Files
mercury/compiler/tree.m
Simon Taylor a4c18e979a Most of the uses of the type `tree:tree/1' are lists of instructions.
Estimated hours taken: 0.5

Most of the uses of the type `tree:tree/1' are lists of instructions.
`tree__is_empty' is used to ask "was any code generated", but
`tree__is_empty' fails for `node([])'. This has not been a problem
in the past because the code generator builds up a trees of lists that
are known to be non-empty. Parts of the RL generation code can create
empty lists of instructions, and it can't hurt to test for this
case elsewhere.

compiler/tree.m:
	Added `tree__tree_of_lists_is_empty', which is similar to
	`tree__is_empty' except that `node([])' is also considered empty.

compiler/lookup_switch.m:
compiler/rl_gen.m:
	Use `tree__tree_of_lists_is_empty' instead of `tree__is_empty'.
1999-06-16 00:35:50 +00:00

68 lines
2.2 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1993-1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% Main authors: conway, fjh.
%
% This file provides a 'tree' data type.
% The code generater uses this to build a tree of instructions and
% then flatten them into a list.
%
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- module tree.
%-----------------------------------------------------------------------------%
:- interface.
:- import_module list.
:- type tree(T) ---> empty
; node(T)
; tree(tree(T), tree(T)).
:- pred tree__flatten(tree(T), list(T)).
:- mode tree__flatten(in, out) is det.
:- pred tree__is_empty(tree(T)).
:- mode tree__is_empty(in) is semidet.
:- pred tree__tree_of_lists_is_empty(tree(list(T))).
:- mode tree__tree_of_lists_is_empty(in) is semidet.
%-----------------------------------------------------------------------------%
:- implementation.
tree__flatten(T, L) :-
tree__flatten_2(T, [], L).
:- pred tree__flatten_2(tree(T), list(T), list(T)).
:- mode tree__flatten_2(in, in, out) is det.
% flatten_2(T, L0, L) is true iff L is the list that results from
% traversing T left-to-right depth-first, and then appending L0.
tree__flatten_2(empty, L, L).
tree__flatten_2(node(T), L, [T|L]).
tree__flatten_2(tree(T1,T2), L0, L) :-
tree__flatten_2(T2, L0, L1),
tree__flatten_2(T1, L1, L).
%-----------------------------------------------------------------------------%
tree__is_empty(empty).
tree__is_empty(tree(L, R)) :-
tree__is_empty(L),
tree__is_empty(R).
%-----------------------------------------------------------------------------%
tree__tree_of_lists_is_empty(empty).
tree__tree_of_lists_is_empty(node([])).
tree__tree_of_lists_is_empty(tree(L, R)) :-
tree__tree_of_lists_is_empty(L),
tree__tree_of_lists_is_empty(R).
%-----------------------------------------------------------------------------%