Files
mercury/compiler/term_util.m
Simon Taylor 0387a6e9c2 Improvements for `:- pragma foreign_type'.
Estimated hours taken: 10
Branches: main

Improvements for `:- pragma foreign_type'.
- Allow default Mercury definitions. The Mercury definition must define
  a discriminated union type. The constructors of the Mercury type are
  only visible in predicates which have implementations for all the
  foreign languages the type has implementations for. In all other
  predicates the type is treated as an abstract type (the check for
  this isn't quite right).
- Allow polymorphic foreign types.
- Don't require the `:- pragma foreign_type' for exported foreign types
  to be in the interface. We now only require that all definitions
  have the same visibility.

compiler/prog_data.m:
compiler/prog_io_pragma.m:
	Allow polymorphic foreign types.

compiler/prog_io.m:
	Export code to parse the type name in a type definition for
	use by prog_io_pragma.m.

compiler/make_hlds.m:
	Handle Mercury definitions for foreign types.

	Separate out the code to add constructors and special predicates
	to the HLDS into a separate pass. For foreign types, we don't know
	what to add until all type definitions have been seen.

	Use the C definition for foreign types with `--target asm'.

compiler/modules.m:
	Distinguish properly between `exported' and `exported_to_submodules'.
	Previously, if a module had sub-modules, all declarations,
	including those in the interface, had import_status
	`exported_to_submodules'. Now, the declarations in the
	interface have status `exported' or `abstract_exported'.
	This is needed to check that the visibility of all the
	definitions of a type is the same.

compiler/hlds_pred.m:
	Add a predicate status_is_exported_to_non_submodules, which
	fails if an item is local to the module and its sub-modules.

compiler/hlds_data.m:
compiler/*.m:
	Record whether a du type has foreign definitions as well.

	Also record whether uses of the type or its constructors
	need to be qualified (this is needed now that adding
	the constructors to the HLDS is a separate pass).

compiler/typecheck.m:
	Check that a predicate or function has foreign clauses before
	allowing the use of a constructor of a type which also has
	foreign definitions.

compiler/hlds_pred.m:
compiler/make_hlds.m:
	Simplify the code to work out the goal_type for a predicate.

compiler/hlds_out.m:
	Don't abort on foreign types.

	Print the goal type for each predicate.

compiler/error_util.m:
	Handle the case where the message being written is a
	continuation of an existing message, so the first line
	should be indented.

compiler/module_qual.m:
	Remove unnecessary processing of foreign types.

doc/reference_manual.tex:
	Document the change.

	Update the documentation for mixing Mercury and foreign clauses.
	The Mercury clauses no longer need to be mode-specific.

tests/hard_coded/Mmakefile:
tests/hard_coded/foreign_type2.{m,exp}:
tests/hard_coded/foreign_type.m:
tests/hard_coded/intermod_foreign_type.{m,exp}:
tests/hard_coded/intermod_foreign_type2.m:
tests/invalid/Mmakefile:
tests/invalid/foreign_type_2.{m,err_exp}:
tests/invalid/foreign_type_visibility.{m,err_exp}:
	Test cases.

tests/invalid/record_syntax.err_exp:
	Update expected output.
2002-06-30 17:07:20 +00:00

625 lines
22 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1997-2002 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% term_util.m
% Main author: crs.
%
% This module:
%
% - defines the types used by termination analysis
% - defines predicates for computing functor norms
% - defines some utility predicates
%
%-----------------------------------------------------------------------------%
:- module transform_hlds__term_util.
:- interface.
:- import_module transform_hlds__term_errors, parse_tree__prog_data.
:- import_module hlds__hlds_module, hlds__hlds_pred, hlds__hlds_data.
:- import_module hlds__hlds_goal.
:- import_module std_util, bool, int, list, map, bag.
%-----------------------------------------------------------------------------%
%
% The types `arg_size_info' and `termination_info' hold information
% about procedures which is used for termination analysis.
% These types are stored as fields in the HLDS proc_info.
% For cross-module analysis, the information is written out as
% `pragma termination_info(...)' declarations in the
% `.opt' and `.trans_opt' files. The module prog_data.m defines
% types similar to these two (but without the `list(term_errors__error)')
% which are used when parsing `termination_info' pragmas.
%
% The arg size info defines an upper bound on the difference
% between the sizes of the output arguments of a procedure and the sizes
% of the input arguments:
%
% | input arguments | + constant >= | output arguments |
%
% where | | represents a semilinear norm.
:- type arg_size_info
---> finite(int, list(bool))
% The termination constant is a finite integer.
% The list of bool has a 1:1 correspondence
% with the input arguments of the procedure.
% It stores whether the argument contributes
% to the size of the output arguments.
; infinite(list(term_errors__error)).
% There is no finite integer for which the
% above equation is true. The argument says
% why the analysis failed to find a finite
% constant.
:- type termination_info
---> cannot_loop % This procedure terminates for all
% possible inputs.
; can_loop(list(term_errors__error)).
% The analysis could not prove that the
% procedure terminates.
% The type `used_args' holds a mapping which specifies for each procedure
% which of its arguments are used.
:- type used_args == map(pred_proc_id, list(bool)).
%-----------------------------------------------------------------------------%
% We use semilinear norms (denoted by ||) to compute the sizes of terms.
% These have the form
%
% | f(t1, ... tn) | = weight(f) + sum of | ti |
% where i is an element of a set I, and I is a subset of {1, ... n}
%
% We currently support four kinds of semilinear norms.
:- type functor_info
---> simple % All non-constant functors have weight 1,
% while constants have weight 0.
% Use the size of all subterms (I = {1, ..., n}.
; total % All functors have weight = arity of the functor.
% Use the size of all subterms (I = {1, ..., n}.
; use_map(weight_table)
% The weight of each functor is given by the table.
% Use the size of all subterms (I = {1, ..., n}.
; use_map_and_args(weight_table).
% The weight of each functor is given by the table,
% and so is the set of arguments of the functor whose
% size should be counted (I is given by the table
% entry of the functor).
:- type unify_info == pair(map(prog_var, type), functor_info).
:- type weight_info ---> weight(int, list(bool)).
:- type weight_table == map(pair(type_ctor, cons_id), weight_info).
:- pred find_weights(module_info::in, weight_table::out) is det.
% This predicate is computes the weight of a functor and the set of arguments
% of that functor whose sizes should be counted towards the size of the whole
% term.
:- pred functor_norm(functor_info::in, type_ctor::in, cons_id::in,
module_info::in, int::out, list(prog_var)::in, list(prog_var)::out,
list(uni_mode)::in, list(uni_mode)::out) is det.
:- type pass_info
---> pass_info(
functor_info,
int, % Max number of errors to gather.
int % Max number of paths to analyze.
).
%-----------------------------------------------------------------------------%
% This predicate partitions the arguments of a call into a list of input
% variables and a list of output variables,
:- pred partition_call_args(module_info::in, list(mode)::in, list(prog_var)::in,
bag(prog_var)::out, bag(prog_var)::out) is det.
% Given a list of variables from a unification, this predicate divides the
% list into a bag of input variables, and a bag of output variables.
:- pred split_unification_vars(list(prog_var)::in, list(uni_mode)::in,
module_info::in, bag(prog_var)::out, bag(prog_var)::out) is det.
% Used to create lists of boolean values, which are used for used_args.
% make_bool_list(HeadVars, BoolIn, BoolOut) creates a bool list which is
% (length(HeadVars) - length(BoolIn)) `no' followed by BoolIn. This is
% used to set the used args for compiler generated predicates. The no's
% at the start are because the Type infos are not used. length(BoolIn)
% should equal the arity of the predicate, and the difference in length
% between the arity of the procedure and the arity of the predicate is
% the number of type infos.
:- pred term_util__make_bool_list(list(_T)::in, list(bool)::in,
list(bool)::out) is det.
% Removes variables from the InVarBag that are not used in the call.
% remove_unused_args(InVarBag0, VarList, BoolList, InVarBag)
% VarList and BoolList are corresponding lists. Any variable in VarList
% that has a `no' in the corresponding place in the BoolList is removed
% from InVarBag.
:- pred remove_unused_args(bag(prog_var), list(prog_var), list(bool),
bag(prog_var)).
:- mode remove_unused_args(in, in, in, out) is det.
% This predicate sets the argument size info of a given a list of procedures.
:- pred set_pred_proc_ids_arg_size_info(list(pred_proc_id)::in,
arg_size_info::in, module_info::in, module_info::out) is det.
% This predicate sets the termination info of a given a list of procedures.
:- pred set_pred_proc_ids_termination_info(list(pred_proc_id)::in,
termination_info::in, module_info::in, module_info::out) is det.
:- pred lookup_proc_termination_info(module_info::in, pred_proc_id::in,
maybe(termination_info)::out) is det.
:- pred lookup_proc_arg_size_info(module_info::in, pred_proc_id::in,
maybe(arg_size_info)::out) is det.
% Succeeds if one or more variables in the list are higher order.
:- pred horder_vars(list(prog_var), map(prog_var, type)).
:- mode horder_vars(in, in) is semidet.
% Succeeds if all values of the given type are zero size (for all norms).
:- pred zero_size_type(type, module_info).
:- mode zero_size_type(in, in) is semidet.
:- pred get_context_from_scc(list(pred_proc_id)::in, module_info::in,
prog_context::out) is det.
%-----------------------------------------------------------------------------%
% Convert a prog_data__pragma_termination_info into a
% term_util__termination_info, by adding the appropriate context.
:- pred add_context_to_termination_info(maybe(pragma_termination_info),
prog_context, maybe(termination_info)).
:- mode add_context_to_termination_info(in, in, out) is det.
% Convert a prog_data__pragma_arg_size_info into a
% term_util__arg_size_info, by adding the appropriate context.
:- pred add_context_to_arg_size_info(maybe(pragma_arg_size_info),
prog_context, maybe(arg_size_info)).
:- mode add_context_to_arg_size_info(in, in, out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module check_hlds__inst_match, parse_tree__prog_out.
:- import_module check_hlds__mode_util, check_hlds__type_util.
:- import_module libs__globals, libs__options.
:- import_module assoc_list, require.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% Calculate the weight to be assigned to each function symbol for the
% use_map and use_map_and_args semilinear norms.
%
% Given a type definition such as
%
% :- type t(Tk) ---> f1(a11, ... a1n1) where n1 is the arity of f1
% ; ...
% ; fm(am1, ... amnm) where nm is the arity of fm
%
% we check, for each aij, whether its type is recursive (i.e. it is t with
% type variable arguments that are a permutation of Tk). The weight info
% we compute for each functor will have a boolean list that has a `yes'
% for each recursive argument and a `no' for each nonrecursive argument.
% The weight to be assigned to the functor is the number of nonrecursive
% arguments, except that we assign a weight of at least 1 to all functors
% which are not constants.
find_weights(ModuleInfo, Weights) :-
module_info_types(ModuleInfo, TypeTable),
map__to_assoc_list(TypeTable, TypeList),
map__init(Weights0),
find_weights_for_type_list(TypeList, Weights0, Weights).
:- pred find_weights_for_type_list(assoc_list(type_ctor, hlds_type_defn)::in,
weight_table::in, weight_table::out) is det.
find_weights_for_type_list([], Weights, Weights).
find_weights_for_type_list([TypeCtor - TypeDefn | TypeList],
Weights0, Weights) :-
find_weights_for_type(TypeCtor, TypeDefn, Weights0, Weights1),
find_weights_for_type_list(TypeList, Weights1, Weights).
:- pred find_weights_for_type(type_ctor::in, hlds_type_defn::in,
weight_table::in, weight_table::out) is det.
find_weights_for_type(TypeCtor, TypeDefn, Weights0, Weights) :-
hlds_data__get_type_defn_body(TypeDefn, TypeBody),
(
TypeBody = du_type(Constructors, _, _, _, _),
hlds_data__get_type_defn_tparams(TypeDefn, TypeParams),
find_weights_for_cons_list(Constructors, TypeCtor, TypeParams,
Weights0, Weights)
;
% This type does not introduce any functors
TypeBody = eqv_type(_),
Weights = Weights0
;
% This type may introduce some functors,
% but we will never see them in this analysis
TypeBody = abstract_type,
Weights = Weights0
;
% This type does not introduce any functors
TypeBody = foreign_type(_),
Weights = Weights0
).
:- pred find_weights_for_cons_list(list(constructor)::in,
type_ctor::in, list(type_param)::in,
weight_table::in, weight_table::out) is det.
find_weights_for_cons_list([], _, _, Weights, Weights).
find_weights_for_cons_list([Constructor | Constructors], TypeCtor, Params,
Weights0, Weights) :-
find_weights_for_cons(Constructor, TypeCtor, Params,
Weights0, Weights1),
find_weights_for_cons_list(Constructors, TypeCtor, Params,
Weights1, Weights).
:- pred find_weights_for_cons(constructor::in,
type_ctor::in, list(type_param)::in,
weight_table::in, weight_table::out) is det.
find_weights_for_cons(Ctor, TypeCtor, Params, Weights0, Weights) :-
% XXX should we do something about ExistQVars here?
Ctor = ctor(_ExistQVars, _Constraints, SymName, Args),
list__length(Args, Arity),
( Arity > 0 ->
find_and_count_nonrec_args(Args, TypeCtor, Params,
NumNonRec, ArgInfos0),
( NumNonRec = 0 ->
Weight = 1,
list__duplicate(Arity, yes, ArgInfos)
;
Weight = NumNonRec,
ArgInfos = ArgInfos0
),
WeightInfo = weight(Weight, ArgInfos)
;
WeightInfo = weight(0, [])
),
ConsId = cons(SymName, Arity),
map__det_insert(Weights0, TypeCtor - ConsId, WeightInfo, Weights).
:- pred find_weights_for_tuple(arity::in, weight_info::out) is det.
find_weights_for_tuple(Arity, weight(Weight, ArgInfos)) :-
% None of the tuple arguments are recursive.
Weight = Arity,
list__duplicate(Arity, yes, ArgInfos).
:- pred find_and_count_nonrec_args(list(constructor_arg)::in,
type_ctor::in, list(type_param)::in,
int::out, list(bool)::out) is det.
find_and_count_nonrec_args([], _, _, 0, []).
find_and_count_nonrec_args([Arg | Args], Id, Params, NonRecArgs, ArgInfo) :-
find_and_count_nonrec_args(Args, Id, Params, NonRecArgs0, ArgInfo0),
( is_arg_recursive(Arg, Id, Params) ->
NonRecArgs = NonRecArgs0,
ArgInfo = [yes | ArgInfo0]
;
NonRecArgs is NonRecArgs0 + 1,
ArgInfo = [no | ArgInfo0]
).
:- pred is_arg_recursive(constructor_arg::in,
type_ctor::in, list(type_param)::in) is semidet.
is_arg_recursive(Arg, TypeCtor, Params) :-
Arg = _Name - ArgType,
type_to_ctor_and_args(ArgType, ArgTypeCtor, ArgTypeParams),
TypeCtor = ArgTypeCtor,
list__perm(Params, ArgTypeParams).
:- pred search_weight_table(weight_table::in, type_ctor::in, cons_id::in,
weight_info::out) is semidet.
search_weight_table(WeightMap, TypeCtor, ConsId, WeightInfo) :-
( map__search(WeightMap, TypeCtor - ConsId, WeightInfo0) ->
WeightInfo = WeightInfo0
; type_ctor_is_tuple(TypeCtor) ->
TypeCtor = _ - Arity,
find_weights_for_tuple(Arity, WeightInfo)
;
fail
).
%-----------------------------------------------------------------------------%
% Although the module info is not used in either of these norms, it could
% be needed for other norms, so it should not be removed.
functor_norm(simple, _, ConsId, _, Int, Args, Args, Modes, Modes) :-
(
ConsId = cons(_, Arity),
Arity \= 0
->
Int = 1
;
Int = 0
).
functor_norm(total, _, ConsId, _Module, Int, Args, Args, Modes, Modes) :-
( ConsId = cons(_, Arity) ->
Int = Arity
;
Int = 0
).
functor_norm(use_map(WeightMap), TypeCtor, ConsId, _Module, Int,
Args, Args, Modes, Modes) :-
( search_weight_table(WeightMap, TypeCtor, ConsId, WeightInfo) ->
WeightInfo = weight(Int, _)
;
Int = 0
).
functor_norm(use_map_and_args(WeightMap), TypeCtor, ConsId, _Module, Int,
Args0, Args, Modes0, Modes) :-
( search_weight_table(WeightMap, TypeCtor, ConsId, WeightInfo) ->
WeightInfo = weight(Int, UseArgList),
(
functor_norm_filter_args(UseArgList, Args0, Args1,
Modes0, Modes1)
->
Modes = Modes1,
Args = Args1
;
error("Unmatched lists in functor_norm_filter_args.")
)
;
Int = 0,
Modes = Modes0,
Args = Args0
).
% This predicate will fail if the length of the input lists are not matched.
:- pred functor_norm_filter_args(list(bool), list(prog_var), list(prog_var),
list(uni_mode), list(uni_mode)).
:- mode functor_norm_filter_args(in, in, out, in, out) is semidet.
functor_norm_filter_args([], [], [], [], []).
functor_norm_filter_args([yes | Bools], [Arg0 | Args0], [Arg0 | Args],
[Mode0 | Modes0], [Mode0 | Modes]) :-
functor_norm_filter_args(Bools, Args0, Args, Modes0, Modes).
functor_norm_filter_args([no | Bools], [_Arg0 | Args0], Args,
[_Mode0 | Modes0], Modes) :-
functor_norm_filter_args(Bools, Args0, Args, Modes0, Modes).
%-----------------------------------------------------------------------------%
partition_call_args(Module, ArgModes, Args, InVarsBag, OutVarsBag) :-
partition_call_args_2(Module, ArgModes, Args, InVars, OutVars),
bag__from_list(InVars, InVarsBag),
bag__from_list(OutVars, OutVarsBag).
:- pred partition_call_args_2(module_info::in, list(mode)::in,
list(prog_var)::in, list(prog_var)::out, list(prog_var)::out) is det.
partition_call_args_2(_, [], [], [], []).
partition_call_args_2(_, [], [_ | _], _, _) :-
error("Unmatched variables in term_util:partition_call_args").
partition_call_args_2(_, [_ | _], [], _, _) :-
error("Unmatched variables in term_util__partition_call_args").
partition_call_args_2(ModuleInfo, [ArgMode | ArgModes], [Arg | Args],
InputArgs, OutputArgs) :-
partition_call_args_2(ModuleInfo, ArgModes, Args,
InputArgs1, OutputArgs1),
( mode_is_input(ModuleInfo, ArgMode) ->
InputArgs = [Arg | InputArgs1],
OutputArgs = OutputArgs1
; mode_is_output(ModuleInfo, ArgMode) ->
InputArgs = InputArgs1,
OutputArgs = [Arg | OutputArgs1]
;
InputArgs = InputArgs1,
OutputArgs = OutputArgs1
).
% For these next two predicates (split_unification_vars and
% partition_call_args) there is a problem of what needs to be done for
% partially instantiated data structures. The correct answer is that the
% system shoud use a norm such that the size of the uninstantiated parts of
% a partially instantiated structure have no effect on the size of the data
% structure according to the norm. For example when finding the size of a
% list-skeleton, list-length norm should be used. Therefore, the size of
% any term must be given by
% sizeof(term) = constant + sum of the size of each
% (possibly partly) instantiated subterm.
% It is probably easiest to implement this by modifying term_weights.
% The current implementation does not correctly handle partially
% instantiated data structures.
split_unification_vars([], Modes, _ModuleInfo, Vars, Vars) :-
bag__init(Vars),
( Modes = [] ->
true
;
error("term_util:split_unification_vars: Unmatched Variables")
).
split_unification_vars([Arg | Args], Modes, ModuleInfo,
InVars, OutVars):-
( Modes = [UniMode | UniModes] ->
split_unification_vars(Args, UniModes, ModuleInfo,
InVars0, OutVars0),
UniMode = ((_VarInit - ArgInit) -> (_VarFinal - ArgFinal)),
( % if
inst_is_bound(ModuleInfo, ArgInit)
->
% Variable is an input variable
bag__insert(InVars0, Arg, InVars),
OutVars = OutVars0
; % else if
inst_is_free(ModuleInfo, ArgInit),
inst_is_bound(ModuleInfo, ArgFinal)
->
% Variable is an output variable
InVars = InVars0,
bag__insert(OutVars0, Arg, OutVars)
; % else
InVars = InVars0,
OutVars = OutVars0
)
;
error("term_util__split_unification_vars: Unmatched Variables")
).
%-----------------------------------------------------------------------------%
term_util__make_bool_list(HeadVars0, Bools, Out) :-
list__length(Bools, Arity),
( list__drop(Arity, HeadVars0, HeadVars1) ->
HeadVars = HeadVars1
;
error("Unmatched variables in term_util:make_bool_list")
),
term_util__make_bool_list_2(HeadVars, Bools, Out).
:- pred term_util__make_bool_list_2(list(_T), list(bool), list(bool)).
:- mode term_util__make_bool_list_2(in, in, out) is det.
term_util__make_bool_list_2([], Bools, Bools).
term_util__make_bool_list_2([ _ | Vars ], Bools, [no | Out]) :-
term_util__make_bool_list_2(Vars, Bools, Out).
remove_unused_args(Vars, [], [], Vars).
remove_unused_args(Vars, [], [_X | _Xs], Vars) :-
error("Unmatched variables in term_util:remove_unused_args").
remove_unused_args(Vars, [_X | _Xs], [], Vars) :-
error("Unmatched variables in term_util__remove_unused_args").
remove_unused_args(Vars0, [ Arg | Args ], [ UsedVar | UsedVars ], Vars) :-
( UsedVar = yes ->
% The variable is used, so leave it
remove_unused_args(Vars0, Args, UsedVars, Vars)
;
% The variable is not used in producing output vars, so
% dont include it as an input variable.
bag__delete(Vars0, Arg, Vars1),
remove_unused_args(Vars1, Args, UsedVars, Vars)
).
%-----------------------------------------------------------------------------%
set_pred_proc_ids_arg_size_info([], _ArgSize, Module, Module).
set_pred_proc_ids_arg_size_info([PPId | PPIds], ArgSize, Module0, Module) :-
PPId = proc(PredId, ProcId),
module_info_preds(Module0, PredTable0),
map__lookup(PredTable0, PredId, PredInfo0),
pred_info_procedures(PredInfo0, ProcTable0),
map__lookup(ProcTable0, ProcId, ProcInfo0),
proc_info_set_maybe_arg_size_info(ProcInfo0, yes(ArgSize), ProcInfo),
map__det_update(ProcTable0, ProcId, ProcInfo, ProcTable),
pred_info_set_procedures(PredInfo0, ProcTable, PredInfo),
map__det_update(PredTable0, PredId, PredInfo, PredTable),
module_info_set_preds(Module0, PredTable, Module1),
set_pred_proc_ids_arg_size_info(PPIds, ArgSize, Module1, Module).
set_pred_proc_ids_termination_info([], _Termination, Module, Module).
set_pred_proc_ids_termination_info([PPId | PPIds], Termination,
Module0, Module) :-
PPId = proc(PredId, ProcId),
module_info_preds(Module0, PredTable0),
map__lookup(PredTable0, PredId, PredInfo0),
pred_info_procedures(PredInfo0, ProcTable0),
map__lookup(ProcTable0, ProcId, ProcInfo0),
proc_info_set_maybe_termination_info(ProcInfo0, yes(Termination),
ProcInfo),
map__det_update(ProcTable0, ProcId, ProcInfo, ProcTable),
pred_info_set_procedures(PredInfo0, ProcTable, PredInfo),
map__det_update(PredTable0, PredId, PredInfo, PredTable),
module_info_set_preds(Module0, PredTable, Module1),
set_pred_proc_ids_termination_info(PPIds, Termination,
Module1, Module).
lookup_proc_termination_info(Module, PredProcId, MaybeTermination) :-
PredProcId = proc(PredId, ProcId),
module_info_pred_proc_info(Module, PredId, ProcId, _, ProcInfo),
proc_info_get_maybe_termination_info(ProcInfo, MaybeTermination).
lookup_proc_arg_size_info(Module, PredProcId, MaybeArgSize) :-
PredProcId = proc(PredId, ProcId),
module_info_pred_proc_info(Module, PredId, ProcId, _, ProcInfo),
proc_info_get_maybe_arg_size_info(ProcInfo, MaybeArgSize).
horder_vars([Arg | Args], VarType) :-
(
map__lookup(VarType, Arg, Type),
type_is_higher_order(Type, _, _, _)
;
horder_vars(Args, VarType)
).
zero_size_type(Type, Module) :-
classify_type(Type, Module, TypeCategory),
zero_size_type_category(TypeCategory, Type, Module, yes).
:- pred zero_size_type_category(builtin_type, type, module_info, bool).
:- mode zero_size_type_category(in, in, in, out) is det.
zero_size_type_category(int_type, _, _, yes).
zero_size_type_category(char_type, _, _, yes).
zero_size_type_category(str_type, _, _, yes).
zero_size_type_category(float_type, _, _, yes).
zero_size_type_category(pred_type, _, _, no).
zero_size_type_category(tuple_type, _, _, no).
zero_size_type_category(enum_type, _, _, yes).
zero_size_type_category(polymorphic_type, _, _, no).
zero_size_type_category(user_type, _, _, no).
%-----------------------------------------------------------------------------%
get_context_from_scc(SCC, Module, Context) :-
( SCC = [proc(PredId, _) | _] ->
module_info_pred_info(Module, PredId, PredInfo),
pred_info_context(PredInfo, Context)
;
error("Empty SCC in pass 2 of termination analysis")
).
%-----------------------------------------------------------------------------%
add_context_to_termination_info(no, _, no).
add_context_to_termination_info(yes(cannot_loop), _, yes(cannot_loop)).
add_context_to_termination_info(yes(can_loop), Context,
yes(can_loop([Context - imported_pred]))).
add_context_to_arg_size_info(no, _, no).
add_context_to_arg_size_info(yes(finite(A, B)), _, yes(finite(A, B))).
add_context_to_arg_size_info(yes(infinite), Context,
yes(infinite([Context - imported_pred]))).
%-----------------------------------------------------------------------------%