Files
mercury/compiler/switch_gen.m
Tyson Dowd 6cb525f6bc This change does some renaming to match the new nomenclature introduced
Estimated hours taken: 5

This change does some renaming to match the new nomenclature introduced
in the RTTI paper.

Rename simple tags as unshared tags, complicated tags as shared
remote tags and complicated constant tags as shared local.
Also rename "simple vector" as "functor descriptor",
"functors vector" as "enum vector".

compiler/base_type_layout.m:
compiler/bytecode.m:
compiler/bytecode_gen.m:
compiler/hlds_data.m:
compiler/make_tags.m:
compiler/switch_gen.m:
compiler/tag_switch.m:
compiler/unify_gen.m:
	Perform these renamings in the compiler, renaming a few
	functors and data structures.

library/std_util.m:
runtime/mercury_deep_copy_body.h:
runtime/mercury_tabling.c:
runtime/mercury_type_info.c:
runtime/mercury_type_info.h:
	Perform these renamings in the library and runtime, renaming
	macros and variables.
1999-04-22 01:04:32 +00:00

355 lines
13 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1994-1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%---------------------------------------------------------------------------%
%
% File: switch_gen.m
% Authors: conway, fjh, zs
%
% This module handles the generation of code for switches, which are
% disjunctions that do not require backtracking. Switches are detected
% in switch_detection.m. This is the module that determines what
% sort of indexing to use for each switch and then actually generates the
% code.
%
% Currently the following forms of indexing are used:
%
% For switches on atomic data types (int, char, enums),
% if the cases are not sparse, we use the value of the switch variable
% to index into a jump table.
%
% If all the alternative goals for a switch on an atomic data type
% contain only construction unifications of constants, then we generate
% a dense lookup table (an array) for each output variable of the switch,
% rather than a dense jump table, so that executing the switch becomes
% a matter of doing an array index for each output variable - avoiding
% the branch overhead of the jump-table.
%
% For switches on discriminated union types, we generate code that does
% indexing first on the primary tag, and then on the secondary tag (if
% the primary tag is shared between several function symbols). The
% indexing code for switches on both primary and secondary tags can be
% in the form of a try-me-else chain, a try chain, a dense jump table
% or a binary search.
%
% For switches on strings, we lookup the address to jump to in a
% hash table, using open addressing to resolve hash collisions.
%
% For all other cases (or if the --smart-indexing option was
% disabled), we just generate a chain of if-then-elses.
%
%---------------------------------------------------------------------------%
:- module switch_gen.
:- interface.
:- import_module prog_data, hlds_goal, hlds_data, code_info, llds.
:- import_module list.
:- pred switch_gen__generate_switch(code_model, prog_var, can_fail, list(case),
store_map, hlds_goal_info, code_tree, code_info, code_info).
:- mode switch_gen__generate_switch(in, in, in, in, in, in, out, in, out)
is det.
% The following types are exported to the modules that implement
% specialized kinds of switches.
:- type extended_case ---> case(int, cons_tag, cons_id, hlds_goal).
:- type cases_list == list(extended_case).
%---------------------------------------------------------------------------%
:- implementation.
:- import_module dense_switch, string_switch, tag_switch, lookup_switch.
:- import_module code_gen, unify_gen, code_aux, type_util, code_util.
:- import_module trace, globals, options.
:- import_module bool, int, string, map, tree, std_util, require.
:- type switch_category
---> atomic_switch
; string_switch
; tag_switch
; other_switch.
%---------------------------------------------------------------------------%
% Choose which method to use to generate the switch.
% CanFail says whether the switch covers all cases.
switch_gen__generate_switch(CodeModel, CaseVar, CanFail, Cases, StoreMap,
GoalInfo, Code) -->
switch_gen__determine_category(CaseVar, SwitchCategory),
code_info__get_next_label(EndLabel),
switch_gen__lookup_tags(Cases, CaseVar, TaggedCases0),
{ list__sort_and_remove_dups(TaggedCases0, TaggedCases) },
code_info__get_globals(Globals),
{ globals__lookup_bool_option(Globals, smart_indexing,
Indexing) },
(
{ Indexing = yes },
{ SwitchCategory = atomic_switch },
code_info__get_maybe_trace_info(MaybeTraceInfo),
{ MaybeTraceInfo = no },
{ list__length(TaggedCases, NumCases) },
{ globals__lookup_int_option(Globals, lookup_switch_size,
LookupSize) },
{ NumCases >= LookupSize },
{ globals__lookup_int_option(Globals, lookup_switch_req_density,
ReqDensity) },
lookup_switch__is_lookup_switch(CaseVar, TaggedCases, GoalInfo,
CanFail, ReqDensity, CodeModel, FirstVal, LastVal,
NeedRangeCheck, NeedBitVecCheck,
OutVars, CaseVals, MLiveness)
->
lookup_switch__generate(CaseVar, OutVars, CaseVals,
FirstVal, LastVal, NeedRangeCheck, NeedBitVecCheck,
MLiveness, StoreMap, no, MaybeEnd, Code)
;
{ Indexing = yes },
{ SwitchCategory = atomic_switch },
{ list__length(TaggedCases, NumCases) },
{ globals__lookup_int_option(Globals, dense_switch_size,
DenseSize) },
{ NumCases >= DenseSize },
{ globals__lookup_int_option(Globals, dense_switch_req_density,
ReqDensity) },
dense_switch__is_dense_switch(CaseVar, TaggedCases, CanFail,
ReqDensity, FirstVal, LastVal, CanFail1)
->
dense_switch__generate(TaggedCases,
FirstVal, LastVal, CaseVar, CodeModel, CanFail1,
StoreMap, EndLabel, no, MaybeEnd, Code)
;
{ Indexing = yes },
{ SwitchCategory = string_switch },
{ list__length(TaggedCases, NumCases) },
{ globals__lookup_int_option(Globals, string_switch_size,
StringSize) },
{ NumCases >= StringSize }
->
string_switch__generate(TaggedCases, CaseVar, CodeModel,
CanFail, StoreMap, EndLabel, no, MaybeEnd, Code)
;
{ Indexing = yes },
{ SwitchCategory = tag_switch },
{ list__length(TaggedCases, NumCases) },
{ globals__lookup_int_option(Globals, tag_switch_size,
TagSize) },
{ NumCases >= TagSize }
->
tag_switch__generate(TaggedCases, CaseVar, CodeModel, CanFail,
StoreMap, EndLabel, no, MaybeEnd, Code)
;
% To generate a switch, first we flush the
% variable on whose tag we are going to switch, then we
% generate the cases for the switch.
switch_gen__generate_all_cases(TaggedCases, CaseVar,
CodeModel, CanFail, StoreMap, EndLabel, no, MaybeEnd,
Code)
),
code_info__after_all_branches(StoreMap, MaybeEnd).
%---------------------------------------------------------------------------%
% We categorize switches according to whether the value
% being switched on is an atomic type, a string, or
% something more complicated.
:- pred switch_gen__determine_category(prog_var, switch_category,
code_info, code_info).
:- mode switch_gen__determine_category(in, out, in, out) is det.
switch_gen__determine_category(CaseVar, SwitchCategory) -->
code_info__variable_type(CaseVar, Type),
code_info__get_module_info(ModuleInfo),
{ classify_type(Type, ModuleInfo, TypeCategory) },
{ switch_gen__type_cat_to_switch_cat(TypeCategory, SwitchCategory) }.
:- pred switch_gen__type_cat_to_switch_cat(builtin_type, switch_category).
:- mode switch_gen__type_cat_to_switch_cat(in, out) is det.
switch_gen__type_cat_to_switch_cat(enum_type, atomic_switch).
switch_gen__type_cat_to_switch_cat(int_type, atomic_switch).
switch_gen__type_cat_to_switch_cat(char_type, atomic_switch).
switch_gen__type_cat_to_switch_cat(float_type, other_switch).
switch_gen__type_cat_to_switch_cat(str_type, string_switch).
switch_gen__type_cat_to_switch_cat(pred_type, other_switch).
switch_gen__type_cat_to_switch_cat(user_type, tag_switch).
switch_gen__type_cat_to_switch_cat(polymorphic_type, other_switch).
%---------------------------------------------------------------------------%
:- pred switch_gen__lookup_tags(list(case), prog_var, cases_list,
code_info, code_info).
:- mode switch_gen__lookup_tags(in, in, out, in, out) is det.
switch_gen__lookup_tags([], _, []) --> [].
switch_gen__lookup_tags([Case | Cases], Var, [TaggedCase | TaggedCases]) -->
{ Case = case(ConsId, Goal) },
code_info__cons_id_to_tag(Var, ConsId, Tag),
{ switch_gen__priority(Tag, Priority) },
{ TaggedCase = case(Priority, Tag, ConsId, Goal) },
switch_gen__lookup_tags(Cases, Var, TaggedCases).
%---------------------------------------------------------------------------%
:- pred switch_gen__priority(cons_tag, int).
:- mode switch_gen__priority(in, out) is det.
% prioritize tag tests - the most efficient ones first.
switch_gen__priority(no_tag, 0). % should never occur
switch_gen__priority(int_constant(_), 1).
switch_gen__priority(shared_local_tag(_, _), 1).
switch_gen__priority(unshared_tag(_), 2).
switch_gen__priority(float_constant(_), 3).
switch_gen__priority(shared_remote_tag(_, _), 4).
switch_gen__priority(string_constant(_), 5).
switch_gen__priority(pred_closure_tag(_, _), 6). % should never occur
switch_gen__priority(code_addr_constant(_, _), 6). % should never occur
switch_gen__priority(type_ctor_info_constant(_, _, _), 6).% should never occur
switch_gen__priority(base_typeclass_info_constant(_, _, _), 6).% shouldn't occur
switch_gen__priority(tabling_pointer_constant(_, _), 6). % shouldn't occur
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
% Generate a switch as a chain of if-then-elses.
%
% To generate a case for a switch we generate
% code to do a tag-test and fall through to the next case in
% the event of failure.
%
% Each case except the last consists of
%
% a tag test, jumping to the next case if it fails
% the goal for that case
% code to move variables to where the store map says they
% ought to be
% a branch to the end of the switch.
%
% For the last case, if the switch covers all cases that can occur,
% we don't need to generate the tag test, and we never need to
% generate the branch to the end of the switch.
%
% After the last case, we put the end-of-switch label which other
% cases branch to after their case goals.
%
% In the important special case of a det switch with two cases,
% we try to find out which case will be executed more frequently,
% and put that one first. This minimizes the number of pipeline
% breaks caused by taken branches.
:- pred switch_gen__generate_all_cases(list(extended_case), prog_var,
code_model, can_fail, store_map, label, branch_end, branch_end,
code_tree, code_info, code_info).
:- mode switch_gen__generate_all_cases(in, in, in, in, in, in, in, out, out,
in, out) is det.
switch_gen__generate_all_cases(Cases0, Var, CodeModel, CanFail, StoreMap,
EndLabel, MaybeEnd0, MaybeEnd, Code) -->
code_info__produce_variable(Var, VarCode, _Rval),
(
{ CodeModel = model_det },
{ CanFail = cannot_fail },
{ Cases0 = [Case1, Case2] },
{ Case1 = case(_, _, _, Goal1) },
{ Case2 = case(_, _, _, Goal2) }
->
code_info__get_pred_id(PredId),
code_info__get_proc_id(ProcId),
{ code_util__count_recursive_calls(Goal1, PredId, ProcId,
Min1, Max1) },
{ code_util__count_recursive_calls(Goal2, PredId, ProcId,
Min2, Max2) },
{
Max1 = 0, % Goal1 is a base case
Min2 = 1 % Goal2 is probably singly recursive
->
Cases = [Case2, Case1]
;
Max2 = 0, % Goal2 is a base case
Min1 > 1 % Goal1 is at least doubly recursive
->
Cases = [Case2, Case1]
;
Cases = Cases0
}
;
{ Cases = Cases0 }
),
switch_gen__generate_cases(Cases, Var, CodeModel, CanFail,
StoreMap, EndLabel, MaybeEnd0, MaybeEnd, CasesCode),
{ Code = tree(VarCode, CasesCode) }.
:- pred switch_gen__generate_cases(list(extended_case), prog_var, code_model,
can_fail, store_map, label, branch_end, branch_end, code_tree,
code_info, code_info).
:- mode switch_gen__generate_cases(in, in, in, in, in, in, in, out, out,
in, out) is det.
% At the end of a locally semidet switch, we fail because we
% came across a tag which was not covered by one of the cases.
% It is followed by the end of switch label to which the cases
% branch.
switch_gen__generate_cases([], _Var, _CodeModel, CanFail, _StoreMap,
EndLabel, MaybeEnd, MaybeEnd, Code) -->
( { CanFail = can_fail } ->
code_info__generate_failure(FailCode)
;
{ FailCode = empty }
),
{ EndCode = node([
label(EndLabel) -
"end of switch"
]) },
{ Code = tree(FailCode, EndCode) }.
switch_gen__generate_cases([case(_, _, Cons, Goal) | Cases], Var, CodeModel,
CanFail, StoreMap, EndLabel, MaybeEnd0, MaybeEnd, CasesCode) -->
code_info__remember_position(BranchStart),
(
{ Cases = [_|_] ; CanFail = can_fail }
->
unify_gen__generate_tag_test(Var, Cons, branch_on_failure,
NextLabel, TestCode),
trace__maybe_generate_internal_event_code(Goal, TraceCode),
code_gen__generate_goal(CodeModel, Goal, GoalCode),
code_info__generate_branch_end(StoreMap, MaybeEnd0, MaybeEnd1,
SaveCode),
{ ElseCode = node([
goto(label(EndLabel)) -
"skip to the end of the switch",
label(NextLabel) -
"next case"
]) },
{ ThisCaseCode =
tree(TestCode,
tree(TraceCode,
tree(GoalCode,
tree(SaveCode,
ElseCode))))
}
;
trace__maybe_generate_internal_event_code(Goal, TraceCode),
code_gen__generate_goal(CodeModel, Goal, GoalCode),
code_info__generate_branch_end(StoreMap, MaybeEnd0, MaybeEnd1,
SaveCode),
{ ThisCaseCode =
tree(TraceCode,
tree(GoalCode,
SaveCode))
}
),
code_info__reset_to_position(BranchStart),
% generate the rest of the cases.
switch_gen__generate_cases(Cases, Var, CodeModel, CanFail, StoreMap,
EndLabel, MaybeEnd1, MaybeEnd, OtherCasesCode),
{ CasesCode = tree(ThisCaseCode, OtherCasesCode) }.
%------------------------------------------------------------------------------%