Files
mercury/compiler/prog_io_dcg.m
Ralph Becket b746233ac4 Implemented state variable transformation.
Estimated hours taken: 600
Branches: main

Implemented state variable transformation.

NEWS:
	Record new syntax and withdrawl of !/0 as Prolog cut.

compiler/hlds_goal.m:
compiler/hlds_out.m:
	Added implicit/1 constructor to unify_main_context for cases where
	variables are introduced by compiler transformations.

compiler/make_hlds.m:
	Integrated the state variable transformation with the conversion to
	HLDS.

	Changed references to foreign_type and du_type constructors to
	match recent changes to the foreign type interface.

compiler/mercury_compile.m:
	Removed two unnecessary Prolog cuts left over from the Dark
	Ages.

compiler/mercury_to_mercury.m:
	Added code to output the new goal_expr constructors for state
	variable quantifiers (some_state_vars and all_state_vars.)

	Adapted to handle changes to if_then and if_then_else
	goal_expr constructors which now include lists of state
	variables that scope over the condition- and then-goals.

compiler/module_qual.m:
compiler/prog_util.m:
	Changes to handle some_state_vars, all_state_vars, and changes
	to if_then and if_then_else goal_expr constructors.

compiler/prog_data.m:
	Added some_state_vars, all_state_vars constructors and changed
	if_then and if_then_else constructors in type goal_expr.

compiler/prog_io_dcg.m:
	Changes to handle quantified state variables.

compiler/prog_io_goal.m:
	parse_some_vars_goal now also separates out quantified state
	variables.

compiler/prog_io_util.m:
	Added pred parse_quantifier_vars/3 which also detects state
	variables.

compiler/typecheck.m:
	Added case to report_error_undef_cons to handle any uncaught
	uses of !/1.

doc/reference_manual.texi:
	Documented the transformation.

library/builtin.m:
library/prolog.m:
	Deleted code for `!' as fake Prolog cut.

library/lexer.m:
	Made `!' a graphic token rather char than a special token.

library/ops.m:
	Added `!', `!.' and `!:' as prefix ops.

library/term.m:
	Added func var_id/1 which returns an int associated with its
	var argument which is unique in the context of the given var
	and the varset it belongs to.

library/varset.m:
	Added pred new_uniquely_named_var/4 which creates a named
	variable with a unique (w.r.t. the varset) number suffix.

tests/general/Mmakefile:
tests/general/state_vars_tests.exp:
tests/general/state_vars_tests.m:
tests/general/state_vars_typeclasses.exp:
tests/general/state_vars_typeclasses.m:
tests/invalid/Mmakefile:
tests/invalid/state_vars_test1.err_exp:
tests/invalid/state_vars_test1.m:
tests/invalid/state_vars_test2.err_exp:
tests/invalid/state_vars_test2.m:
tests/invalid/state_vars_test3.err_exp:
tests/invalid/state_vars_test3.m:
tests/invalid/state_vars_test4.err_exp:
tests/invalid/state_vars_test4.m:
tests/invalid/state_vars_test5.err_exp:
tests/invalid/state_vars_test5.m:
	Added.
2002-07-09 01:31:12 +00:00

525 lines
18 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1996-2001 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: prog_io_dcg.m.
% Main authors: fjh, zs.
%
% This module handles the parsing of clauses in Definite Clause Grammar
% notation.
%
% XXX This module performs no error checking.
% XXX It may be an idea to recode this as a state variable transformation:
% roughly Head --> G1, G2, {G3}, G4.
% becomes Head(!DCG) :- G1(!DCG), G2(!DCG), G3, G4(!DCG).
:- module parse_tree__prog_io_dcg.
:- interface.
:- import_module parse_tree__prog_data, parse_tree__prog_io_util.
:- import_module varset, term.
:- pred parse_dcg_clause(module_name, varset, term, term,
prog_context, maybe_item_and_context).
:- mode parse_dcg_clause(in, in, in, in, in, out) is det.
% parse_dcg_pred_goal(GoalTerm, VarSet0, Goal,
% DCGVarInitial, DCGVarFinal, Varset)
% parses `GoalTerm' and expands it as a DCG goal,
% `VarSet0' is the initial varset, and `VarSet' is
% the final varset. `DCGVarInitial' is the first DCG variable,
% and `DCGVarFinal' is the final DCG variable.
:- pred parse_dcg_pred_goal(term, prog_varset, goal, prog_var,
prog_var, prog_varset).
:- mode parse_dcg_pred_goal(in, in, out, out, out, out) is det.
:- implementation.
:- import_module parse_tree__prog_io, parse_tree__prog_io_goal.
:- import_module parse_tree__prog_util, check_hlds__purity.
:- import_module int, map, string, std_util, list.
%-----------------------------------------------------------------------------%
parse_dcg_clause(ModuleName, VarSet0, DCG_Head, DCG_Body, DCG_Context,
Result) :-
varset__coerce(VarSet0, ProgVarSet0),
new_dcg_var(ProgVarSet0, 0, ProgVarSet1, N0, DCG_0_Var),
parse_dcg_goal(DCG_Body, ProgVarSet1, N0, DCG_0_Var,
Body, ProgVarSet, _N, DCG_Var),
parse_implicitly_qualified_term(ModuleName,
DCG_Head, DCG_Body, "DCG clause head", HeadResult),
process_dcg_clause(HeadResult, ProgVarSet, DCG_0_Var, DCG_Var,
Body, R),
add_context(R, DCG_Context, Result).
%-----------------------------------------------------------------------------%
parse_dcg_pred_goal(GoalTerm, VarSet0, Goal, DCGVar0, DCGVar, VarSet) :-
new_dcg_var(VarSet0, 0, VarSet1, N0, DCGVar0),
parse_dcg_goal(GoalTerm, VarSet1, N0, DCGVar0,
Goal, VarSet, _N, DCGVar).
%-----------------------------------------------------------------------------%
% Used to allocate fresh variables needed for the DCG expansion.
:- pred new_dcg_var(prog_varset, int, prog_varset, int, prog_var).
:- mode new_dcg_var(in, in, out, out, out) is det.
new_dcg_var(VarSet0, N0, VarSet, N, DCG_0_Var) :-
string__int_to_string(N0, StringN),
string__append("DCG_", StringN, VarName),
varset__new_var(VarSet0, DCG_0_Var, VarSet1),
varset__name_var(VarSet1, DCG_0_Var, VarName, VarSet),
N is N0 + 1.
%-----------------------------------------------------------------------------%
% Expand a DCG goal.
:- pred parse_dcg_goal(term, prog_varset, int, prog_var, goal,
prog_varset, int, prog_var).
:- mode parse_dcg_goal(in, in, in, in, out, out, out, out) is det.
parse_dcg_goal(Term, VarSet0, N0, Var0, Goal, VarSet, N, Var) :-
% first, figure out the context for the goal
(
Term = term__functor(_, _, Context)
;
Term = term__variable(_),
term__context_init(Context)
),
% next, parse it
(
term__coerce(Term, ProgTerm),
sym_name_and_args(ProgTerm, SymName, Args0)
->
% First check for the special cases:
(
SymName = unqualified(Functor),
list__map(term__coerce, Args0, Args1),
parse_dcg_goal_2(Functor, Args1, Context,
VarSet0, N0, Var0, Goal1, VarSet1, N1, Var1)
->
Goal = Goal1,
VarSet = VarSet1,
N = N1,
Var = Var1
;
% It's the ordinary case of non-terminal.
% Create a fresh var as the DCG output var from this
% goal, and append the DCG argument pair to the
% non-terminal's argument list.
new_dcg_var(VarSet0, N0, VarSet, N, Var),
list__append(Args0,
[term__variable(Var0),
term__variable(Var)], Args),
Goal = call(SymName, Args, pure) - Context
)
;
% A call to a free variable, or to a number or string.
% Just translate it into a call to call/3 - the typechecker
% will catch calls to numbers and strings.
new_dcg_var(VarSet0, N0, VarSet, N, Var),
term__coerce(Term, ProgTerm),
Goal = call(unqualified("call"), [ProgTerm,
term__variable(Var0), term__variable(Var)],
pure) - Context
).
% parse_dcg_goal_2(Functor, Args, Context, VarSet0, N0, Var0,
% Goal, VarSet, N, Var):
% VarSet0/VarSet are an accumulator pair which we use to
% allocate fresh DCG variables; N0 and N are an accumulator pair
% we use to keep track of the number to give to the next DCG
% variable (so that we can give it a semi-meaningful name "DCG_<N>"
% for use in error messages, debugging, etc.).
% Var0 and Var are an accumulator pair we use to keep track of
% the current DCG variable.
:- pred parse_dcg_goal_2(string, list(term), prog_context, prog_varset,
int, prog_var, goal, prog_varset, int, prog_var).
:- mode parse_dcg_goal_2(in, in, in, in, in, in, out, out, out, out)
is semidet.
% Ordinary goal inside { curly braces }.
parse_dcg_goal_2("{}", [G0 | Gs], Context, VarSet0, N, Var,
Goal, VarSet, N, Var) :-
% The parser treats '{}/N' terms as tuples, so we need
% to undo the parsing of the argument conjunction here.
list_to_conjunction(Context, G0, Gs, G),
parse_goal(G, VarSet0, Goal, VarSet).
parse_dcg_goal_2("impure", [G], _, VarSet0, N0, Var0, Goal, VarSet, N, Var) :-
parse_dcg_goal_with_purity(G, VarSet0, N0, Var0, (impure),
Goal, VarSet, N, Var).
parse_dcg_goal_2("semipure", [G], _, VarSet0, N0, Var0, Goal, VarSet, N,
Var) :-
parse_dcg_goal_with_purity(G, VarSet0, N0, Var0, (semipure),
Goal, VarSet, N, Var).
% Empty list - just unify the input and output DCG args.
parse_dcg_goal_2("[]", [], Context, VarSet0, N0, Var0,
Goal, VarSet, N, Var) :-
new_dcg_var(VarSet0, N0, VarSet, N, Var),
Goal = unify(term__variable(Var0), term__variable(Var), pure) - Context.
% Non-empty list of terminals. Append the DCG output arg
% as the new tail of the list, and unify the result with
% the DCG input arg.
parse_dcg_goal_2("[|]", [X, Xs], Context, VarSet0, N0, Var0,
Goal, VarSet, N, Var) :-
new_dcg_var(VarSet0, N0, VarSet, N, Var),
ConsTerm0 = term__functor(term__atom("[|]"), [X, Xs], Context),
term__coerce(ConsTerm0, ConsTerm),
term_list_append_term(ConsTerm, term__variable(Var), Term),
Goal = unify(term__variable(Var0), Term, pure) - Context.
% Call to '='/1 - unify argument with DCG input arg.
parse_dcg_goal_2("=", [A0], Context, VarSet, N, Var, Goal, VarSet, N, Var) :-
term__coerce(A0, A),
Goal = unify(A, term__variable(Var), pure) - Context.
% Call to ':='/1 - unify argument with DCG output arg.
parse_dcg_goal_2(":=", [A0], Context, VarSet0, N0, _Var0,
Goal, VarSet, N, Var) :-
new_dcg_var(VarSet0, N0, VarSet, N, Var),
term__coerce(A0, A),
Goal = unify(A, term__variable(Var), pure) - Context.
% If-then (Prolog syntax).
% We need to add an else part to unify the DCG args.
/******
Since (A -> B) has different semantics in standard Prolog
(A -> B ; fail) than it does in NU-Prolog or Mercury (A -> B ; true),
for the moment we'll just disallow it.
parse_dcg_goal_2("->", [Cond0, Then0], Context, VarSet0, N0, Var0,
Goal, VarSet, N, Var) :-
parse_dcg_if_then(Cond0, Then0, Context, VarSet0, N0, Var0,
SomeVars, StateVars, Cond, Then, VarSet, N, Var),
( Var = Var0 ->
Goal = if_then(SomeVars, StateVars, Cond, Then) - Context
;
Unify = unify(term__variable(Var), term__variable(Var0)),
Goal = if_then_else(SomeVars, StateVars, Cond, Then,
Unify - Context) - Context
).
******/
% If-then (NU-Prolog syntax).
parse_dcg_goal_2("if", [
term__functor(term__atom("then"), [Cond0, Then0], _)
], Context, VarSet0, N0, Var0, Goal, VarSet, N, Var) :-
parse_dcg_if_then(Cond0, Then0, Context, VarSet0, N0, Var0,
SomeVars, StateVars, Cond, Then, VarSet, N, Var),
( Var = Var0 ->
Goal = if_then(SomeVars, StateVars, Cond, Then) - Context
;
Unify = unify(term__variable(Var), term__variable(Var0), pure),
Goal = if_then_else(SomeVars, StateVars, Cond, Then,
Unify - Context) - Context
).
% Conjunction.
parse_dcg_goal_2(",", [A0, B0], Context, VarSet0, N0, Var0,
(A, B) - Context, VarSet, N, Var) :-
parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet1, N1, Var1),
parse_dcg_goal(B0, VarSet1, N1, Var1, B, VarSet, N, Var).
parse_dcg_goal_2("&", [A0, B0], Context, VarSet0, N0, Var0,
(A & B) - Context, VarSet, N, Var) :-
parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet1, N1, Var1),
parse_dcg_goal(B0, VarSet1, N1, Var1, B, VarSet, N, Var).
% Disjunction or if-then-else (Prolog syntax).
parse_dcg_goal_2(";", [A0, B0], Context, VarSet0, N0, Var0,
Goal, VarSet, N, Var) :-
(
A0 = term__functor(term__atom("->"), [Cond0, Then0], _Context)
->
parse_dcg_if_then_else(Cond0, Then0, B0, Context,
VarSet0, N0, Var0, Goal, VarSet, N, Var)
;
parse_dcg_goal(A0, VarSet0, N0, Var0,
A1, VarSet1, N1, VarA),
parse_dcg_goal(B0, VarSet1, N1, Var0,
B1, VarSet, N, VarB),
( VarA = Var0, VarB = Var0 ->
Var = Var0,
Goal = (A1 ; B1) - Context
; VarA = Var0 ->
Var = VarB,
Unify = unify(term__variable(Var),
term__variable(VarA), pure),
append_to_disjunct(A1, Unify, Context, A2),
Goal = (A2 ; B1) - Context
; VarB = Var0 ->
Var = VarA,
Unify = unify(term__variable(Var),
term__variable(VarB), pure),
append_to_disjunct(B1, Unify, Context, B2),
Goal = (A1 ; B2) - Context
;
Var = VarB,
prog_util__rename_in_goal(A1, VarA, VarB, A2),
Goal = (A2 ; B1) - Context
)
).
% If-then-else (NU-Prolog syntax).
parse_dcg_goal_2( "else", [
term__functor(term__atom("if"), [
term__functor(term__atom("then"), [Cond0, Then0], _)
], Context),
Else0
], _, VarSet0, N0, Var0, Goal, VarSet, N, Var) :-
parse_dcg_if_then_else(Cond0, Then0, Else0, Context,
VarSet0, N0, Var0, Goal, VarSet, N, Var).
% Negation (NU-Prolog syntax).
parse_dcg_goal_2( "not", [A0], Context, VarSet0, N0, Var0,
not(A) - Context, VarSet, N, Var ) :-
parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet, N, _),
Var = Var0.
% Negation (Prolog syntax).
parse_dcg_goal_2( "\\+", [A0], Context, VarSet0, N0, Var0,
not(A) - Context, VarSet, N, Var ) :-
parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet, N, _),
Var = Var0.
% Universal quantification.
parse_dcg_goal_2("all", [QVars, A0], Context,
VarSet0, N0, Var0, GoalExpr - Context,
VarSet, N, Var) :-
% Extract any state variables in the quantifier.
%
parse_quantifier_vars(QVars, StateVars0, Vars0),
list__map(term__coerce_var, StateVars0, StateVars),
list__map(term__coerce_var, Vars0, Vars),
parse_dcg_goal(A0, VarSet0, N0, Var0, A @ (GoalExprA - ContextA),
VarSet, N, Var),
(
Vars = [], StateVars = [],
GoalExpr = GoalExprA
;
Vars = [], StateVars = [_|_],
GoalExpr = all_state_vars(StateVars, A)
;
Vars = [_|_], StateVars = [],
GoalExpr = all(Vars, A)
;
Vars = [_|_], StateVars = [_|_],
GoalExpr = all(Vars, all_state_vars(StateVars, A) - ContextA)
).
% Existential quantification.
parse_dcg_goal_2("some", [QVars, A0], Context,
VarSet0, N0, Var0, GoalExpr - Context,
VarSet, N, Var) :-
% Extract any state variables in the quantifier.
%
parse_quantifier_vars(QVars, StateVars0, Vars0),
list__map(term__coerce_var, StateVars0, StateVars),
list__map(term__coerce_var, Vars0, Vars),
parse_dcg_goal(A0, VarSet0, N0, Var0, A @ (GoalExprA - ContextA),
VarSet, N, Var),
(
Vars = [], StateVars = [],
GoalExpr = GoalExprA
;
Vars = [], StateVars = [_|_],
GoalExpr = some_state_vars(StateVars, A)
;
Vars = [_|_], StateVars = [],
GoalExpr = some(Vars, A)
;
Vars = [_|_], StateVars = [_|_],
GoalExpr = some(Vars, some_state_vars(StateVars, A) - ContextA)
).
:- pred parse_dcg_goal_with_purity(term, prog_varset, int, prog_var,
purity, goal, prog_varset, int, prog_var).
:- mode parse_dcg_goal_with_purity(in, in, in, in, in, out, out, out, out)
is det.
parse_dcg_goal_with_purity(G, VarSet0, N0, Var0, Purity, Goal, VarSet,
N, Var) :-
parse_dcg_goal(G, VarSet0, N0, Var0, Goal1, VarSet, N, Var),
( Goal1 = call(Pred, Args, pure) - Context ->
Goal = call(Pred, Args, Purity) - Context
; Goal1 = unify(ProgTerm1, ProgTerm2, pure) - Context ->
Goal = unify(ProgTerm1, ProgTerm2, Purity) - Context
;
% Inappropriate placement of an impurity marker, so we treat
% it like a predicate call. typecheck.m prints out something
% descriptive for these errors.
Goal1 = _ - Context,
purity_name(Purity, PurityString),
term__coerce(G, G1),
Goal = call(unqualified(PurityString), [G1], pure) - Context
).
:- pred append_to_disjunct(goal, goal_expr, prog_context, goal).
:- mode append_to_disjunct(in, in, in, out) is det.
append_to_disjunct(Disjunct0, Goal, Context, Disjunct) :-
( Disjunct0 = (A0 ; B0) - Context2 ->
append_to_disjunct(A0, Goal, Context, A),
append_to_disjunct(B0, Goal, Context, B),
Disjunct = (A ; B) - Context2
;
Disjunct = (Disjunct0, Goal - Context) - Context
).
:- pred parse_some_vars_dcg_goal(term, list(prog_var), list(prog_var),
prog_varset, int, prog_var, goal, prog_varset, int, prog_var).
:- mode parse_some_vars_dcg_goal(in, out, out, in, in, in, out, out, out, out)
is det.
parse_some_vars_dcg_goal(A0, SomeVars, StateVars, VarSet0, N0, Var0,
A, VarSet, N, Var) :-
( A0 = term__functor(term__atom("some"), [QVars0, A1], _Context) ->
term__coerce(QVars0, QVars),
( if parse_quantifier_vars(QVars, StateVars0, SomeVars0) then
SomeVars = SomeVars0,
StateVars = StateVars0
else
% XXX a hack because we do not do
% error checking in this module.
term__vars(QVars, SomeVars),
StateVars = []
),
A2 = A1
;
SomeVars = [],
StateVars = [],
A2 = A0
),
parse_dcg_goal(A2, VarSet0, N0, Var0, A, VarSet, N, Var).
% Parse the "if" and the "then" part of an if-then or an
% if-then-else.
% If the condition is a DCG goal, but then "then" part
% is not, then we need to translate
% ( a -> { b } ; c )
% as
% ( a(DCG_1, DCG_2) ->
% b,
% DCG_3 = DCG_2
% ;
% c(DCG_1, DCG_3)
% )
% rather than
% ( a(DCG_1, DCG_2) ->
% b
% ;
% c(DCG_1, DCG_2)
% )
% so that the implicit quantification of DCG_2 is correct.
:- pred parse_dcg_if_then(term, term, prog_context, prog_varset, int,
prog_var, list(prog_var), list(prog_var), goal, goal,
prog_varset, int, prog_var).
:- mode parse_dcg_if_then(in, in, in, in, in, in, out, out, out, out, out, out,
out) is det.
parse_dcg_if_then(Cond0, Then0, Context, VarSet0, N0, Var0,
SomeVars, StateVars, Cond, Then, VarSet, N, Var) :-
parse_some_vars_dcg_goal(Cond0, SomeVars, StateVars, VarSet0, N0, Var0,
Cond, VarSet1, N1, Var1),
parse_dcg_goal(Then0, VarSet1, N1, Var1, Then1, VarSet2, N2,
Var2),
( Var0 \= Var1, Var1 = Var2 ->
new_dcg_var(VarSet2, N2, VarSet, N, Var),
Unify = unify(term__variable(Var), term__variable(Var2), pure),
Then = (Then1, Unify - Context) - Context
;
Then = Then1,
N = N2,
Var = Var2,
VarSet = VarSet2
).
:- pred parse_dcg_if_then_else(term, term, term, prog_context,
prog_varset, int, prog_var, goal, prog_varset, int, prog_var).
:- mode parse_dcg_if_then_else(in, in, in, in, in, in, in,
out, out, out, out) is det.
parse_dcg_if_then_else(Cond0, Then0, Else0, Context, VarSet0, N0, Var0,
Goal, VarSet, N, Var) :-
parse_dcg_if_then(Cond0, Then0, Context, VarSet0, N0, Var0,
SomeVars, StateVars, Cond, Then1, VarSet1, N1, VarThen),
parse_dcg_goal(Else0, VarSet1, N1, Var0, Else1, VarSet, N,
VarElse),
( VarThen = Var0, VarElse = Var0 ->
Var = Var0,
Then = Then1,
Else = Else1
; VarThen = Var0 ->
Var = VarElse,
Unify = unify(term__variable(Var), term__variable(VarThen),
pure),
Then = (Then1, Unify - Context) - Context,
Else = Else1
; VarElse = Var0 ->
Var = VarThen,
Then = Then1,
Unify = unify(term__variable(Var), term__variable(VarElse),
pure),
Else = (Else1, Unify - Context) - Context
;
% We prefer to substitute the then part since it is likely
% to be smaller than the else part, since the else part may
% have a deeply nested chain of if-then-elses.
% parse_dcg_if_then guarantees that if VarThen \= Var0,
% then the then part introduces a new DCG variable (i.e.
% VarThen does not appear in the condition). We therefore
% don't need to do the substitution in the condition.
Var = VarElse,
prog_util__rename_in_goal(Then1, VarThen, VarElse, Then),
Else = Else1
),
Goal = if_then_else(SomeVars, StateVars, Cond, Then, Else) - Context.
% term_list_append_term(ListTerm, Term, Result):
% if ListTerm is a term representing a proper list,
% this predicate will append the term Term
% onto the end of the list
:- pred term_list_append_term(term(T), term(T), term(T)).
:- mode term_list_append_term(in, in, out) is semidet.
term_list_append_term(List0, Term, List) :-
( List0 = term__functor(term__atom("[]"), [], _Context) ->
List = Term
;
List0 = term__functor(term__atom("[|]"),
[Head, Tail0], Context2),
List = term__functor(term__atom("[|]"),
[Head, Tail], Context2),
term_list_append_term(Tail0, Term, Tail)
).
:- pred process_dcg_clause(maybe_functor, prog_varset, prog_var,
prog_var, goal, maybe1(item)).
:- mode process_dcg_clause(in, in, in, in, in, out) is det.
process_dcg_clause(ok(Name, Args0), VarSet, Var0, Var, Body,
ok(clause(VarSet, predicate, Name, Args, Body))) :-
list__map(term__coerce, Args0, Args1),
list__append(Args1, [term__variable(Var0),
term__variable(Var)], Args).
process_dcg_clause(error(Message, Term), _, _, _, _, error(Message, Term)).