Files
mercury/compiler/prog_data.m
Simon Taylor 79dcbbef15 User-guided type specialization.
Estimated hours taken: 60

User-guided type specialization.

compiler/prog_data.m:
compiler/prog_io_pragma.m:
compiler/modules.m:
compiler/module_qual.m:
compiler/mercury_to_mercury.m:
	Handle `:- pragma type_spec'.

compiler/prog_io_pragma.m:
	Factor out some common code to parse predicate names with arguments.

compiler/hlds_module.m:
	Added a field to the module_sub_info to hold information about
	user-requested type specializations, filled in by make_hlds.m
	and not used by anything after higher_order.m.

compiler/make_hlds.m:
	For each `:- pragma type_spec' declaration, introduce a new predicate
	which just calls the predicate to be specialized with the
	specified argument types. This forces higher_order.m to produce
	the specialized versions.

compiler/higher_order.m:
	Process the user-requested type specializations first to ensure
	that they get the correct names.
	Allow partial matches against user-specified versions, e.g.
		map__lookup(map(int, list(int)), int, list(int)) matches
		map__lookup(map(int, V), int, V).
	Perform specialization where a typeclass constraint matches a
	known instance, but the construction of the typeclass_info is
	done in the calling module.
	Give slightly more informative progress messages.

compiler/dead_proc_elim.m:
	Remove specializations for dead procedures.

compiler/prog_io_util.m:
	Change the definition of the `maybe1' and `maybe_functor' types
	to avoid the need for copying to convert between `maybe1'
	and `maybe1(generic)'.
	Changed the interface of `make_pred_name_with_context' to allow
	creation of predicate names for type specializations which describe
	the type substitution.

compiler/make_hlds.m:
compiler/prog_io_pragma.m:
	Make the specification of pragma declarations in error
	messages consistent. (There are probably some more to
	be fixed elsewhere for termination and tabling).

compiler/intermod.m:
	Write type specialization pragmas for predicates declared
	in `.opt' files.

compiler/mercury_to_mercury.m:
	Export `mercury_output_item' for use by intermod.m.

compiler/options.m:
	Add an option `--user-guided-type-specialization' enabled
	with `-O2' or higher.

compiler/handle_options.m:
	`--type-specialization' implies `--user-guided-type-specialization'.

compiler/hlds_goal.m:
	Add predicates to construct constants. These are duplicated
	in several other places, I'll fix that as a separate change.

compiler/type_util.m:
	Added functions `int_type/0', `string_type/0', `float_type/0'
	and `char_type/0' which return the builtin types.
	These are duplicated in several other places,
	I'll fix that as a separate change.

library/private_builtin.m:
	Added `instance_constraint_from_typeclass_info/3' to extract
	the typeclass_infos for a constraint on an instance declaration.
	This is useful for specializing class method calls.
	Added `thread_safe' to various `:- pragma c_code's.
	Added `:- pragma inline' declarations for `builtin_compare_*', which
	are important for user-guided type specialization. (`builtin_unify_*'
	are simple enough to go in the `.opt' files automatically).

compiler/polymorphism.m:
	`instance_constraint_from_typeclass_info/3' does not need type_infos.
	Add `instance_constraint_from_typeclass_info/3' to the
	list of `typeclass_info_manipulator's which higher_order.m
	can interpret.

NEWS:
doc/reference_manual.texi:
doc/user_guide.texi
	Document the new pragma and option.

tests/invalid/Mmakefile:
tests/invalid/type_spec.m:
tests/invalid/type_spec.err_exp:
	Test error reporting for invalid type specializations.

tests/hard_coded/Mmakefile:
tests/invalid/type_spec.m:
tests/invalid/type_spec.exp:
	Test type specialization.
1999-04-23 01:03:51 +00:00

744 lines
23 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1996-1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: prog_data.m.
% Main author: fjh.
%
% This module defines a data structure for representing Mercury programs.
%
% This data structure specifies basically the same information as is
% contained in the source code, but in a parse tree rather than a flat file.
% Simplifications are done only by make_hlds.m, which transforms
% the parse tree which we built here into the HLDS.
:- module prog_data.
:- interface.
:- import_module hlds_data, hlds_pred, (inst), purity, rl, term_util.
:- import_module assoc_list, list, map, varset, term, std_util.
%-----------------------------------------------------------------------------%
% This is how programs (and parse errors) are represented.
:- type message_list == list(pair(string, term)).
% the error/warning message, and the
% term to which it relates
:- type compilation_unit
---> module(
module_name,
item_list
).
:- type item_list == list(item_and_context).
:- type item_and_context == pair(item, prog_context).
:- type item
---> pred_clause(prog_varset, sym_name, list(prog_term), goal)
% VarNames, PredName, HeadArgs, ClauseBody
; func_clause(prog_varset, sym_name, list(prog_term),
prog_term, goal)
% VarNames, PredName, HeadArgs, Result, ClauseBody
; type_defn(tvarset, type_defn, condition)
; inst_defn(inst_varset, inst_defn, condition)
; mode_defn(inst_varset, mode_defn, condition)
; module_defn(prog_varset, module_defn)
; pred(tvarset, inst_varset, existq_tvars, sym_name,
list(type_and_mode), maybe(determinism), condition,
purity, class_constraints)
% TypeVarNames, InstVarNames,
% ExistentiallyQuantifiedTypeVars, PredName, ArgTypes,
% Deterministicness, Cond, Purity, TypeClassContext
; func(tvarset, inst_varset, existq_tvars, sym_name,
list(type_and_mode), type_and_mode, maybe(determinism),
condition, purity, class_constraints)
% TypeVarNames, InstVarNames,
% ExistentiallyQuantifiedTypeVars, PredName, ArgTypes,
% ReturnType, Deterministicness, Cond, Purity,
% TypeClassContext
; pred_mode(inst_varset, sym_name, list(mode), maybe(determinism),
condition)
% VarNames, PredName, ArgModes, Deterministicness,
% Cond
; func_mode(inst_varset, sym_name, list(mode), mode,
maybe(determinism), condition)
% VarNames, PredName, ArgModes, ReturnValueMode,
% Deterministicness, Cond
; pragma(pragma_type)
; typeclass(list(class_constraint), class_name, list(tvar),
class_interface, tvarset)
% Constraints, ClassName, ClassParams,
% ClassMethods, VarNames
; instance(list(class_constraint), class_name, list(type),
instance_body, tvarset)
% DerivingClass, ClassName, Types,
% MethodInstances, VarNames
; nothing.
% used for items that should be ignored (currently only
% NU-Prolog `when' declarations, which are silently ignored
% for backwards compatibility).
:- type type_and_mode
---> type_only(type)
; type_and_mode(type, mode).
:- type pragma_type
---> c_header_code(string)
; c_code(string)
; c_code(pragma_c_code_attributes, sym_name, pred_or_func,
list(pragma_var), prog_varset, pragma_c_code_impl)
% Set of C code attributes, eg.:
% whether or not the C code may call Mercury,
% whether or not the C code is thread-safe
% PredName, Predicate or Function, Vars/Mode,
% VarNames, C Code Implementation Info
; type_spec(sym_name, sym_name, arity, maybe(pred_or_func),
maybe(list(mode)), type_subst, tvarset)
% PredName, SpecializedPredName, Arity,
% PredOrFunc, Modes if a specific procedure was
% specified, type substitution (using the variable
% names from the pred declaration), TVarSet
; inline(sym_name, arity)
% Predname, Arity
; no_inline(sym_name, arity)
% Predname, Arity
; obsolete(sym_name, arity)
% Predname, Arity
; export(sym_name, pred_or_func, list(mode),
string)
% Predname, Predicate/function, Modes,
% C function name.
; import(sym_name, pred_or_func, list(mode),
pragma_c_code_attributes, string)
% Predname, Predicate/function, Modes,
% Set of C code attributes, eg.:
% whether or not the C code may call Mercury,
% whether or not the C code is thread-safe
% C function name.
; source_file(string)
% Source file name.
; unused_args(pred_or_func, sym_name, int,
proc_id, list(int))
% PredName, Arity, Mode, Optimized pred name,
% Removed arguments.
% Used for inter-module unused argument
% removal, should only appear in .opt files.
; fact_table(sym_name, arity, string)
% Predname, Arity, Fact file name.
; aditi(sym_name, arity)
% Predname, Arity
; base_relation(sym_name, arity)
% Predname, Arity
%
% Eventually, these should only occur in
% automatically generated database interface
% files, but for now there's no such thing,
% so they can occur in user programs.
; aditi_index(sym_name, arity, index_spec)
% PredName, Arity, IndexType, Attributes
%
% Specify an index on a base relation.
; naive(sym_name, arity)
% Predname, Arity
% Use naive evaluation.
; psn(sym_name, arity)
% Predname, Arity
% Use predicate semi-naive evaluation.
; aditi_memo(sym_name, arity)
% Predname, Arity
; aditi_no_memo(sym_name, arity)
% Predname, Arity
; supp_magic(sym_name, arity)
% Predname, Arity
; context(sym_name, arity)
% Predname, Arity
; owner(sym_name, arity, string)
% PredName, Arity, String.
; tabled(eval_method, sym_name, int, maybe(pred_or_func),
maybe(list(mode)))
% Tabling type, Predname, Arity, PredOrFunc?, Mode?
; promise_pure(sym_name, arity)
% Predname, Arity
; termination_info(pred_or_func, sym_name, list(mode),
maybe(arg_size_info), maybe(termination_info))
% the list(mode) is the declared argmodes of the
% procedure, unless there are no declared argmodes,
% in which case the inferred argmodes are used.
% This pragma is used to define information about a
% predicates termination properties. It is most
% useful where the compiler has insufficient
% information to be able to analyse the predicate.
% This includes c_code, and imported predicates.
% termination_info pragmas are used in opt and
% trans_opt files.
; terminates(sym_name, arity)
% Predname, Arity
; does_not_terminate(sym_name, arity)
% Predname, Arity
; check_termination(sym_name, arity).
% Predname, Arity
% The type substitution for a `pragma type_spec' declaration.
:- type type_subst == assoc_list(tvar, type).
% This type holds information about the implementation details
% of procedures defined via `pragma c_code'.
% All the strings in this type may be accompanied by the context
% of their appearance in the source code. These contexts are
% used to tell the C compiler where the included C code comes from,
% to allow it to generate error messages that refer to the original
% appearance of the code in the Mercury program.
% The context is missing if the C code was constructed by the compiler.
:- type pragma_c_code_impl
---> ordinary( % This is a C definition of a model_det
% or model_semi procedure. (We also
% allow model_non, until everyone has
% had time to adapt to the new way
% of handling model_non pragmas.)
string, % The C code of the procedure.
maybe(prog_context)
)
; nondet( % This is a C definition of a model_non
% procedure.
string,
maybe(prog_context),
% The info saved for the time when
% backtracking reenters this procedure
% is stored in a C struct. This arg
% contains the field declarations.
string,
maybe(prog_context),
% Gives the code to be executed when
% the procedure is called for the first
% time. This code may access the input
% variables.
string,
maybe(prog_context),
% Gives the code to be executed when
% control backtracks into the procedure.
% This code may not access the input
% variables.
pragma_shared_code_treatment,
% How should the shared code be
% treated during code generation.
string,
maybe(prog_context)
% Shared code that is executed after
% both the previous code fragments.
% May not access the input variables.
).
% The use of this type is explained in the comment at the top of
% pragma_c_gen.m.
:- type pragma_shared_code_treatment
---> duplicate
; share
; automatic.
% A class constraint represents a constraint that a given
% list of types is a member of the specified type class.
% It is an invariant of this data structure that
% the types in a class constraint do not contain any
% information in their prog_context fields.
% This invariant is needed to ensure that we can do
% unifications, map__lookups, etc., and get the
% expected semantics.
% Any code that creates new class constraints must
% ensure that this invariant is preserved,
% probably by using strip_term_contexts/2 in type_util.m.
:- type class_constraint
---> constraint(class_name, list(type)).
:- type class_constraints
---> constraints(
list(class_constraint), % ordinary (universally quantified)
list(class_constraint) % existentially quantified constraints
).
:- type class_name == sym_name.
:- type class_interface == list(class_method).
:- type class_method
---> pred(tvarset, inst_varset, existq_tvars, sym_name,
list(type_and_mode), maybe(determinism), condition,
class_constraints, prog_context)
% TypeVarNames, InstVarNames,
% ExistentiallyQuantifiedTypeVars,
% PredName, ArgTypes, Determinism, Cond
% ClassContext, Context
; func(tvarset, inst_varset, existq_tvars, sym_name,
list(type_and_mode), type_and_mode,
maybe(determinism), condition,
class_constraints, prog_context)
% TypeVarNames, InstVarNames,
% ExistentiallyQuantfiedTypeVars,
% PredName, ArgTypes, ReturnType,
% Determinism, Cond
% ClassContext, Context
; pred_mode(inst_varset, sym_name, list(mode),
maybe(determinism), condition,
prog_context)
% InstVarNames, PredName, ArgModes,
% Determinism, Cond
% Context
; func_mode(inst_varset, sym_name, list(mode), mode,
maybe(determinism), condition,
prog_context)
% InstVarNames, PredName, ArgModes,
% ReturnValueMode,
% Determinism, Cond
% Context
.
:- type instance_method
---> func_instance(sym_name, sym_name, arity, prog_context)
% Method, Instance, Arity,
% Line number of declaration
; pred_instance(sym_name, sym_name, arity, prog_context)
% Method, Instance, Arity,
% Line number of declaration
.
:- type instance_body
---> abstract
; concrete(instance_methods).
:- type instance_methods == list(instance_method).
% an abstract type for representing a set of
% `pragma_c_code_attribute's.
:- type pragma_c_code_attributes.
:- pred default_attributes(pragma_c_code_attributes).
:- mode default_attributes(out) is det.
:- pred may_call_mercury(pragma_c_code_attributes, may_call_mercury).
:- mode may_call_mercury(in, out) is det.
:- pred set_may_call_mercury(pragma_c_code_attributes, may_call_mercury,
pragma_c_code_attributes).
:- mode set_may_call_mercury(in, in, out) is det.
:- pred thread_safe(pragma_c_code_attributes, thread_safe).
:- mode thread_safe(in, out) is det.
:- pred set_thread_safe(pragma_c_code_attributes, thread_safe,
pragma_c_code_attributes).
:- mode set_thread_safe(in, in, out) is det.
% For pragma c_code, there are two different calling conventions,
% one for C code that may recursively call Mercury code, and another
% more efficient one for the case when we know that the C code will
% not recursively invoke Mercury code.
:- type may_call_mercury
---> may_call_mercury
; will_not_call_mercury.
% If thread_safe execution is enabled, then we need to put a mutex
% around the C code for each `pragma c_code' declaration, unless
% it's declared to be thread_safe.
:- type thread_safe
---> not_thread_safe
; thread_safe.
:- type pragma_var
---> pragma_var(prog_var, string, mode).
% variable, name, mode
% we explicitly store the name because we need the real
% name in code_gen
%-----------------------------------------------------------------------------%
% Here's how clauses and goals are represented.
% a => b --> implies(a, b)
% a <= b --> implies(b, a) [just flips the goals around!]
% a <=> b --> equivalent(a, b)
% clause/4 defined above
:- type goal == pair(goal_expr, prog_context).
:- type goal_expr
% conjunctions
---> (goal , goal) % (non-empty) conjunction
; true % empty conjunction
; {goal & goal} % parallel conjunction
% (The curly braces just quote the '&'/2.)
% disjunctions
; {goal ; goal} % (non-empty) disjunction
% (The curly braces just quote the ';'/2.)
; fail % empty disjunction
% quantifiers
; { some(prog_vars, goal) }
% existential quantification
% (The curly braces just quote the 'some'/2.)
; all(prog_vars, goal) % universal quantification
% implications
; implies(goal, goal) % A => B
; equivalent(goal, goal) % A <=> B
% negation and if-then-else
; not(goal)
; if_then(prog_vars, goal, goal)
; if_then_else(prog_vars, goal, goal, goal)
% atomic goals
; call(sym_name, list(prog_term), purity)
; unify(prog_term, prog_term).
% These type equivalences are for the type of program variables
% and associated structures.
:- type prog_var_type ---> prog_var_type.
:- type prog_var == var(prog_var_type).
:- type prog_varset == varset(prog_var_type).
:- type prog_substitution == substitution(prog_var_type).
:- type prog_term == term(prog_var_type).
:- type prog_vars == list(prog_var).
% A prog_context is just a term__context.
:- type prog_context == term__context.
:- type goals == list(goal).
%-----------------------------------------------------------------------------%
% This is how types are represented.
% one day we might allow types to take
% value parameters as well as type parameters.
% type_defn/3 define above
:- type type_defn
---> du_type(sym_name, list(type_param), list(constructor),
maybe(equality_pred)
)
; uu_type(sym_name, list(type_param), list(type))
; eqv_type(sym_name, list(type_param), type)
; abstract_type(sym_name, list(type_param)).
:- type constructor
---> ctor(
existq_tvars,
list(class_constraint), % existential constraints
sym_name,
list(constructor_arg)
).
:- type constructor_arg == pair(string, type).
% An equality_pred specifies the name of a user-defined predicate
% used for equality on a type. See the chapter on them in the
% Mercury Language Reference Manual.
:- type equality_pred == sym_name.
% probably type parameters should be variables not terms.
:- type type_param == term(tvar_type).
% Module qualified types are represented as ':'/2 terms.
% Use type_util:type_to_type_id to convert a type to a qualified
% type_id and a list of arguments.
% type_util:construct_type to construct a type from a type_id
% and a list of arguments.
:- type (type) == term(tvar_type).
:- type type_term == term(tvar_type).
:- type tvar_type ---> type_var.
:- type tvar == var(tvar_type).
% used for type variables
:- type tvarset == varset(tvar_type).
% used for sets of type variables
:- type tsubst == map(tvar, type). % used for type substitutions
% existq_tvars is used to record the set of type variables which are
% existentially quantified
:- type existq_tvars == list(tvar).
% Types may have arbitrary assertions associated with them
% (eg. you can define a type which represents sorted lists).
% Similarly, pred declarations can have assertions attached.
% The compiler will ignore these assertions - they are intended
% to be used by other tools, such as the debugger.
:- type condition
---> true
; where(term).
%-----------------------------------------------------------------------------%
% This is how instantiatednesses and modes are represented.
% Note that while we use the normal term data structure to represent
% type terms (see above), we need a separate data structure for inst
% terms.
:- type inst_var_type ---> inst_var_type.
:- type inst_var == var(inst_var_type).
:- type inst_term == term(inst_var_type).
:- type inst_varset == varset(inst_var_type).
% inst_defn/3 defined above
:- type inst_defn
---> eqv_inst(sym_name, list(inst_param), inst)
; abstract_inst(sym_name, list(inst_param)).
% probably inst parameters should be variables not terms
:- type inst_param == inst_term.
% An `inst_name' is used as a key for the inst_table.
% It is either a user-defined inst `user_inst(Name, Args)',
% or some sort of compiler-generated inst, whose name
% is a representation of it's meaning.
%
% For example, `merge_inst(InstA, InstB)' is the name used for the
% inst that results from merging InstA and InstB using `merge_inst'.
% Similarly `unify_inst(IsLive, InstA, InstB, IsReal)' is
% the name for the inst that results from a call to
% `abstractly_unify_inst(IsLive, InstA, InstB, IsReal)'.
% And `ground_inst' and `any_inst' are insts that result
% from unifying an inst with `ground' or `any', respectively.
% `typed_inst' is an inst with added type information.
% `typed_ground(Uniq, Type)' a equivalent to
% `typed_inst(ground(Uniq, no), Type)'.
% Note that `typed_ground' is a special case of `typed_inst',
% and `ground_inst' and `any_inst' are special cases of `unify_inst'.
% The reason for having the special cases is efficiency.
:- type inst_name
---> user_inst(sym_name, list(inst))
; merge_inst(inst, inst)
; unify_inst(is_live, inst, inst, unify_is_real)
; ground_inst(inst_name, is_live, uniqueness, unify_is_real)
; any_inst(inst_name, is_live, uniqueness, unify_is_real)
; shared_inst(inst_name)
; mostly_uniq_inst(inst_name)
; typed_ground(uniqueness, type)
; typed_inst(type, inst_name).
% Note: `is_live' records liveness in the sense used by
% mode analysis. This is not the same thing as the notion of liveness
% used by code generation. See compiler/notes/glossary.html.
:- type is_live ---> live ; dead.
% Unifications of insts fall into two categories, "real" and "fake".
% The "real" inst unifications correspond to real unifications,
% and are not allowed to unify with `clobbered' insts (unless
% the unification would be `det').
% Any inst unification which is associated with some code that
% will actually examine the contents of the variables in question
% must be "real". Inst unifications that are not associated with
% some real code that examines the variables' values are "fake".
% "Fake" inst unifications are used for procedure calls in implied
% modes, where the final inst of the var must be computed by
% unifying its initial inst with the procedure's final inst,
% so that if you pass a ground var to a procedure whose mode
% is `free -> list_skeleton', the result is ground, not list_skeleton.
% But these fake unifications must be allowed to unify with `clobbered'
% insts. Hence we pass down a flag to `abstractly_unify_inst' which
% specifies whether or not to allow unifications with clobbered values.
:- type unify_is_real
---> real_unify
; fake_unify.
% mode_defn/3 defined above
:- type mode_defn
---> eqv_mode(sym_name, list(inst_param), mode).
:- type (mode)
---> ((inst) -> (inst))
; user_defined_mode(sym_name, list(inst)).
% mode/4 defined above
%-----------------------------------------------------------------------------%
% This is how module-system declarations (such as imports
% and exports) are represented.
:- type module_defn
---> module(module_name)
; end_module(module_name)
; interface
; implementation
; private_interface
% This is used internally by the compiler,
% to identify items which originally
% came from an implementation section
% for a module that contains sub-modules;
% such items need to be exported to the
% sub-modules.
; imported
% This is used internally by the compiler,
% to identify declarations which originally
% came from some other module imported with
% a `:- import_module' declaration.
; used
% This is used internally by the compiler,
% to identify declarations which originally
% came from some other module and for which
% all uses must be module qualified. This
% applies to items from modules imported using
% `:- use_module', and items from `.opt'
% and `.int2' files.
; opt_imported
% This is used internally by the compiler,
% to identify items which originally
% came from a .opt file.
; external(sym_name_specifier)
; export(sym_list)
; import(sym_list)
; use(sym_list)
; include_module(list(module_name)).
:- type sym_list
---> sym(list(sym_specifier))
; pred(list(pred_specifier))
; func(list(func_specifier))
; cons(list(cons_specifier))
; op(list(op_specifier))
; adt(list(adt_specifier))
; type(list(type_specifier))
; module(list(module_specifier)).
:- type sym_specifier
---> sym(sym_name_specifier)
; typed_sym(typed_cons_specifier)
; pred(pred_specifier)
; func(func_specifier)
; cons(cons_specifier)
; op(op_specifier)
; adt(adt_specifier)
; type(type_specifier)
; module(module_specifier).
:- type pred_specifier
---> sym(sym_name_specifier)
; name_args(sym_name, list(type)).
:- type func_specifier == cons_specifier.
:- type cons_specifier
---> sym(sym_name_specifier)
; typed(typed_cons_specifier).
:- type typed_cons_specifier
---> name_args(sym_name, list(type))
; name_res(sym_name_specifier, type)
; name_args_res(sym_name, list(type), type).
:- type adt_specifier == sym_name_specifier.
:- type type_specifier == sym_name_specifier.
:- type op_specifier
---> sym(sym_name_specifier)
% operator fixity specifiers not yet implemented
; fixity(sym_name_specifier, fixity).
:- type fixity
---> infix
; prefix
; postfix
; binary_prefix
; binary_postfix.
:- type sym_name_specifier
---> name(sym_name)
; name_arity(sym_name, arity).
:- type sym_name
---> unqualified(string)
; qualified(module_specifier, string).
:- type module_specifier == sym_name.
:- type module_name == sym_name.
:- type arity == int.
% Describes whether an item can be used without an
% explicit module qualifier.
:- type need_qualifier
---> must_be_qualified
; may_be_unqualified.
%-----------------------------------------------------------------------------%
:- implementation.
:- type pragma_c_code_attributes
---> attributes(
may_call_mercury,
thread_safe
).
default_attributes(attributes(may_call_mercury, not_thread_safe)).
may_call_mercury(Attrs, MayCallMercury) :-
Attrs = attributes(MayCallMercury, _).
thread_safe(Attrs, ThreadSafe) :-
Attrs = attributes(_, ThreadSafe).
set_may_call_mercury(Attrs0, MayCallMercury, Attrs) :-
Attrs0 = attributes(_, ThreadSafe),
Attrs = attributes(MayCallMercury, ThreadSafe).
set_thread_safe(Attrs0, ThreadSafe, Attrs) :-
Attrs0 = attributes(MayCallMercury, _),
Attrs = attributes(MayCallMercury, ThreadSafe).