(_),
Proof = Proof0
;
Proof0 = superclass(Super0),
apply_rec_subst_to_constraint(Subst, Super0,
Super),
Proof = superclass(Super)
),
map__set(Map0, Constraint, Proof, Map)
)),
Proofs0, Empty, Proofs).
apply_variable_renaming_to_constraints(Renaming,
constraints(UniversalCs0, ExistentialCs0),
constraints(UniversalCs, ExistentialCs)) :-
apply_variable_renaming_to_constraint_list(Renaming,
UniversalCs0, UniversalCs),
apply_variable_renaming_to_constraint_list(Renaming,
ExistentialCs0, ExistentialCs).
apply_variable_renaming_to_constraint_list(Renaming, Constraints0,
Constraints) :-
list__map(apply_variable_renaming_to_constraint(Renaming),
Constraints0, Constraints).
apply_variable_renaming_to_constraint(Renaming, Constraint0, Constraint) :-
Constraint0 = constraint(ClassName, ClassArgTypes0),
term__apply_variable_renaming_to_list(ClassArgTypes0,
Renaming, ClassArgTypes),
Constraint = constraint(ClassName, ClassArgTypes).
%-----------------------------------------------------------------------------%
apply_partial_map_to_list([], _PartialMap, []).
apply_partial_map_to_list([X|Xs], PartialMap, [Y|Ys]) :-
( map__search(PartialMap, X, Y0) ->
Y = Y0
;
Y = X
),
apply_partial_map_to_list(Xs, PartialMap, Ys).
%-----------------------------------------------------------------------------%
strip_prog_contexts(Terms, StrippedTerms) :-
list__map(strip_prog_context, Terms, StrippedTerms).
strip_prog_context(term__variable(V), term__variable(V)).
strip_prog_context(term__functor(F, As0, _C0),
term__functor(F, As, C)) :-
term__context_init(C),
strip_prog_contexts(As0, As).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%